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Introduction: Modeling plays a crucial role in understanding wastewater
treatment processes, yet conventional deterministic models face challenges
due to complexity and uncertainty. Artificial intelligence offers an alternative,
requiring no prior system knowledge. This study tested the reliability of the
Adaptive Fuzzy Inference System (ANFIS), an artificial intelligence algorithm
that integrates both neural networks and fuzzy logic principles, to predict
effluent Biochemical Oxygen Demand. An important indicator of organic
pollution in wastewater.

Materials and Methods: The ANFIS models were developed and validated with
historical wastewater quality data for the Kauma Sewage Treatment Plant located
in Lilongwe City, Malawi. A Self Organizing Map (SOM) was applied to extract
features of the raw data to enhance the performance of ANFIS. Cost-effective,
quicker, and easier-to-measure variables were selected as possible predictors
while using their respective correlations with effluent. Influents’ temperature, pH,
dissolved oxygen, and effluent chemical oxygen demand were among the model
predictors.

Results and Discussions: The comparative results demonstrated that for the
same model structure, the ANFIS model achieved correlation coefficients (R) of
0.92, 0.90, and 0.81 during training, testing, and validation respectively, whereas
the SOM-assisted ANFIS Model achieved R Values of 0.99, 0.87 and 0.94. Overall,
despite the slight decrease in R-value during the testing stage, the SOM- assisted
ANFIS model outperformed the traditional ANFIS model in terms of predictive
capability. A graphic user interfacewas developed to improve user interaction and
friendliness of the developed model. Integration of the developed model with
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supervisory control and data acquisition system is recommended. The study also
recommendswidening the application of the developedmodel, by retraining it with
data from other wastewater treatment facilities and rivers in Malawi.

KEYWORDS

adaptive neuro-fuzzy inference system, self-organizing map, biochemical oxygen
demand, sewage treatment plant, wastewater, artificial intelligence

Introduction

Monitoring of effluent from wastewater treatment plants is
crucial in identifying possible pollutants that may be released into
receiving water bodies. Surface water quality is often evaluated
using indices such as the 5-day biochemical oxygen demand
(BOD5), a commonly used method for measuring organic load in
water resource systems (Arlyapov et al., 2022). However, the
traditional method for determining BOD5 using hard sensors has
significant setbacks. As Hassen and Asmare, (2018) point out,
this approach is difficult, time-consuming, requiring a 5-day
incubation period, making it unsuitable for real-time process
control (Arlyapov et al., 2022), which can feed into an integrated
resource planning framework. Besides, it requires a certified
laboratory equipped with expensive instruments and chemicals
to administer. Furthermore, the BOD5 test is complicated by
factors such as the oxygen demand caused by algal respiration
within the sample and the probable oxidation of ammonia (Noori
et al., 2013a). The conditions under which BOD5 is measured in
laboratories frequently differ from those observed in natural
aquatic systems, resulting in significant differences in the
interpretation of results and their implications (Noori
et al., 2013b).

Biosensors have been developed as a result of efforts to
address these challenges (Karube et al., 1977; Arlyapov et al.,
2022). However, these endeavors have been unsuccessful for
many reasons. Biosensors, while promising, face challenges
such as the high cost of purchasing and maintenance, the
need for significant calibration, toxicity, and inhibitor
interference (Rustum, 2009; Pitman et al., 2015; Liu et al.,
2020). Practitioners are pressed with the need to balance
between treatment operations and testing costs, which
includes instrumentation on one hand and allowing for
continuous monitoring with the ability to make instant
decisions for remedial works for process control to achieve the
treatment plant’s desired performance objectives (O’Brien et al.,
2011). To resolve such complex processes, researchers are
developing an interest in machine learning (MA), a branch of
artificial intelligence (AI) to model complex problems and apply
deep learning from available data (El Alaoui El Fels et al., 2023).

AI algorithms can be broadly categorized into supervised
learning or unsupervised learning paradigms (El Alaoui El Fels
et al., 2023). Supervised learning involves training algorithms on
labeled data, wherein every input-output pair is explicitly
supplied during the training process (Pourzangbar et al.,
2023). As a result, the algorithm can learn a mapping from
inputs to outputs and use that knowledge to make judgments
or predictions on new, unobserved data. Conversely,
unsupervised learning involves training algorithms on

unlabeled data, where the algorithm’s task is to figure out the
data’s underlying structure or patterns without direct supervision
(El Alaoui El Fels et al., 2023; Pourzangbar et al., 2023). This
frequently entails using dimensionality reduction techniques or
grouping comparable data elements. AI algorithms like Artificial
Neural Networks (ANN) (Hassen and Asmare, 2018; Bekkari and
Zeddouri, 2019; Alsulaili and Refaie, 2021; Lin et al., 2022),
Random Forests (RF) (Ward et al., 2021), and Support Vector
Machines (SVM) (Zhu et al., 2022) have widely been used in
wastewater treatment research where most of them are based on
supervised learning. However, there remains a significant
research gap regarding the application of unsupervised
algorithms like Self-Organizing Maps (SOM). Moreover,
studies on optimization techniques demonstrate the extensive
application of genetic algorithms (GA) in model calibration (El
Alaoui El Fels et al., 2023).

