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Chemical oxidation remediation is a technique that involves the addition of
chemical oxidants to contaminated soil to degrade total petroleum
hydrocarbons (TPHs), with the goal of reducing soil organic matter content or
eliminating organic contamination. This paper reviews the research progress of
several major chemical oxidation remediation technologies, including hydrogen
peroxide (H2O2)-based Fenton and Fenton-like systems, calcium peroxide
(CaO2)-based Fenton and Fenton-like systems, and persulfate-activated
oxidation systems (e.g., Na2S2O8). Among these, the persulfate-activated
oxidation system has recently emerged as a research hotspot due to its
potential in eliminating TPHs from soil. The efficiency of TPHs degradation
depends significantly on the activation method employed and the oxidative
capacity of the system. Consequently, future research should focus on two
critical directions: (1) the development of highly efficient, cost-effective, and
environmentally sustainable activation methods; and (2) the enhancement of
oxidative performance in existing systems, such as Na2S2O8/CaO2 and Na2S2O8/
H2O2. In discussing the advancements in these major chemical oxidation
remediation technologies, this paper specifically examines various persulfate
activation methods and their corresponding treatment efficiencies. The aim is
to provide insights and references for the development of efficient, cost-
effective, and environmentally friendly persulfate-activated oxidation systems,
thereby promoting the application of chemical oxidation remediation
technologies in the treatment of petroleum hydrocarbon-contaminated soils.
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1 Introduction

With the continuous development of industry, the demand for fossil fuels is constantly
increasing (Dai et al., 2024; Zhou et al., 2024), consequently, the issue of environmental
pollution is becoming increasingly severe (Liu et al., 2024; Liu et al., 2023b). The
exploitation of crude oil, the use of petroleum products, industrial production activities,
discharges of oily wastewater, and natural spills have all contributed to the increasingly
severe phenomenon of environmental pollution caused by TPHs (Ashjar et al., 2021; Wu
et al., 2020). The leakage of Total Petroleum Hydrocarbons (TPHs) into the environment
has altered the structure of soil and impacted microbial diversity (Zhang et al., 2023). As a
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result, the soil becomes a carrier of hazardous substances, thereby
posing risks to soil ecology, human health, and the wellbeing of
plants and animals (Sayed et al., 2021; Pinedo et al., 2014; Kim et al.,
2022). Consequently, the treatment and remediation of soils
contaminated with TPHs, and the restoration of soil ecological
stability, have emerged as urgent priorities that demand
immediate, and targeted, interventions to address the growing
environmental and ecological concerns (Yuan et al., 2023; Peng
et al., 2017; Kim et al., 2021).

At present, physical restoration (Chang et al., 2022),
bioremediation (Bidja Abena et al., 2019; Feng et al., 2021;
Othman et al., 2022), and chemical remediation (Li et al., 2022;
Effendi et al., 2022; Liu et al., 2023a; Chen et al., 2022) are commonly
used to remediate TPHs-contaminated soils. Among these
approaches, chemical remediation technology has emerged as a
research hotspot, primarily due to its strong pertinence, high
treatment efficiency, and relatively short implementation period.
Chemical remediation technology mainly encompasses three key
methods: chemical flushing technology (Naeem and Qazi, 2020),
chemical stabilization technology (Yang et al., 2020), and chemical
oxidation technology (Chang et al., 2022; Bu et al., 2023; Li et al.,
2024a). The chemical oxidation systems commonly used for TPHs-
contaminated soils, such as the H2O2 Fenton oxidation system, the
CaO2-based Fenton oxidation system, the activated Na2S2O8

oxidation system and the Na2S2O8/CaO2 composite oxidation
system (Ni et al., 2024).

This paper primarily reviews the advancements in chemical
oxidation technology, which aims to eliminate or mitigate soil
contamination by introducing chemical oxidizing agents and
activators. This process effectively degrades pollutants and
restores soil health. The review encompasses the practical
applications and current research status of several key chemical
oxidation technologies, while also exploring potential future
directions for development.

