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Drinking water treatment is a complex system of chemical, physical, and
biological processes that is highly dependent on water quality and the design
of the treatment process. To create decision-support tools, the prediction of key
performance indicators, such as settled water turbidity, is needed. A variety of
data-drivenmodeling techniques is available to formulate such predictions. Data-
driven models provide valuable tools for formulating predictions where there is a
lack of mechanistic models or the mechanisms are not fully understood, as in
surface water treatment. The objective of this paper is to evaluate and compare
the effectiveness of various data-driven techniques for this important, but
difficult, problem. Recognizing that the size and quality of the dataset are
most critical in this kind of analysis, this work uses one of the largest datasets
used in this context consisting of 2,527 vectors of water quality and operational
data (2,527 X nine data frame) from a full-scale water treatment plant. The paper
constructs and compares the performance of the several data-driven models
including k-nearest neighbor (KNN) regression, polynomial regression, and
artificial neural networks (ANN). Based on test scaled root mean square error
(RMSE), the ANNmodel was themost predictive (0.124). Similarly, the ANNmodel
had the best predictive performance based on total scaled RMSE (0.086). These
results show that ANNs have a high potential for the development of a future
decision support system in selecting appropriate coagulant doses based on
settled water turbidity.
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1 Introduction and background

Drinking water treatment is a vital public health program to deliver potable and
palatable water to customers. Treatment regimes depend upon the source water, which is
typically either surface water (e.g., rivers, lakes, or reservoirs) or groundwater. Surface water
treatment systems are prone to seasonal changes in water quality, as well as more rapid
changes, particularly during storm events (Wu and Lo, 2008). As such, chemical dosages
(e.g., coagulant, pre-oxidant, disinfectant) are often adjusted to maintain effective treatment
during these changing water quality conditions. Decisions to change chemical dosage have
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historically been made from a combination of operator experience
and bench-scale analyses (Menezes et al., 2018). Changes to
coagulant dosage are typically evaluated with a bench-scale jar
test. While jar tests help predict the chemistry of coagulation,
they are relatively expensive to run and do not allow for
responses to sudden changes in water quality (Joo et al., 2000;
Menezes et al., 2018; Edzwald, 2019). Hence, decision-support tools
have become increasingly important in applying consistent dosages
of the coagulant.

Mathematical models are common tools to gain insight into
the performance of complex systems and to be able to predict
future behavior accurately. Models can range in both complexity
and accuracy of prediction, with many conventional models
providing limited insights in scenarios where relationships are
highly non-linear and/or poorly understood. Several software
programs and programming languages have been developed to
facilitate ease of model development and evaluation of predictive
accuracy for increasingly complex problems. Efforts have been
undertaken to utilize data-driven mathematical models to better
understand drinking water treatment processes and formulate
predictions of performance based on collected data especially in
circumstances when science-based (such as from chemistry or
physics) models are not available or are too inaccurate. As an
example of data-driven models, artificial neural networks (ANNs)
have been growing in use for modeling drinking water treatment

processes, particularly in the prediction of turbidity at various
points in the treatment process. ANNmodels are based on a model
of the structure of human neural networks. Input nodes are
connected to nodes in hidden layers through nonlinear
transformation functions. These hidden nodes, which form
hidden layers, can be connected to other hidden layers or an
output layer that determines the predicted response variable. An
example diagram of ANN architecture is shown in Figure 1.

ANN and other nonlinear model configurations have shown
promise in several applications throughout the water treatment
industry. Researchers have developed ANN models for cost
optimization (Taloba, 2022), prediction of coagulant dose
(Valentin and Denceux, 1999; Deveughèle and Do-Quang, 2004;
Tahraoui et al., 2021; Lin et al., 2023), potassium permanganate dose
requirements (Godo-Pla et al., 2019), source water quality (Hameed
et al., 2023), sodium absorption in groundwater (Hasanpour
Kashani et al., 2023), regional water demand (Zhang et al., 2019),
and settled water turbidity (Wu and Lo, 2008; Al-baidhani and
Alameedee, 2017; Kim and Parnichkun, 2017; Haghiri et al., 2018;
Abba et al., 2020; Alsaeed et al., 2021; Ghasemi et al., 2022; Lin et al.,
2023). Although several modeling techniques have been developed
recently to predict coagulant dose based on source water quality,
most of the work reported in literature either used bench-scale data
(Haghiri et al., 2018) or lacked a sufficiently large data set (Al-
baidhani and Alameedee, 2017; Abba et al., 2020).

