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Investigating the role of gut
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causal inference approach using
review of evidence to date
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1Centre for Chronic Disease Control, New Delhi, India, 2Centre for Health Analytics, Research, and
Trends, Trivedi School of Biosciences, Ashoka University, Sonipat, India
Pollutants in ambient air have been linked with type-2 diabetes mellitus (T2DM)
in low as well as high pollution scenarios. Mechanisms of action include
disruption of endothelial function, imbalance in the autonomic nervous
system and direct translocation. Although reductions in exposure to ambient
air pollution (AP) could translate to meaningful clinical and public health
benefits, policy changes targeting AP are usually at the population level,
multisectoral, and time consuming. The human gut microbiome (GM) is an
ecosystem within individuals which has been linked with health in both
beneficial and detrimental ways. During the last decade, mechanistic and
epidemiological research on GM suggests altered microbial diversity and
differential composition influencing T2DM through inflammation, metabolites,
and microbial functions. This offers a scope to design individual level
interventions to target AP related T2DM through GM. In this paper, we
presented a combination approach of evidence synthesis by literature review
and application of causal inference framework to investigate the role of GM in
the association of AP and T2DM, to help design epidemiological studies and
direct data analysis. We formulated Directed Acyclic Graphs with
methodological considerations for mediatory, interacting, or effect
modification role of GM in the association of AP and T2DM. Additionally, we
considered the emerging links between gut and oral microbiome, the different
T2DM disease patterns in South Asia, and unique co-exposures in these
settings (for example, indoor air pollution).
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1 Introduction

There are 437 million adults (95% uncertainty 402–477 million) living with type-2

diabetes mellitus (T2DM) globally in 2019 (1) which is projected to rise to 643

million by 2030 and 783 million by 2045 (1, 2). Air pollutants, specifically fine

particulate matter (PM) from anthropogenic activities have been shown to be a major

risk factor for cardiometabolic diseases including T2DM. While reductions in
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exposure AP could translate to meaningful clinical and public

health outcomes, policy changes targeting AP are usually at the

population level and multi-sectoral and thus time consuming.

Host-associated microbial diversity, composition, and functions,

supported by strong mechanistic evidence from animal models

(3, 4) have been associated with beneficial as well as harmful

health outcomes in human beings (5). Specifically, human gut

microbiome (GM) has been emerging as a novel factor in the

pathophysiology of several chronic disease outcomes (6, 7).

Given the links between AP influencing unhealthy shifts in the

GM and the associations of less healthy shifts in GM with

T2DM, GM could be visualized as a mediator, an interacting

factor, and/or as an effect modifier in a causal framework

linking AP and T2DM (Figure 1A). This evidence, although

largely from low AP exposure scenarios from developed country

settings, gives rise to the potential of minimizing the harmful

effects of AP on T2DM at an individual level by modulating

GM or factors that influence it. Furthermore, the interactions

between the gut and oral microbiome- the Gut-Oral axis- is

gaining evidence (8). The Gut-Oral axis is particularly relevant

in T2DM where periodontal disease, a chronic inflammatory
FIGURE 1

(A) Conceptual diagram for the role of gut microbiome in the association
acyclic graphs showing the conceptual framework linking ambient air
(B) Mediation through gut microbiome (GM), (C) effect modification by GM
by GM. Biological interactions between AP and GM is represented by a da
shown for each main association, including neighborhood and individual
tobacco and alcohol use. Additionally, the gut-oral-periodontal disease pat
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disease of the soft tissues and bone of the oral cavity driven by

aberrant host response to oral microbial pathogens, is classified

as the sixth major complication of T2DM with established

bidirectional associations (9).

High levels of ambient air pollution (AP) and a high burden

of type-2 diabetes mellitus (T2DM) are two major public health

hazards faced by several low- and middle-income countries

(LMICs). Asia, with the most populous countries of the world

(i.e., China and India), is at the epicenter of T2DM burden

accounting for 40% of total global burden. Specifically in India,

the prevalence of T2DM increased from 26·0 million in 1990 to

81·0 million in 2019 with an annual rate of change at 2.9%

during this period (vs. 1.9% globally and 1.5% in China) (2).