2 H2O2 -based fenton system

In 1893, Fenton HJ initially proposed that a mixed solution of
H2O2 and Fe

2+ exhibits potent oxidising properties, and is capable of
degrading the majority of organic substances into inorganic states.
As a result of the extensive research conducted, the Fenton oxidation
system has become a more sophisticated and well-developed
process. With the depth of research, Fenton oxidation system has
been developed more mature. H2O2 is used as the oxidant andmixed
with Fe2+. Under acidic conditions, Fe2+ catalyzes the generation of
highly oxidative hydroxyl radicals (·OH), which have a standard
electrode potential of 2.76 V. The hydroxyl radical (·OH) is strongly
electrophilic and highly oxidative, capable of undergoing
electrophilic reactions with most organic pollutants. This
ultimately leads to the mineralization of these pollutants into
H2O and CO2. The mechanism of treatment can be described as
follows (Equations 1.1–1.6):

H2O2 + Fe2+ → ·OH + OH- + Fe3+ (1.1)
H2O2 + Fe3+ → ·OOH +H+ + Fe2+ (1.2)
H2O2 + ·OH → · OOH +H2O (1.3)

·OH + ·OH → H2O2 (1.4)
·OH + Fe2+ → OH- + Fe3+ (1.5)

·OH + organic pollutant → CO2 +H2O (1.6)

The remediation of petroleum hydrocarbons in soils has been
the subject of extensive study with regard to Fenton oxidation
systems based on H2O2 (Apul et al., 2016). It has been
demonstrated that the choice of catalysts and the influencing
factors have a significant impact on the final degradation. The
traditional hydrogen peroxide oxidation Fenton oxidation system
employs hydrogen peroxide in conjunction with Fe2+, which
reacts at low pH to produce -OH, before undergoing further
reaction. The Fenton oxidation system has been the subject of
extensive research with the objective of enhancing its efficacy and
reducing any potential environmental impact (Priyadarshini
et al., 2022).

Chen et al. (2022) employed hydrogen peroxide (Fe2+/H2O2)
oxidation systems, utilising Fe2+ as an activator to treat TPHs
pollutants, the schematic diagram of the experimental setup was
given (Figure 1a). The effects of the oxidant concentration, Fe2+

dosage, and initial pH conditions of the removal rate of TPHs from
oil-based drilling cuttings as shown in Figure 1b. The findings
demonstrated that under room temperature conditions,
liquid–solid ratio = 10:1, H2O2 = 10 mmol/g, Fe2+ = 10 mmol/
g,initial pH = 3, the TPHs removal rates were found to be 45.04% for
the (Fe2+/H2O2) system. And the (Fe2+/H2O2) system removed up to
80% of C10-C13 components. In previous studies, Fernando Pardo
(Pardo et al., 2014) and colleagues employed H2O2 as an oxidising
agent (400–4,000 mmol L−1), ferric ions as a catalyst
(5–20 mmol L−1), and trisodium citrate (50 mmol L−1) as a
chelating agent. The removal efficiencies of petroleum
hydrocarbons (TPHs) were obtained at two different pollutant
concentrations (1,000–10,000 mg diesel kg/soil), with efficacies
reaching up to 75%.

Akpoveta et al. (2018) achieved up to 87.6% degradation of
TPHs (10% diesel) by Fenton oxidation with 350,000 mg/L H2O2