FIGURE 1
Example ANN architecture (Baxter et al., 1999).
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Since the work presented here focuses on the prediction of
settled water turbidity, a summary of the reported results from
studies predicting settled water turbidity is given in Table 1. These
studies show that data-driven models can be a highly effective
decision-support tool for water treatment especially when large
data sets are available. However, one glaring deficiency in these
studies is that they were almost exclusively developed using small
data sets from full-scale operations or they relied on bench-scale
data, thereby severely limiting wider applicability in the field. In
particular, bench-scale studies can be difficult to scale to replicate
full-scale operations. Physical processes, such as mixing and settling,
pose many challenges of forming predictions when scaling from
bench-to full-scale systems, such as the fact that the power input of a
mixer, the surface-area-to-volume ratio, and density of the fluid
do not necessarily scale appropriately from the bench-to full-
scale systems. Additionally, bench-scale results do not account
for the temporal and spatial variation of surface waters (Joo et al.,
2000; Menezes et al., 2018). Hence, there continues to be a need to
evaluate and establish the efficacy of data-based models for
predicting water turbidity using full-scale data. It is for this
reason that the current study uses a large data set from a full-
scale water treatment plant. To the authors’ knowledge, the
dataset used in this paper is the largest ever used for this
problem; in addition, this is also the first work to compare
different modeling techniques including KNN regression for
the modeling of a drinking water treatment process.

2 Methods

2.1 DWTP description

The DWTP, that is the source of data used in this work, is
dubbed “Plant A.” Plant A is a conventional, publicly owned
treatment works that includes rapid mixing, flocculant mixing,
sedimentation, and filtration. The plant utilizes ferric chloride as
a primary coagulant with lime used for alkalinity addition and
pH adjustment. Chlorine is applied in the rapid mix and post-

sedimentation. Chlorine is also applied post-filtration with
ammonia to generate chloramines for a distribution system residual.

2.2 Key performance indicators

Surface water treatment has several key performance indicators
(KPIs) that can be evaluated to model plant performance. The KPIs
for the effectiveness of a selected coagulant dose include total
organic carbon (TOC) removal and settled water turbidity.
Under the Stage-1 and Stage-2 Disinfectant and Disinfection
Byproduct Rules (DBPRs), TOC is used as a surrogate for
natural organic matter and its removal is required to reduce the
formation of DBPs (US EPA, 1999). While vital to the performance
and regulatory compliance of a DWTP, TOC removal requires
laboratory analysis to measure, whereas turbidity can be
measured by online instrumentation. Therefore, turbidity data is
often more abundant than TOC data. Additionally, online data
allows for a more immediate response to changing water quality
conditions than laboratory data. Therefore, this study used settled
water turbidity as the main KPI since abundant settled water
turbidity data was available.

2.3 Data pre-processing

Data was collected in the period spanning 1 July 2011–30 June
2019 (aligning with the fiscal years of the public utility). Variables
were initially selected based on interviews with DWTP Operations
staff. Operational data included coagulant dose, raw water
parameters (alkalinity, pH, turbidity), general plant parameters
(water temperature and influent flow rate), and settled water
turbidity. Additional operational parameters, such as chlorine
dosing, were collected, but were not found to have a significant
impact on model performance as they were held relatively constant.
River parameters (flow rate and conductance) were collected from
the United States Geological Survey (USGS) online database. A
summary of the data used for model development is given in Table 2.

TABLE 1 Summary of reported results for models predicting turbidity in drinking water treatment.