The GBD 2019 study reports 14.3% deaths due to T2DM and

15% of disability-adjusted life-years (DALYs) being attributable

to AP in Southeast Asia (vs. 13.4% of all deaths and 13.6% of

DALYs globally) (10).

The causal links between AP, GM and T2DM are complicated

by multiple lifestyle and environmental factors that regulate GM

that may confound associations with T2DM, a complex

multifactorial disease. This further limit the ability to investigate
s between ambient air pollution and type-2 diabetes mellitus. Directed
pollution (AP) with Type 2 diabetes (T2D) under three scenarios:
, (D) South Asian scenario with co-exposures, with effect modification
shed line in 1B. Other major confounders for each association are also
level socioeconomic status (SES), green space, diet, physical activity,

hway is shown as a bidirectional association.
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the precise less healthy shifts in GM that may be causally associated

with T2DM (11). The aim of this paper was to address whether

GM was a potential modifiable factor in the causal association of

AP and T2DM. We synthesized the evidence to date by

summarizing systematic reviews and meta-analysis in the selected

topic published until December 2023. We quantified the

summary findings as appropriate and identified the research

gaps. We then applied a causal inference framework, to help

design future epidemiological studies and direct data analysis, to

investigate the role of GM in the association of AP and T2DM.

We utilized the combination approach of “Evidence Synthesis for

Constructing Directed Acyclic Graphs” framework, proposed by

Ferguson et al., in 2020 (12).
2 Methods

2.1 Evidence synthesis

First, using PubMed searches and limiting the keywords to the

exposure and outcome we summarized the published systematic

reviews and meta-analysis for the association between AP and

T2DM stratified by high and low pollution scenarios. We also

summarized systematic reviews for the association between AP

and GM, and GM and T2DM. We extracted information on

exposures, outcome, summary estimates of associations, and

corresponding 95% confidence interval (CI), and heterogeneity

measure, and covariates or confounders assessments. Second, we

summarized all published evidence (reviews and original studies)

investigating the mediating role of GM in the association

between AP and T2DM with information on exposures,

outcome, magnitude of associations, and covariates or

confounders assessments. Further, for meta-analytical reviews on

AP and T2DM, the effect estimates and CIs were converted to

percentage excess risk of odds ratio (OR)/relative risk (RR)/

hazard ratio (HR); % excess risk = (OR/HR/RR − 1) × 100 per

10 μg/m3 increase of AP (13). For meta-analytical reviews on

GM and T2DM, we summarized the meta-analytic mean

difference of the outcome. For all systematic reviews, we

summarized the statistically significant associations. Overall, we

classified the strength of the evidence as sufficiently conclusive

(consistent positive association in ≥50% of meta-analysis),

limited positive (consistent positive association <50% of meta-

analysis or dose-response evidence in systematic review), limited

suggestive (consistent positive association in original studies) or

no association.
2.2 Constructing directed acyclic graphs

Directed acyclic graphs (DAGs), a causal inference method, are

diagrammatic representation of causal relationships between

exposure, outcome, and co-factors based on evidence in the

existing literature. DAGs help to distinguish the types of factors

such as mediators (factors associated with both exposure and

outcome in the causal pathway), confounders (factors associated
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with both exposure and outcome but not in the causal pathway),

and colliders (factors caused by exposure and outcome

independently), and identify an appropriate adjustment set for

confounders, to direct data analysis (14–16). We formulated

DAGs to design studies to investigate the role of GM in the

association of AP and T2DM. We mapped exposure (AP) and

outcome (T2DM) with all reported covariates in the literature;