and 600 mg/L FeSO4, in the optimal room temperature range of
27°C–30°C, and at pH = 4.7, and the reaction products are
environmentally friendly. Xu et al. (2011) employed three distinct
oxidising reagents to address soil contamination resulting from
cable insulating oil leaks. The efficacy of three different oxidising
agents (H2O2, CaO2, and permanganate) in facilitating the oxidation
of various carbon chain lengths, including C10-C12, C13-C16, C17-
C20, C21-C24, C25-C40 (Table 1), and TPHs oxidation were evaluated.
Among them H2O2 is the most effective of the three oxidants for
chemical oxidation of cable oil contaminated soils under neutral
pH conditions. Therefore, the experiments investigated the
optimum concentration of oxidant, the optimum amount of iron
catalyst and the addition of hydrogen peroxide for the treatment of
TPHs with H2O2 as oxidant. The results showed that the optimum
removal rate of 46% of cable oil contaminated soil was achieved
when Fe(II) = 6.98 mmol/L and H2O2 at a concentration of
1,469 mmol/L was added at three times with a minimum time
interval of 5 h. Yang et al. (2022) also pointed out that the optimal
method of adding reagents is to add the iron catalyst in one step,
then the stepwise addition of H2O2, which has no effect on the
microbiological environment in the soil.
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In order to enhance the efficacy of the H2O2 Fenton oxidation
system in the treatment of TPHs, various new Fenton composite
remediation systems have been proposed. In a study conducted by
Adhami et al. (2021), an electrokinetic-Fenton oxidation system
(Figure 2) was employed to treat oil-based drilling waste. This
resulted in a notable reduction in the TPHs content, from
31,600 mg/kg to 72,680 mg/kg, with an impressive degradation
rate of 77%, and this electrokinetic-Fenton method has also been
widely used in the treatment of organic matter in soils (Paixão
et al., 2020).

Sivagami et al. (2019) used the ultrasonic-Fenton method to
treat TPHs in oil spill sludge, and under the conditions of pH = 3.0,
sludge/water ratio = 1:100, ultrasonic power = 100W and ultrasonic
amplitude = 40–50%, and the weight ratio of H2O2/Fe

2+ = 10:1, the
removal of TPHs after ultrasonic treatment for 10 min was up to
84.25%, present excellent results.

The H2O2 Fenton system is distinguished by a minimal
environmental impact, a broad spectrum of applications, and
straightforward operation. However, the efficacy of TPHs
degradation is significantly influenced by the pH value. Therefore
H2O2-based Fenton systems should require a combination of UV or
visible light (Wang et al., 2016a), sono-, electro-, photo-electro-,
sono-electro-, heterogeneous electro- and sono-photo- techniques
to achieve higher TPHs removal rates (Priyadarshini et al., 2022;
Khodaveisi et al. 2011).

3 CaO2-based fenton system

The traditional H2O2 Fenton oxidation system has
shortcomings such as dependence on the pH of the soil
environment (applicable under acidic conditions) and poor H2O2

FIGURE 1
(a) The schematic diagram of the experimental setup and the effects of the oxidant concentration, Fe2+ dosage, (b) initial pH conditions of the
removal rate of total petroleum hydrocarbons from oil-based drilling cuttings (Chen et al., 2022) Reproduced and modified with permission.

TABLE 1 Removal efficiency (%) of cable oil by liquid hydrogen peroxide pH 7.5 ((Xu et al., 2011) Reproduced and modified with permission).

Oil
fraction

H2O2concentration
a (mM/v%) Iron doseb (mg FeSO4) Delivery

methodc

330
(1.0%)

1,464
(4.5%)

2,928
(9%)

0 27
(94:1)

53
(47:1)

80
(31:1)

106
(23:1)

133
(19:1)

265
(9:1)