Source n Data
source

Response
variable

RMSE Correlation
coefficient

Notes

Ghasemi et al. (2022) 100 Bench-scale Settled water turbidity Test: 5.71 NTU 0.949 Graphene oxide coagulant

Alsaeed et al. (2021) 300 Full-scale Filtered water
turbidity

0.1078 0.994

Abba et al. (2020) 360 Filtered water
turbidity

0.0005 0.9883a Resulted presented for model with kernel-
PCA pre-processing

Haghiri et al. (2018) 112 Bench-scale Settled water turbidity Total: 0.155 0.9

Al-baidhani &
Alameedee (2017)

50 Pilot-scale Settled water turbidity Test: 2.03 NTU 0.93

Kim and Parnichkun
(2017)

8,760 Full-scale Settled water turbidity Test:
0.0633 NTU

0.9168

Van Leeuwen et al.
(1999)

Bench-scale Settled water turbidity 0.9 Polynomial

aModel goodness-of-fit determined using Nash-Sutcliffe (NS): NS � 1 − ∑n

i�1(y−ŷ)2∑n

i�1(�y−ŷ)2
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Operational data frequently contains corrupted data points
and outliers. Two common approaches exist for handling
outliers: 1) the standard deviation method; 2) the median
absolute deviation (MAD) method. The standard deviation
method relies on the assumption that the data is normally
distributed and filters out data that is more than a certain
number of standard deviations away from the mean. The
MAD method similarly removes data that is more than a
certain number of MADs away from the median, although this
relies on the assumption that the data is not normally distributed
(Leys et al., 2013). In this work, a modified version of the
standard deviation method was used, which included filtering
out zero values for parameters that could not conceivably be zero.
For example, river turbidity will fluctuate but will never be zero;
however, data was filtered if more than two standard deviations
from the mean and scaled to be between zero and one. Since most
data-driven techniques are distance-based, scaling of data
reduces unwarranted impacts on model predictions for
parameters that are in higher orders of magnitude than others
(James et al., 2017). In total, the data set contained 2,527 vectors
of data after processing.

2.4 Correlation and multi-collinearity
assessment

The data space was explored with a correlation matrix and
principal component analysis (PCA). The correlation matrix
(Figure 2) shows the linear correlation between variables.
Correlation matrices for the training, validation, and test sets are
given in Supplementary Figure S1-3, respectively. One concern is the
phenomena of multicollinearity, where two or more predictors are
highly correlated with one another. To assess multicollinearity, the
variance inflation factor (VIF) is calculated (Eq. 1) for each predictor
(Xj) based on all other predictors (X-j). The minimum value for VIF
is 1, which suggests no multicollinearity. A VIF above five or
10 suggests the potential for multicollinearity to cause problems
such as algorithm divergence and singularity during model
development (James et al., 2017). For this prediction space, the
VIF ranged between 1.06 and 2.3 for each predictor, suggesting an
absence of multicollinearity.

VIF βj( ) � 1
1 − R2

Xj|X−j

(1)

2.5 Principal Component analysis

A PCA was performed to assess the linearity of the prediction
space. One method to assess linearity of a data space is with the
cumulative proportion of variance explained (PVE). In a linear data
space, the cumulative PVE of one or two components will achieve a
threshold of 90 or 95% (James et al., 2017). The cumulative PVE for
the prediction space (Figure 3) shows that six of eight components
are required to achieve 90% cumulative PVE, indicating a nonlinear
data space, as is common in water quality parameters, suggesting
that linear models may not be optimal for formulating accurate
predictions (Baxter et al., 1999; Chun et al., 1999; Van Leeuwen et al.,
1999; Heddam et al., 2012; James et al., 2017; Kim and Parnichkun,
2017; Zhang et al., 2019).

2.6 Feature selection

In order to derive robust data-based models that can
generalize well, appropriate features need to be identified from
the source data. By ‘appropriate’ we mean, features that are best
able to correlate the output with inputs. Here, the following
features were selected based on known impacts on drinking water
treatment processes, a review of literature and professional
judgement, and data availability.

• River flow rate was selected to represent precipitation events
throughout the watershed. River conductance was selected to
represent the ionic strength of the source water, which can
impact coagulant demand and thereby treatment efficacy,
particularly the removal of colloidal particles (Edzwald
et al., 1974; Jiang, 2015).

• Water quality parameters (raw water turbidity, pH, alkalinity,
and temperature) were selected due to their well-documented
relationships with the performance of coagulation and
flocculation (Jiang, 2015).