translated the information after considering temporality,

plausibility of associations, and the strength of the supporting

evidence and integrated the evidence to synthesise DAGs. The

methodological considerations for the role of GM in the

association of AP and T2DM included mediation (i.e., GM is

the intermediate factor in the causal pathway between AP and

T2DM) or effect modification (i.e., GM in a subgroup influences

the association between AP and T2DM) or interaction (i.e., joint

association of GM and AP with T2DM) (15, 16). Additionally,

we considered the emerging links between gut and oral

microbiome, the different T2DM disease patterns in South Asia,

and unique co-exposures in these settings (for example, indoor

air pollution).
3 Results

3.1 Evidence synthesis

3.1.1 Ambient air pollution and type-2 diabetes
mellitus

A PubMed search using the keywords “air pollution” AND

“diabetes mellitus” in combination with filter for review and

manual searches of the reference list showed a result of 10 meta-

analysis (2014–2023), 2 systematic reviews (2014–2018), and 10

reviews (2018–2021). Published systematic reviews (n = 2)

(17, 18) and meta-analysis (n = 9; full-text was unavailable for

one) (19–27) examining the associations between AP and T2DM

are summarized in Supplementary Table S1 by low- and high-

pollution scenarios. Exposure to various air pollutants, including

particulate matter [PM2.5, PM10, elemental carbon (EC), Black

Carbon (BC)], and gaseous pollutants such as O3 (ozone), CO

(carbon monoxide), SO2 (sulphur dioxide), NO/NO2 (nitrogen

oxides), and traffic-related pollutants, have been investigated with

incident or prevalent T2DM. Evidence linking AP with T2DM

mostly arises from developed countries with low levels of AP (for

example, with annual mean of PM2.5: 7.7–28.5 μg/m
3 vs. 33.7–

147.0 μg/m3 in developing countries). Percent excess risk for

long-term AP exposures on incident T2DM ranged between 10.0

(02.0, 18.0) and 39.0 (14.0, 68.0) for PM2.5; 11.0 (00.0, 22.0) and

34.0 (22.0, 47.0) for PM10; and 11.0 (07.0–16.0) and 13.0 (04.0,

22.0) for nitrogen oxides. The evidence was sufficiently

conclusive for temporal associations of PM2.5 (n = 7 meta-

analysis) but limited for PM10 and nitrogen oxides (n = 2 meta-

analysis). While the associations weakened for prevalent T2DM,

it became insignificant for T2DM mortality. The evidence for

long-term exposure for other pollutants were inconclusive. Short-

term exposures to PM2.5 was associated with 6%–49% increase in

diabetes related mortality and 1%–3% increase in hospitalizations
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per 10 μg/m3 (22, 27). A detailed set of confounders and effect

modifiers reported in these studies are summarized in

Supplementary Table S1.

The plausible mechanisms underlying the association between

AP and T2DM involve chronic inflammation, and insulin

resistance, but also oxidative stress, alterations in insulin

signaling, dysregulated glucose metabolism, and beta (β)-cell

function (25–27). The exposure-response function of AP with

chronic diseases indicates a steep increase in risk from 0 to

50 µg/m3 and a subsequent plateauing or non-linear associations

(28). Although the number of studies at higher levels were much

fewer than those at lower levels, systematic evidence suggests

similar magnitude of associations between low- and high-

pollution regions (26).

3.1.2 Indoor air pollution and type-2 diabetes
mellitus

Long-term exposure to indoor air pollution (IAP) has similar

effects as ambient AP, wherein a 6.5% of T2DM deaths and 5.9%

of DALYs were attributed to household PM2.5 (10). Nevertheless,

while the age-standardized rate of DALYs due to ambient air

pollution increased by over 85%, it decreased by 37.9% for IAP

during this period. This is found to affect the elderly, women

and people of low social status disproportionately (29, 30). For

example, long-duration cooking with solid fuel was associated

with decreased insulin level among women, which was more

pronounced among women of low monthly income (30).