M-
1

M-
2

M-
3

C10-C12 6 12 11 7 10 12 75 77 78 79 9 7 7

C13-C16 9 19 8 10 15 23 6 3 7 11 21 47 31

C17-C20 17 23 15 8 13 25 22 12 18 23 18 48 31

C21-C24 17 27 16 6 12 27 16 1 9 19 13 47 30

C25-C40 22 22 7 10 14 33 18 7 11 20 2 37 26

TPH 17 24 14 13 17 24 21 11 17 23 14 46 30

The initial TPH, concentration is 3,171 mg kg−1.
aCitric acid acts as chelating agent, iron dose is 52.9 mg FeSO4, pH is 7.5. Delivery method is M-1.
bCitric acid acts as chelating agent, 4.5% H2O2 were applied. pH is 7.5. Delivery method is M-1.
cCitric acid acts as chelating agent, iron dose is 52.9 mg FeSO4 4.5% H2O2 were applied. pH is 7.5.
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stability (Xue et al., 2018b). Therefore, to overcome the
shortcomings of the traditional H2O2-based Fenton technology,
researches have proposed the CaO2-based Fenton technology,
which uses calcium peroxide (CaO2) to generate H2O2 (Wang
et al., 2016b) and then participates in the degradation reaction to
treat organic pollutants in soil (Xue et al., 2019). Upon dissolution in
water, calcium peroxide (CaO2) generates hydrogen peroxide
(H2O2), which is then activated by Fe2+ to produce reactive
radicals (·OH), thereby forming the Fenton reaction. The
mechanism of treatment can be described as follows
(Equations 2.1–2.4):

CaO2 + 2H2O → H2O2 + Ca OH( )a (2.1)
H2O2 + Fe2+ → ·OH +HO− + Fe3+ (2.2)

H2O2 + ·OH → H2O + ·OH2 (2.3)
OH2 → ·O−

2 +H+ (2.4)

The results of the study (Northup and Cassidy, 2008; Bogan
et al., 2003) indicate that the degradation rate of organic matter was
increased to some extent when calcium peroxide was used instead of
H2O2. In a study conducted by Jiang et al. (2021), calcium peroxide

powder with a purity of 89.1%was prepared and used as an oxidising
agent for degradation experiments on diclofenac sodium. The results
demonstrated that the degradation rate of diclofenac sodium was
97.5% within 180 min, which was more effective than oxidation
using H2O2-based Fenton’s system.

Ndjou’ou prepared a hydrocarbon-contaminated soil which was
treated in laboratory slurry reactors using two types of modified
Fenton (MF) chemistry (Ndjou’ou and Cassidy, 2006). The
degradation rates of two oxidation systems, namely, liquid
hydrogen peroxide (HP) and calcium peroxide (CaO2) – based
oxidant (Cool-Ox™), were compared for TPHs and the four
individual fractions (C6-C10, C11-C16, C17-C34, >C34). The results
shown that, in soil with TPHs concentration = 10,604± (850) mg/kg,
PH = 8, 40% w/v soil slurry, after 1 week, the removals of liquid HP
(100 mL of 50% HP) and CaO2-based (50 g) treatments were 73.7%
and 95.6%, respectively. The results demonstrated that the CaO2-
based treatment exhibited a superior effect compared to the H2O2

treatment. This team also investigated the treatment of PAHs in soil
by a calcium peroxide system (Gryzenia et al., 2009), which resulted
in a degradation rate of 92.3% in 10 days at 21,420 g mg/kg, 500 g
Cool-Ox™ powder, 40% w/v soil slurry.

Xue et al. (2018a) used a CaO2-based Fenton system to treat a
mixed system of several petroleum hydrocarbon substances in water,
including: benzene, toluene, ethylbenzene, and xylene (marked as
BTEX). The oxidation effect of BTEX was investigated by changing
the ratio of CaO2/Fe(II)/BTEX. The results demonstrated that when
the CaO2/Fe(II)/BTEX molar ratio was 5/5/1, BTEX removal was
35%. Furthermore, when the ratio was increased to 40/40/1, the
removal rate of BTEX increased significantly, reaching 98% in the
same condition. These findings offer insights into the degradation of
TPHs in soil.