TABLE 2 Plant A data for model development.

Parameter n Units Min Median Mean Max

RWB Alkalinity 2,527 mg/L as CaCO3 22.5 43.9 43.9 68

RWB pH 2,527 - 7.1 7.4 7.4 7.7

RWB Turbidity 2,527 NTU 0.9 3.5 4.3 12

Water Temperature 2,527 °C 0 16.1 16.0 31.1

Plant Flow 2,527 MGD 109 137 137.5 165

River Conductance 2,527 µohm/s 94.6 202.5 202.4 373.5

Mean Daily River Flow 2,527 cfs 2,367 9,729 13,097 166,604

Ferric Chloride Dose 2,527 lb/Mgal 185 285 284.5 385

Settled Water Turbidity 2,527 NTU 0.163 0.363 0.379 0.650
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• Operational parameters (coagulant dose and plant flow
rate) were selected to measure the impacts of operational
setpoints. Coagulant dose is an operational setpoint
selected by the engineering staff based on raw water
quality. Plant flow rate is set to meet water demand
needs, but also has an impact on the hydraulic retention
times in the individual unit processes.

2.7 Modeling techniques

Several data-driven modeling techniques were used to formulate
predictions of settled water turbidity, including regular subset linear

regression, KNN regression, polynomial regression, and ANN.
These models range in complexity from relatively simple (e.g.,
linear regression) to complex (e.g., ANN). The strategy of
employing models of increasing complexity was intentionally
designed to result in an optimal model that balances
interpretability with accuracy. While the ANN model was
presumed to provide the best-fit model, linear, KNN, and
polynomial regressions were selected to provide a baseline for
comparison. Data was divided into a 70–15–15 training-
validation-test split using random sampling to develop and test
each model. The efficacy of model predictions is evaluated with both
the RMSE (Eq. 2) and the correlation coefficient between actual and
predicted values (Eq. 3).

FIGURE 2
Correlation matrix of data space.
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RMSE �
�����������∑n

i�1 xi − x̂i( )2
n

√
(2)

R � ∑n
i�1 xi − �x( ) yi − �y( )������������������∑n
i�1 xi − �x( )2 yi − �y( )2√ (3)

2.8 Regular subset linear regression

Regular subset linear regression was used to determine the
optimal combination of predictors without including unnecessary
predictors (James et al., 2017; Lumley andMiller, 2020). The optimal
set of predictors for the linear model includes raw water basin
(RWB) effluent pH, RWB effluent turbidity, water temperature,
plant flow rate, and river conductance.

2.9 KNN regression

KNN models provide a non-parametric approach to
formulating predictions through determining the average value
of the response variable a number of the neighbors, k, with the
smallest Euclidean distance to the test value (James et al., 2017).
KNN regression models were developed for all values of
neighbors between one to the sample size (Beygelzimer et al.,
2019). Backward stepwise selection of parameters was used to

determine predictors for the polynomial regression model using a
generalized additive model, beginning with all parameters raised
to the third power (R Core Team, 2019). Parameters were
removed if they were insignificant (p > 0.05), resulting in the
model parameters in Table 3.

2.10 Artifical neural network (ANN)

ANNmodels were developed usingMATLAB (TheMathWorks,
2019). Two hyperparameter optimization tasks were undertaken for
this work: training algorithm selection and model architecture
optimization. The three training algorithms assessed were
Levenberg-Marquardt, Bayesian Regularization, and scaled
conjugate gradient (SGM) backpropagation (Demuth and Beale,
2004). The Levenberg-Marquardt method stops when generalization
of the model stops improving, which is measured by the mean
square error (MSE) of the validation set. Bayesian Regularization has
a higher computational cost, but is applicable for smaller and noisier,
i.e., more randomly distributed datasets (Haykin, 2009). SGM
backpropagation is an algorithm which an approximation to the
function within a neighborhood of the neural network architecture
is iteratively minimized, often using first- or second-order Taylor
expansions of the function (Møller, 1993). SGM backpropagation is
often recommended for larger problems, due to its computational
efficiency. The Levenberg-Marquardt method was used in this work.
The default learning rate of 0.01 with a loss goal of 10–5 over
300 epochs was selected for this study.