This research was an attempt to improve the performance of
AI model capacity in predicting BOD5 with certainty through the
integration of various AI algorithms. Integration of ANN with
fuzzy inference system (FIS) was performed. ANN and FIS
Models have limitations, particularly in manual parameter
tuning and interpretation. To address this, researchers have
explored innovative approaches, including the integration of
the FIS with ANN, leading to the development of the adaptive
network-based fuzzy inference system (ANFIS) (Abunama et al.,
2019). SOM assisted ANFIS outperforms individual ANN or FIS
models by combining neural network learning capabilities with
the interpretability and human knowledge representation of FIS.
Unlike conventional FIS models, which require manual
parameters and fuzzy rule tuning, ANFIS automates this
procedure with neural network learning techniques (Karami
et al., 2022; Mohanty et al., 2022). Furthermore, it tackles
neural networks’ black box characteristics by giving clear
fuzzy rules (Rustum and Adeloye, 2011a). This integration
produces a more accurate and interpretable modeling method
while avoiding the limitations of individual systems. ANFIS
combines the benefits of neural networks and fuzzy logic
systems, resulting in higher modeling accuracy and simpler
implementation, making it a better alternative for a variety of
applications (Cheng et al., 2018).

Recent studies have investigated the use of the Adaptive Neuro-
Fuzzy Inference System (ANFIS) in wastewater treatment plant
(WWTP) processes, with an emphasis on predicting effluent
removal quality and influent characteristics. Qiao et al. (2023)
studied ANFIS’s efficacy in forecasting major pollutant
elimination and found satisfactory findings with the coefficient of
determination (R2) values greater than 0.950. However, disparities
between anticipated and actual results demonstrated that the
model’s performance certainty needed improvement. Similarly,
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Cheng et al. (2018) introduced a multi-scale ANFIS methodology
that outperformed previous methods for predicting influent
characteristics. Okeke et al. (2022) compared ANFIS to Multi-
Linear Regression (MLR) for WWTP performance prediction,
with MLR demonstrating higher accuracy.

Self-organizing map (SOM) is a nonlinear computational
platform introduced by Kasslin et al. (1992) and later by
Kohonen et al. (1996). It is an unsupervised learning
algorithm with the capacity to establish relationships among
process variables. It consists of an array of units arranged in a
grid which makes it suitable as a dimensionality
reduction technique.

The development of advancedmonitoring applications on the SOM
platform has been rare and more so in wastewater treatment
(Linkkonen et al., 2013). However, integrating ANFIS with SOM or
other unsupervised algorithms may address existing accuracy and
certainty limitations, demanding further research in this area. This
study bridges this gap by investigating the integration of advanced
optimization approaches, such as SOM and ANFIS. While these
techniques have the potential to improve modeling accuracy, their
use is limited, particularly in low-cost wastewater treatment
technologies like waste stabilization ponds that are common in
developing countries like Malawi (El Alaoui El Fels et al., 2023).
Therefore, it was critical to examine this approach in Malawi to
establish contextualized monitoring strategies for treatment processes,
effectively address local challenges, optimize resource allocation, and
promote long-term development in sanitation infrastructure.

The present study employed a modified methodology that uses a
SOM algorithm to improve ANFIS precision. SOM-ANFIS models
were thoroughly validated with historical wastewater quality data

from the Kauma Sewage Treatment Plant (KSTP) in Lilongwe,
Malawi. This study aimed to contribute to the field of wastewater
management by improving the synergy between new computational
approaches and established modeling frameworks ultimately
enhancing predictive accuracy.

Materials and methods

Description of the study area

This research was carried out at the KSTP in Lilongwe, Malawi
(Figure 1). The facility receives wastewater from the following
sewered areas of the city; 3, 6, 12, 13, 16, 18, 19, 20, 30, 47, and
48. The treatment plant comprises septage lagoons (Figure 2)
designed to accommodate fecal sludge transported from various
non-severed areas of the city. Vacuum trucks operated by several
private entities also convey and discharge fecal sludge to the
treatment facility.

Sampling and data collection procedures

The study utilized both secondary and primary data, with a sole
focus on domestic sewage. A comprehensive review of documents
related to the KSTP produced secondary data. On the other hand,
primary data was collected for 30 days from 11 February 2022, to
17 March 2022, twice per day (morning and evening). Wastewater
samples were collected systematically from influent raw wastewater,
and composite samples were carefully analyzed using standard

FIGURE 1
Map of Malawi showing the study area.
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FIGURE 2
A schematic diagram of the Kauma sewage treatment plant. Not drawn to scale (Adapted with permission from Mtethiwa et al., 2008; Ravina
et al., 2021).