In water using a Fenton system with CaO2. The objective was to
investigate the oxidation effect of BTEX by varying the ratio of
CaO2/Fe(II)/BTEX. The removal of BTEX was found to be 35%
when the molar ratio of CaO2/Fe(II)/BTEX was 5/5/1. However,
when the molar ratio was increased to 40/40/1, the removal rate
increased significantly, reaching 98% in the same condition. The
findings of this type of investigation may offer insights into the
degradation of TPHs in soil. Furthermore, the efficacy of calcium
peroxide can be enhanced by preparing it into nanoscale, which
increases its specific surface area and consequently accelerates the

FIGURE 2
Schematic plot of the experimental EK cell (Adhami et al., 2021)
Reproduced and modified with permission.

FIGURE 3
Schematic diagram of the experimental set-up for the heat/PDS and heat/PMS processes (Chen et al., 2024) Reproduced and modified with
permission.
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degradation of organic matter (Khodaveisi et al., 2011; Yavari-Bafghi
et al., 2022).

4 Activated persulfate oxidation system

The use of persulfate as an oxidising agent for the degradation of
organic pollutants has been widely reported (Lominchar et al., 2018;
Xu et al., 2023). The stimulated activation of persulfate results in the
generation of sulfate-free radicals (SO4

−) with strong oxidising
properties, which exhibit a standard electrode potential of 2.60 V.
The most common methods of activation are heat, ultrasound
(Darsinou et al., 2015; Deng et al., 2015), electrical current (Chen
et al., 2019), ultraviolet (UV) light, and alkali conditions. Sodium
persulfate, when activated by ferrous ions, decomposes to generate
sulfate radicals (·SO4

−), which are highly oxidative with a standard
electrode potential of 2.60 V. These sulfate radicals oxidize organic
pollutants through mechanisms such as electron transfer, addition
reactions, and hydrogen atom abstraction. The mechanism of Fe2+

activation can be described as (Equation 3.1). Persulfate dissociates
in water to produce the S2O8

2-, with a standard redox potential of
E0 = 2.01 V, and S2O8

2- generates sulfate radicals (·SO4
−) with a

redox potential of E0 = 2.60 V. In alkaline conditions, these sulfate
radicals can further produce hydroxyl radicals (·OH) with a higher
chemical oxidation potential (E0 = 2.80 V). These reactive radicals
react with pollutants in the soil, thereby facilitating the removal of
contaminants, the mechanism of alkaline activation can be described
as (Equations 3.2–3.4). The S2O8

2- can be activated under sufficient
thermal conditions, leading to the cleavage of the peroxide bond and
the formation of SO4

−, the mechanism of heat activation can be
described as (Equation 3.5):

S2O
2−
8 + Fe2+ → · SO−

4 + Fe3+ + SO2−
4 (3.1)

Na2S2O8 +H2O → S2O
2−
8 + 2Na+ (3.2)

S2O
2−
8 +OH− → 2SO−

4 · + ·OH (3.3)
SO−

4 · +OH− → SO2−
4 + ·OH (3.4)

S2O
2−
8 →Δ · 2SO−

4 (3.5)

Persulfate was employed for the remediation of TPHs in soil by
researchers (Wu et al., 2016). The degradation of TPHs was
observed to reach up to 40.8% when the initial TPHs
concentration was 14,432.5 mg/kg, and the reaction was
conducted for 24 h, the degradation rate was 21% higher than

FIGURE 4
Proposed degradation mechanism of petroleum hydrocarbon compounds (Li et al., 2022) Reproduced and modified with permission.
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H2O2 treatment. The oxidation process was observed to be
essentially complete within 60 min, as determined by kinetic
experiments. To further enhance the degradation rate, heat-
stimulated persulfate activation represents a conventional method
for the treatment of TPHs.

Chen et al. employed two different persulfate-based advanced
oxidation processes (Figure 3), namely heat/PMS and heat/PDS, for
the treatment of TPHs, respectively (Chen et al., 2024). The optimal
conditions for the removal of TPHs by the heat/PMS process were
found to be 1.48 mmol/g, 80°C, and 120 min, with a degradation rate
of approximately 53%. Similarly, the optimal TPHs removal
conditions for the heat/PDS process were identified as
3.57 mmol/g, 70°C, and 80 min, which resulted in the
degradation of approximately 46%.