FIGURE 3
Cumulative PVE for prediction space.

TABLE 3 Polynomial Regression Model parameters.

First-order parameters Second-order parameters Third-order parameters

RWB Alkalinity RWB pH RWB pH

RWB pH RWB Turbidity Plant Temperature

Plant Temperature Plant Temperature Ferric Chloride Dose

River Conductance River Conductance
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A manual grid search was performed to determine the optimal
configuration of nodes based on test and total RMSE (Bergstra and
Bengio, 2012). The manual search included between one and three
hidden layers with between 1 and 100 nodes in each layer. Each
model was fit three times to account for variations in model fit. The
lowest test RMSE for each model architecture was recorded to
compare the various architectures. The optimal ANN structure in
this work was the largest size tested. Expanded architectures were
tested (200, 300, 400, and 500 nodes in each hidden layer), but did
not appear to improve performance, as measured by RMSE.

3 Results and discussion

3.1 Regular subset linear regression

The pre-processed data was initially explored with PCA. A
common threshold in PCA is a cumulative PVE of 0.9, with
more linear prediction spaces often having 90% of the variance
explained by the first two components (James et al., 2017). The
results of the PCA suggest that the prediction space is nonlinear,
which is typical for water quality and operational data (Van
Leeuwen et al., 1999; Heddam et al., 2012; Zhang et al., 2019).
This would suggest that a linear model would not be an appropriate
tool to use as was observed in baseline model analysis. Indeed, the
linear model had the highest test RMSE (0.176) and lowest R (0.683)
of any of the models analyzed.

3.2 KNN regression

Prior to fitting the final KNN regressionmodel, the optimal number
of neighbors needed to be determined. The optimal number of
neighbors, based on the RMSE, was 35 with a test RMSE of 0.154.
The KNN model performed better than the linear model based on test
RMSE (0.154) andR (0.805). Since there appear to be no reported studies
of KNN regression being used to predict settled water turbidity in a
drinking water treatment context, the model results are only comparable
to the other models within this study. KNN regression performed better
than all other modeling techniques, except for the ANN model.
However, when the model was applied to the entire data set, the
RMSE increased to 0.147 and the correlation coefficient decreased to
0.714 suggesting possible overfitting and model specialization.

3.3 Polynomial regression

The polynomial model was developed using backward stepwise
selection (James et al., 2017). The model that was developed
performed worse than the KNN regression and ANN models, but
better than the linear model, based on test and total RMSE
(0.171 and 0.14, respectively) and correlation coefficient
(0.688 and 0.752, respectively). There are very few examples of
polynomial regressions applied to drinking water treatment
parameters. Van Leeuwen et al. (1999) developed a model for
various plants for predicting alum dose using jar test and raw
water quality parameters, with a correlation coefficient of 0.9.
The results presented here do not match those results, which

may result from inconsistencies in the collected data or more
dramatic changes in water quality that make modeling more
difficult in general. Additionally, this work utilized full-scale data,
while Van Leeuwen et al. (1999) utilized bench-scale data. Bench-
scale data may not provide a model that reflects the changes in the
water quality of full-scale plants (Joo et al., 2000; Menezes et al.,
2018; Edzwald, 2019).

3.4 ANN regression

The ANN led to the most effective models with the lowest
total RMSE (0.086) and highest total correlation coefficient
(0.911) between the actual and predicted values. Particularly,
the ANNmodel appeared to formulate more accurate predictions
around the extrema. As indicated by the PCA, the data space is
nonlinear, which is common for water quality data (Kim and
Parnichkun, 2017; Zhang et al., 2019). ANN have been shown to
be an effective tool for recognizing patterns in nonlinear data to
develop a predictive model, even with little to no knowledge of
the underlying mechanisms (Haykin, 2009; Kim and Parnichkun,
2017; Zhang et al., 2019).

The pedictive accuracy of the ANN developed in this work
aligns with those results presented in Table 4. However, this work
utilizes a larger amount of full-scale data to predict settled water
turbidity. The benefit of using full-scale data is the increased
applicability over that of bench- or pilot-scale data, as there are
no effects of scaling. The correlation coefficient between the
actual and predicted values provides a good indication of the
accuracy of predictions. The reported correlation values
described in Table 1 range between 0.9 and 0.93, while the
ANN total correlation coefficient is 0.91.