According to the Health Effect Institute, long-term exposure to

IAP through household burning of solid fuels for cooking

contributed to 2.31 million deaths (4% of total global deaths)

and 91.5 million DALYs in 2019 (31). Nearly 95% of this burden

is from South Asia, Sub-saharan Africa, Southeast Asia, East Asia

and Oceania Asia (31).The prevalence of solid fuel use for

cooking in these regions is as high as >30%–95%, although there

is considerable decrease over time (31).

3.1.3 Gut microbiome and type-2 diabetes mellitus
A PubMed search using the keywords “gut microbiome” OR

“gastrointestinal microbiome” AND “diabetes mellitus” in

combination with filter for review and manual searches of the

reference list revealed 75 review papers (2011–2023) and eight

systematic reviews and meta-analysis (2018–2023). Published

systematic reviews (N = 4; full-text unavailable for one) (32–35)

and meta-analysis (N = 3) (36–38) examining the associations

between GM and T2DM are summarized in Supplementary

Table S2. Limited but high-quality randomized control trials

(RCTs; n = 2 meta-analysis) in diabetic patients showed dietary

intervention with high-fibre diet and probiotics Lactobacillus sp.,

Bifidobacterium sp. and Actinoplanes lowered glycated

hemoglobin levels (HbA1c) and improved insulin sensitivity.

Moderate quality RCTs (n = 2 meta-analysis) also showed that

dietary intervention with low-fat, low-carbohydrate, and high-

fibre diets lowered fasting blood glucose and HbA1c levels by

increasing diversity and abundances of beneficial bacteria such as

Roseburia, Ruminococcus, Lactobacillus, Bacteroides, Lachnospira,

Fusobacterium prausnitzii, Eubacterium rectale, Akkermansia
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muciniphilia. Further, limited but suggestive evidence from

mechanistic studies in animals indicated probiotic

supplementation with Bacteroides sp. reduced insulin resistance

(n = 1 meta-analysis). However, the findings from observational

studies yielded mixed results with conflicting reports on specific

bacterial species (n = 2 meta-analysis). The set of covariates

assessments reported in these studies are summarized in

Supplementary Table S2. The plausible mechanisms include

modulating inflammation, interactions with dietary components,

influencing gut permeability, glucose and lipid metabolism,

insulin sensitivity and thus the overall energy homeostasis

(32, 35). Standard definitions of microbial features described in

this paper are outlined in Supplementary Figure S1.

3.1.4 Gut-oral axis in T2DM
The bidirectional association between oral diseases, specifically

the periodontal disease, and T2DM is well established and

periodontal disease is classified as a major sixth complication of

T2DM (9, 39, 40) Systematic reviews and meta-analysis of

epidemiological studies strongly support the bi-directional

relationship of periodontal disease and T2DM, leading to the

formulation of European Federation of Periodontology/American

Academy of Periodontology (EFP/AAP, 2013) and the EFP and

the International Diabetes Federation consensus reports (2018).

The consensus statements include (1) poor glycemic control is

associated with poorer periodontal outcomes. (2) periodontal

disease is associated with hyperglycemia and increased insulin

resistance in diabetes, increased risk for incident diabetes and

diabetic complications such as retinopathy, neuropathy, and

cardiovascular complications (OR: 1.2–6.6) and mortality (HR:

3.5–4.5). Periodontal therapy improves serum HbA1C levels

(0.27%–0.48% after 3 months) (39, 40). The suggested

mechanistic pathways for these associations include shared

disease progression through chronic inflammation, acetylated

glycated end-products, and oral pathogens (9). Periodontal

pathogens such as Tanerella forsythia, Porphyromonas gingivalis,

Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans

are few well studied oral microbiome (41). The concept of

enteral and systemic entry of oral pathogens into the

gastrointestinal tract and the interaction between oral and gut

microbiome has plausible mechanistic evidence (8). The gut-oral

axis contributing to the disease progression through shared

pathways of chronic inflammation and dysregulated metabolic

factors is rapidly emerging and strongly suggestive for T2DM (8).