Li employed three different activated persulfate methods to treat
TPHs in soil (Li et al., 2022), and investigated the effects of dosage,
initial pH, temperature, ultrasonic power, and soil water ratio of
persulfate on degradation, and the degradation mechanism of
petroleum hydrocarbon compounds was also mentioned
(Figure 4). After 72 h of treatment. Under the optimal
conditions, the degradation efficiency of TPHs by ultrasound/
heat activated persulfate (US/Heat/PS) was 78.2%. While the
degradation efficiency of TPHs by heat activated persulfate
(Heat/PS) system was 72.64%. The degradation efficiency of the
single ultrasound activated persulfate (US/PS) system was 56.41%.
The findings indicated that the concurrent utilisation of multiple
activation methods to facilitate persulfate activation could
potentially enhance the degradation rate of TPHs.

Similarly, the use of different novel activation techniques can
change the treatment effect of persulfate, also. Xue et al. (2022)

mentioned a novel approach for the remediation of petroleum
hydrocarbon-contaminated soil, which is utilising basic oxygen
furnace slag (BOFs) and persulfate under electromagnetic
induction heating (Figure 5b). Experimental findings
demonstrated that persulfate can be effectively activated by BOFs
or thermal induction under electromagnetic induction, thereby
enhancing the oxidative degradation of BOFs/peroxysulfate and
significantly accelerating the TPHs removal rate, the mechanism
for removal of TPHs from soil under BOFs/persulfate system in
presence of electromagnetic induction heating was
given (Figure 5b).

Liu et al. (2023a) investigated the efficacy of a degradation
system combining persulfate and microorganisms in the
treatment of high concentrations of crude oil (12,835 ±
572.76 mg/kg) contaminated soil. The combined effect of
different doses of persulfate (PS) and hydrocarbon-degrading
mixed bacteria was investigated as well. The results showed that,
use 1% PS oxidation combined with bioremediation, the
degradation rate was 80.05% after 180 days of degradation under
optimal conditions, and the degradation rate is 4.88% higher than
that of single-use biodegradation, 20.94% higher than that of natural
attenuation of a single 1% persulfate. The addition of
microorganisms has been observed to promote the secretion of
enzymes, thereby enhancing the degradation rate of TPHs.

The effectiveness of FeS@BC (iron sulfide@biochar) in
activating persulfate (PS) for the remediation of TPHs in
petroleum-contaminated soil was systematically investigated (Xia
et al., 2022). The optimal TPHs removal efficiency of 61.83% was
achieved under the following conditions: a mass ratio of FeS to BC of
1:5, a PS dosage of 0.08 mmol/g, an FeS@BC dosage of 14 mg/g, and

FIGURE 5
The schematic diagram of this work (a) and the mechanism for removal of TPHs from soil under BOFs/persulfate system in presence of
electromagnetic induction heating (b) (Xue et al., 2022) Reproduced and modified with permission.
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an initial pH value of 5. The study demonstrated that an appropriate
amount of BC can enhance the dispersion of FeS and increase the
number of active sites. However, an excess of BC can lead to
agglomeration, thereby reducing the reaction efficiency. An
adequate amount of PS can generate sufficient radicals to
degrade TPHs, but an excessive amount of PS can cause radical
quenching, which decreases the degradation efficiency. An
appropriate amount of FeS@BC can promote the activation of
PS, but an excess of FeS@BC can also lead to radical quenching
and reduced degradation efficiency. The weakly acidic condition
(pH = 5) was found to be the most favorable for TPHs degradation,
as it ensures the optimal generation and stability of sulfate radicals
(SO4

−). Notably, the TPHs removal efficiency of the FeS@BC/PS
system was significantly higher than that of the FeS/PS
system (47.91%).