3.5 Summary of results

The test and total RMSE and correlation coefficient between
actual and predicted values for the various models is given in
Table 4. A summary of the training, validation, and test RMSE is
given in Figure 4. Visualizations of the model test and total
predictions plotted against the actual data points are given in
Figure 5, 6, respectively. The lowest test and total RMSE were
achieved by the ANN model at 0.124 and 0.086, respectively. The
highest correlation coefficient between actual and predicted test data
was 0.821 for the ANN model, and the highest total correlation
coefficient was 0.911 for the ANN model.

3.6 Limitations of results

The research presented here suffers from a few limitations. First,
the data that was used to develop the model contained many outliers
and some corrupted data points. This is characteristic of full-scale
operational data, as opposed to bench-scale data. Better data
management practices are recommended to further evaluate the
performance of the models. Second, the data that was collected was
daily averages. A higher degree of granularity in data would allow for
the development of a model that would be more responsive to water
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TABLE 4 Results table for prediction of settled water turbidity.

Model type Test RMSE Test R Total RMSE Total R

Linear 0.176 0.683 0.147 0.719

KNN Regression 0.154 0.805 0.147 0.714

Polynomial Regression 0.171 0.688 0.147 0.752

ANN 0.124 0.821 0.086 0.911

FIGURE 4
Training, validation, and test RMSE summary.
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quality changes. Third, additional model configurations, such as a
generalized linear model or SVR, could possibly be explored instead
of a strictly polynomial model. These models may provide a higher
degree of predictive accuracy without sacrificing model
interpretability, like “black box” methods (James et al., 2017).
Finally, the surface water treatment process is highly complex

due to the ever-shifting nature of influent water quality,
including the composition of natural organic matter. We plan to
address some of these limitations, where possible. In fact, future
studies for this plant will incorporate higher-quality data, including
more granular data, which will improve the applicability of these
models to develop decision support tools.

FIGURE 5
Model test predictions for regular sub-set linear regression (A), KNN regression (B), polynomial regression (C), and ANN (D).

FIGURE 6
Model total predictions for regular sub-set linear regression (A), KNN regression (B), polynomial regression (C), and ANN (D).

Frontiers in Environmental Engineering frontiersin.org09

McKelvey et al. 10.3389/fenve.2024.1401180

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2024.1401180


4 Conclusion

This was conducted to develop and evaluate data-driven models
for the prediction of settled water turbidity on a large set of full-scale
data, where many studies to-date have focused solely on bench-scale
data. The use of bench-scale data presents several challenges when
applying these models to drinking water systems, as bench-scale
studies do not account for the spatial or temporal variation of
surface waters and aspects of physical processes are difficult to scale.
In this work, computational data-driven models were developed
using operational and water quality data from a DWTP. The
modeling techniques examined here were regular subset linear
regression, KNN regression, polynomial regression, and ANN. By
test RMSE, the regular subset linear model was the least predictive
(0.176), and the ANN had the lowest test RMSE at 0.124. The total
RMSE of the regular subset linear regression, KNN regression, and
polynomial regression were all similar at 0.147. The ANN
outperforms other models resulting in the lowest total RMSE at
0.086, which is an acceptable accuracy for water turbidity prediction.

The results presented here indicate that ANN is a powerful tool.
Combined with a reliable, large data set, ANNmodeling can predict,
with high accuracy, appropriate coagulant doses based on settled
water turbidity. Such models have the potential to replace time-
consuming and expensive jar tests and to provide faster response
time to changing raw water quality and thus lead to cost and time
savings for treatment plants.

Future extension of this work should include the development of
a decision support tool for helping Plant A operations in
determining the optimal ferric chloride dose, and the
development of a model with a more granular time scale. The
use of more granular data will allow for more real-time decisions
to be made based on changes in raw water quality.

Some or all data, models, or code generated or used during the
study are proprietary or confidential in nature and may only be
provided with restrictions.
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