3.1.5 Air pollution and gut microbiome
A PubMed search using the keywords “air pollution” AND “gut

microbiome” OR “gastrointestinal microbiome” in combination

with filter for review revealed 1 systematic review (42) including

human studies (N = 12) and animal studies (N = 36) and five

review papers (2017–2020). The findings of the systematic review

are shown in Good quality human studies across the life-course

strongly indicated lower gut diversity and shifts in GM

composition with dose-response function for PM exposure

(average exposure in studies ranged from 8.4 μg/m3–102 μg/m3)

(42). Prenatal and post-natal black carbon exposure explained
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6%–17% of bacterial diversity among healthy children. Nitrogen

oxides and ozone exposures explained 4%–11% variation of GM

composition. These have also been linked to lower gut microbial

diversity, gene functional pathways related to insulin release (43).

AP exposure increased Porphyromonadaceae, Mucisprillum, and

Campylobacter, and decreased Akkermansia muciniphila. While

animal studies supported the findings in general, the reported

bacterial taxa were different. Plausible biological mechanisms

include increased gut damage, inflammation, oxidative stress, and

gut permeability. The set of covariates assessments reported in

these studies are summarized in Supplementary Table S3.

3.1.6 Air pollution, gut microbiome, and type-2
diabetes mellitus

Studies examining the role of GM in the associations between

AP and T2DM are very limited to date (Supplementary Table S4).

A PubMed search using the keywords (“air pollution”[MeSH

Terms] OR (“air”[All Fields] AND “pollution”[All Fields]) OR “air

pollution”[All Fields]) AND (“gastrointestinal microbiome”[MeSH

Terms] OR (“gastrointestinal”[All Fields] AND “microbiome”[All

Fields]) OR “gastrointestinal microbiome”[All Fields] OR

(“gut”[All Fields] AND “microbiome”[All Fields]) OR “gut

microbiome”[All Fields]) AND (“diabete”[All Fields] OR “diabetes

mellitus”[MeSH Terms] OR (“diabetes”[All Fields] AND

“mellitus”[All Fields]) OR “diabetes mellitus”[All Fields] OR

“diabetes”[All Fields] OR “diabetic”[All Fields] OR “diabetics”[All

Fields]) revealed a review of five animal studies (2013–2018) and

three human studies (2015–2018) (44) and an additional two

original research articles (45, 46). Limited evidence from

prospective and population based studies from high pollution

regions suggest a 4.3–37.8% of associations between PM exposure

and impaired glucose metabolism and T2DM mediated through

GM either directly or via lipid metabolism. Specifically, the

abundance of Oribacterium and Shuttleworthia, reduction in

Firmicutes, Proteobacteria, and Verrucomicrobia might explain the

correlations between AP and T2DM (45, 46). Mechanistic

evidence supports inflammatory pathway for the role of GM in

the associations between AP and T2DM. The set of covariates

assessments reported in these studies are summarized in

Supplementary Table S4.

3.1.7 Pathophysiology of diabetes in South Asians
South Asian populations show certain distinct T2DM disease

patterns compared to the Western populations and possibly to

other Asian populations in the East and South-East Asia (47–52).

For instance, systematic evidence reveals that South Asians exhibit

a high prevalence of early-onset T2DM (≤55 years of age) and a

high prevalence of T2DM at a lower BMI. They also have also

have a higher risk for microvascular complications, possibly

associated with earlier mortality compared to Western populations

(47, 50). Different body fat distribution and lipid metabolism

coupled with dysregulated metabolic pathways (i.e., poor insulin

secretion and beta-cell dysfunction) are suggested to explain, at

least in part, these differences in disease patterns in South Asians

(47, 51). South Asians tend to have a low lean mass, visceral

(abdominal) and ectopic (in skeletal muscles and liver) adiposity
Frontiers in Environmental Health 05
leading to elevated triglycerides and possibly a pro-inflammatory