Li et al. (2024b) investigated the effectiveness of zero-valent iron
(ZVI)-activated persulfate (PS) combined with electrokinetics (EK)
for the remediation of TPHs petroleum-contaminated soil. The soil
used in the study had a pH of 7.64, an organic matter content of
61.24 g/kg, and a total petroleum hydrocarbon concentration of
12,045 mg/kg. The study explored the impact of ZVI dosage on the

TPHs removal efficiency of the ZVI/PS system, revealing that the
optimal removal rate of 11.17% was achieved at a ZVI dosage of
0.95 g (PS:ZVI molar ratio of 10:1). Additionally, the influence of PS
injection location on the TPHs removal efficiency of the EK/PS
system was examined, with results indicating that simultaneous
addition of PS to both the anode and cathode yielded the best
performance, achieving a TPHs removal rate of 17.02%. When the
EK-ZVI/PS system was employed for TPHs remediation under
optimized conditions (0.95 g ZVI, PS added to both electrodes),
a TPHs removal rate of 23.72% was obtained. Furthermore, the
incorporation of 5% humic acid (HA) into the EK-ZVI/PS system
enhanced the TPHs removal rate to 27.74%. The results
demonstrated that the EK-ZVI/PS system outperformed the
individual ZVI/PS and EK/PS systems in terms of TPHs removal
efficiency, highlighting the significant synergistic effect of the
combined technology. The optimal TPHs removal rate of 27.74%
was achieved under the conditions of 0.95 g ZVI, simultaneous PS
addition to both electrodes, and 5% HA addition.

Similarly, for the removal of TPHs from soil (Cao et al., 2024),
investigated the effectiveness of in situ formed Fe/Mn oxide cross-
linked with soil organic matter (Fe/Mn-SOM) complexes in

TABLE 2 Chemical oxidative remediation technologies.

Treatment Hydrocarbon fraction Removal efficiency References

H2O2 -based Fenton TPHs and TPHs C10-C13 TPHs,45.03% and TPHs C10-C13 > 80% Chen et al. (2022)

H2O2 -based Fenton TPHs (20% biodiesel and 80% diesel) 75% Pardo et al. (2014)

H2O2 -based Fenton TPHs 87.6% Akpoveta et al. (2018)

H2O2 -based Fenton TPHs (cable insulating oil) 46% Xu et al. (2011)

Treatment Hydrocarbon fraction Removal efficiency References

H2O2 -based Fenton (electrokinetic-Fenton) TPHs (oil-based drilling waste) 77% Adhami et al. (2021)

H2O2 -based Fenton (ultrasonic-Fenton) TPHs (petroleum oil spill sludge) 84.25% Sivagami et al. (2019)

CaO2-based Fenton Diclofenac sodium 97.5% Jiang et al., (2021)

CaO2-based Fenton TPHs 95.6% Ndjou’ou and Cassidy
(2006)

CaO2-based Fenton Polycyclic aromatic hydrocarbons (PAH) 92.3% Gryzenia et al. (2009)

CaO2-based Fenton BTEX (benzene, toluene, ethylbenzene,
and xylene)

CaO2/Fe(II)/BTEX molar ratio of 5/5/1, BTEX
removal were 35%

CaO2/Fe(II)/BTEX molar ratio of 40/40/1, BTEX
removal were 98%

Xue et al. (2018a)

activated persulfate oxidation TPHs 40.8% Wu et al. (2020)

activated persulfate oxidation (heat/PMS and
heat/PDS)

TPHs TPHs, heat/PMS = 53%, TPHs, heat/PDS = 46% Chen et al. (2024)

activated persulfate oxidation (US/Heat/PS
and Heat/PS)

TPHs TPHs, US/Heat/PS = 78.2%
TPHs, Heat/PS = 56.41%

Li et al. (2022)

activated persulfate oxidation (PS/microbial) Crude oil 80.05% Liu et al. (2023a)

Treatment Hydrocarbon fraction Removal efficiency References

activated persulfate oxidation (FeS@BC/PS) TPHs 61.83% Xia et al. (2022)

activated persulfate oxidation (EK-ZVI/PS) TPHs 27.74% Li et al. (2024a)

activated persulfate oxidation (Fe/Mn-
SOM/PS)

TPHs
PAHs

75.74%
80.60%

Cao et al. (2024)

Frontiers in Environmental Engineering frontiersin.org07

Dai and Liu 10.3389/fenve.2025.1532795

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2025.1532795


activating persulfate (PS) for the remediation of TPHs soil. The soil
(pH = 7.9) with a TPHs content of 30,421 mg/kg. The Fe/Mn-SOM
complexes were formed in situ by adding Fe(OH)2 and Mn(OH)2
colloidal solutions to the soil, followed by the addition of H2O2.
After the formation of the Fe/Mn-SOM complexes, PS solution was
added to achieve oxidative degradation of TPHs. The study explored
the effects of various factors on TPHs degradation efficiency,
including the Mn:Fe molar ratio, PS concentration, initial pH,
soil-to-water ratio, coexisting anions (Cl−, NO3

−, HCO3
−,

H2PO4
−), and organic matter (humic acid, urea, lignin). The

results indicated that the highest TPHs removal efficiency of
75.74% was achieved under the conditions of a Mn:F molar ratio
of 1:1, PS concentration of 2.0 mmol/L, initial pH of 7, and a soil-to-
water ratio of 4:1. This efficiency was significantly higher than that of
systems using PS alone (12.52%), Fe2+/PS (22.64%), Mn2+/PS
(18.63%), and Fe2++Mn2+/PS (43.46%). Notably, the system also
demonstrated a high removal rate for polycyclic aromatic
hydrocarbons (PAHs) at 80.60%. The study found that the in
situ formed Fe/Mn-SOM complexes could directly contact
petroleum hydrocarbons in the soil, avoiding the ineffective
consumption of free radicals during diffusion. The Fe/Mn-SOM
complexes exhibited a certain tolerance to coexisting anions and
organic matter, but high concentrations of HCO3

−, H2PO4
−, urea,

and lignin significantly reduced TPHs removal efficiency. As an in
situ formed PS activator, the Fe/Mn-SOM complexes are
characterized by high efficiency, cost-effectiveness, and
environmental friendliness, providing a novel technical approach
for the remediation of petroleum hydrocarbon-contaminated soil.

The chemical oxidative remediation techniques in this paper are
summarized below (Table 2).

5 Conclusion

The chemical oxidation remediation of total petroleum
hydrocarbons (TPHs) in soil primarily relies on the use of strong
oxidants, which generate oxidative radicals under various activation
conditions. These radicals facilitate the oxidative degradation of
TPHs. This paper reviews the mechanisms and remediation
efficiencies of hydrogen peroxide-based Fenton oxidation,
calcium peroxide-based Fenton and Fenton-like systems, and
activated persulfate oxidation in the context of TPH-
contaminated soil. The hydrogen peroxide-based Fenton
oxidation system is highly sensitive to the pH of the reaction
environment and is primarily suitable for soil remediation under
acidic conditions. However, its applicability and degradation
efficiency can be enhanced by combining it with different
activation methods. The calcium peroxide-based Fenton and
Fenton-like systems serve as alternative technologies to the
hydrogen peroxide Fenton process, offering a broader pH range
and addressing the limitations of hydrogen peroxide in neutral to
alkaline environments. Notably, activated persulfate oxidation

exhibits advantages such as strong oxidative capacity, long-term
stability, and diverse activation methods. To improve the removal
efficiency of TPHs in soil and develop effective TPHs oxidation
systems, future research should focus on leveraging the high
oxidative potential of activated persulfate systems by selecting
composite oxidation systems, such as PS/CaO2 or PS/H2O2, and
optimizing activation methods, including efficient thermal
activation, iron-based composite activation, and alkaline
activation. The integration of multiple activation techniques and
novel activation methods represents a critical research direction for
enhancing TPHs removal efficiency.
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