high-density lipoprotein cholesterol (47, 53). Certain lifestyle

factors (diet rich in saturated fat and low in omega-3 fatty acid

with sedentary activity), genetic susceptibility (e.g., family history,

specific genetic variants with high heritability) and evolutionary

biology (historical undernourishment, low lean mass, visceral and

ectopic adiposity) are suggested to influence this pattern among

South Asians (47, 50, 51).
3.2 Directed acyclic graph (DAG) approach

Table 1 summarizes the strength of evidence for the causal

associations between AP-T2DM, GM-T2DM, AP-GM, and

AP-GM-T2DM, with the reported set of confounders and effect

modifiers. Interacting factors in any of these associations are little

explored. (i) Considering causal associations of AP with T2DM

and GM with T2DM wherein both AP and GM can be

considered as independent exposures (i.e., independent of each

other’s influence) against T2DM as the outcome—GM could be

an interacting factor in the association between AP and T2DM

(i.e., joint effect of the causal effects of AP and GM on T2DM

that could be more than the sum or product of their individual

effects 14–16) (Figure 1B) (ii) Considering causal associations of

AP with T2DM and GM with T2DM and moderate causal

associations of AP with GM—GM could be a mediator in the

association between AP and T2DM (i.e., AP exposure affecting

GM in an intermediate pathway resulting in T2DM outcome

14–16) (Figure 1B). (iii) Epidemiological evidence indicates

inequities in the health effect of AP, where individuals belonging

to lower socioeconomic groups or vulnerable communities bear a

larger impact from AP (54, 55). These same population

subgroups are also likely to have dietary patterns or other

lifestyle practices that promote less healthy GM shifts, higher

adiposity and higher burden of cardiometabolic diseases (56).

Thus, this could be hypothesized as an effect modification

pathway wherein different levels of shifts in GM can influence

variations in the causal associations of AP with T2DM 14–16)

(Figure 1C). Further, in case of highly polluted LMIC settings,

one needs to account for co-exposures such as indoor air

pollution and pathophysiological characteristics such as low body

mass index, but high visceral fat, related reduced beta cell

dysfunction (Figure 1D). Further, indoor air pollution in LMICs

is often affected by ambient levels due to open windows and lack

of insulation, which creates a potential mediation pathway

(ambient to indoor to outcome). Hence if the main exposure of

the interest is ambient AP, indoor AP might be considered as a

mediator. In contrast if indoor AP is the main exposure of

interest, ambient AP needs to be treated as a confounder.

3.2.1 Quantitative study designs
Among commonly used study designs, a cross-sectional or a

longitudinal design can be used to study these associations,

depending on whether T2DM was assessed once or multiple

times over time. In addition, AP could be treated as a time-

varying exposure and GM could be assessed at one or more time
frontiersin.org
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TABLE 1 Summary of evidence synthesis for ambient air pollution (AP), gut microbiome (GM) and type-2 diabetes mellitus (T2DM).

Causal
associations

Strength of evidence Confounders Effect modifiers

AP-T2DM Sufficiently conclusive: PM2.5

Limited positive: PM10

Limited positive: nitrogen
oxides
Plausible mechanisms

Demographics: age, sex, ethnicity, marital status, time-varying age
Socioeconomic status (SES): education, occupation, income, members & income of
household, residence location, neighborhood SES, population density, health
insurance, contextual factors
Lifestyle factors: smoking, alcohol, physical activity, diet, BMI/waist-hip ratio, time-
varying lifestyle factors, passive tobacco
Comorbidities: cardiovascular disease, hypertension, hyperlipidaemia, chronic
respiratory conditions, asthma, time-varying hypertension
Environmental & occupational exposures: latitude, seasons, weather, calendar year,
workplace & indoor exposures, noise, annual mean PM2.5, location-specific long-term
trends, co-pollutants
Others: familial diabetes, inflammatory markers such as hs-CRP

Household income, chronic
respiratory conditions, tobacco,
physical activity, age, body fat,
individual & neighborhood
SES, waist-to-hip ratio,
subclinical inflammation,
<50/>65 years of age

GM-T2DM Limited positive
Plausible mechanisms

BMI, waist-hip ratio, inflammatory markers, lipids, age, gender, physical activity, diet,
amino acids, miRNA, blood pressure, liver & kidney function tests, fatty acids, bile
acids, inflammatory markers

None reported

AP-GM Limited positive
Dose-response across life
course
Plausible mechanisms

Sex, age, weight/body mass index, socio-economic status, diet, antibiotic use. None reported

AP-GM-T2DM Limited suggestive for
mediation
None for effect modification
None for interaction
Plausible mechanisms

Age, sex, race, education occupation, income, marital status, cooking fuel, smoking
passive smoking, alcohol, BMI, weight change, blood lipid, blood pressure, physical
activity, familial diabetes diet, gaseous pollutants, temperature, relative humidity

None reported

Mandal et al. 10.3389/fenvh.2024.1339674
points. Within a cross-sectional design, to evaluate the potential

role of GM in the epidemiological studies for the association of

AP with T2DM, we would recommend first testing for mediation

through GM if any, while adjusting for an appropriate set of

neighborhood level and individual factors. Mediation analysis

refers to a statistical analysis that assesses the amount of

association between the exposure and outcome that is mediated

through a mediator (57). We recommend using a causal

mediation analysis with a counterfactual approach over a

traditional mediation analysis (58, 59). This approach provides a

segregation of the total effect of exposure (joint association) on

outcome into direct (independent association) and indirect

effects (mediated association). In case of mediation over time,

recent approaches using two generalized mixed effect models for

the mediator and the outcome can be used (60). If the joint or

mediated associations are small in magnitude as well as

statistically insignificant, we would recommend testing for effect

modification, by stratifying across quartiles of microbial diversity

and testing for significant interaction between AP and microbial

diversity. For ease of exposition, we are considering “GM

diversity” as a representative variable of GM composition as

evidence on specific shifts in the composition is sparse. It is to

be noted here, that for all the analyses described above, other

confounders need to be appropriately controlled to avoid bias

in estimations.

Propensity score-based methods can be utilized to account for

measured confounders within each of the above approaches (61). If

we consider AP or GM as the exposure, these can be modeled

against measured confounders to construct scores that indicate

the probability of being exposed given the confounders. Since AP

(for e.g., annual average PM2.5) and GM (for e.g., microbial

alpha diversity) are inherently continuous variables, generalized
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propensity scores may be constructed and participants can either

be a) weighted using an inverse of the scores or b) be matched

based on deciles of these scores (62).
4 Conclusion

In this review, we have discussed the potential role of GM in

the pathways linking ambient air pollution and T2DM, and

which could lead to interventions or strategies at an individual

level to reduce the risk of AP attributable T2DM. We have also

discussed the causal inference framework to investigate the role

of GM in the association of AP and T2DM, to help design

studies and direct data analysis. We observed “sufficient

evidence” linking AP to T2DM (10-39% excess risk for different

pollutants for T2DM incidence), and ‘limited yet positive

evidence’ linking AP with GM (4-17% of GM variation explained

by different pollutants with dose-response). Further, although the

evidence linking GM with T2DM is less quantified, it is

supported through experimental studies. However, the evidence

linking AP, GM and T2DM is at a nascent stage with five studies

conducted with human participants and conflicting information

on specific targetable GM composition influencing these

associations. Studies investigating these links between AP, GM

and T2DM in large cohort studies, particularly in LMICs would

be of great clinical and public health significance, given the large

burden of T2DM, diversity in exposure and unique

pathophysiology of the population. Leveraging existing cohort

studies with comprehensive repeated information on

sociodemographic, lifestyle and environmental factors, to

incorporate the aspect of GM would be advantageous if AP

exposures are available at fine spatiotemporal resolution. Findings
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from such studies could facilitate mechanistic studies to identify

specific unhealthy GM shifts and to understand the progression

of T2DM starting from non-diabetic to pre-diabetics to T2DM.

These findings could inform potential interventions to tackle the

high burden of T2DM, a significant portion of which is

attributable to AP.
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