FIGURE 3
(A) Representation of Winning Node and its neighborhood in Kohonen Self Organizing Map (source: Rustum, 2009). (B) Figure 4: Prediction of
missing components of the input vector using the Self-Organizing Map (BMU, Best Matching Unit) (Source: Rustum and Adeloye, 2011b).
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methods (APHA, 2017; MS682-1:2002, 2002). The pH, COD, total
dissolved solids (TDS), total suspended solids (TSS), electrical
conductivity (EC), and dissolved oxygen (DO) were all
determined. The analyses followed standard methods as
prescribed in (APHA, 2017).

Only COD and BOD were determined from samples taken
from the Septage lagoon and the effluent-treated wastewater.
Samples for the septage lagoon were collected during sludge
discharge. To ensure that the samples came from household
sources and not from industrial sewage, active attempts were
made to consult transporters about the sludge’s origin. Each
sludge transportation truck produced four 2-L samples: one at
the start, two in the middle, and one at the end. These samples
were systematically mixed, with double sampling used to ensure
quality assurance and homogeneity.

Self-organizing map

The SOM is typically used as a dimensionality reduction
approach that can effectively visualize large datasets. This
algorithm is based on unsupervised learning and is entirely
data-driven. Self-organizing maps are distinguished by their
ability to generate internal representations of various aspects
of input signals in a spatially organized and effective manner. As
a result, the resulting maps closely resemble or mimic
topographically structured maps (Kohonen et al., 1996). They
operate in a self-study mode, recognizing patterns and grouping
them into groups. As this network cannot measure the meaning
of the clusters, the users need to interpret the map in a
meaningful and useful manner (Rustum, 2009). Self-
organizing maps are inspired by neural networks, which are

FIGURE 4
Sugeno’s Fuzzy if-then rule and fuzzy reasoning mechanism (Noori et al., 2013b).

FIGURE 5
Architecture of ANFIS (Lei, 2017).
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the foundation of the nervous system. Various philosophies
divide the nervous system’s signal progression and network
constitution into several categories. In one, nearby neurons in

a neural network mutually interact and compete with one
another, adapting to become specific detectors of various
signal prototypes. The learning is unsupervised or self-

TABLE 1 Computed descriptive statistics of KSTP data.

Parameter Unit Mean SD SE Max Min UB LB

pHinf — 7.01 0.46 0.02 8.00 5.40 7.05 6.97

Temp inf
0C 24.73 1.83 0.07 29.00 20.40 24.88 24.58

BOD5inf mg/L 228.47 41.33 2.08 450.00 74.00 232.57 224.38

CODinf mg/L 358.34 88.49 4.56 552.70 182.00 367.31 349.37

BODinf SL mg/L 821.67 542.71 84.76 2329.5 109 992.96 650.36

CODinf SL mg/L 2615.11 2798.18 437.00 14090.88 826.56 3498.32 1731.89

TDSinf mg/L 465.15 86.07 3.71 739.00 230.00 472.44 457.87

TSSinf mg/L 173.28 11.87 0.73 199.00 146.00 174.72 171.85

ECinf µS/cm 783.83 118.96 4.86 1070.00 441.00 793.38 774.28

TURBinf NTU 9.649 0.581 0.023 11 8 9.695 9.603

DOinf mg/L 1.12 0.99 0.04 3.21 0.07 1.21 1.03

BOD5eff mg/L 22.06 7.16 0.36 70.00 5.00 22.76 21.36

CODeff mg/L 40.41 12.46 0.63 58.20 20.00 41.65 39.17

SD, standard deviations; SE, standard error; UB, Upper Bound of 95%.

Confidence Interval for the mean; LB, Lower bound of 95% Confidence Interval for the mean; BOD, biochemical oxygen demand; COD, chemical oxygen demand; TDS, total dissolved solids;

TSS, total suspended solids; EC, electrical conductivity; DO, dissolved oxygen; Temp, Temperature; TURB, turbidity.

Suffixes: inf, influent; eff, effluent; SL, Septage Lagoons

FIGURE 6
SOM component planes.
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TABLE 2 Correlation matrix for variables in code vectors.

pHinf Tinf BOD5inf CODinf BODinf SL CODinf SL TDSinf TSSinf ECinf TURBinf DOinf BOD5eff CODeff

pHinf 1

Tinf 0.161 1

BOD5inf −0.461 −0.606* 1

CODinf −0.615* −0.510* 0.922** 1

BODinf SL −0.251 0.167 0.043 0.061 1

CODinf SL −0.307 0.153 0.144 0.215 0.834** 1

TDSinf 0.368 −0.125 0.131 0.088 −0.620* −0.599* 1

TSSinf −0.199 −0.319 0.339 0.275 0.249 0.035 −0.196 1

ECinf −0.135 0.210 0.193 0.411 0.041 0.130 0.086 0.409 1

TURBinf 0.167 0.067 −0.009 −0.048 −0.048 0.125 0.162 −0.386 −0.320 1

DOinf −0.587* 0.204 0.098 0.269 0.110 0.301 0.003 0.024 0.234 0.163 1

BOD5eff −0.013 0.154 0.033 0.066 −0.309 −0.157 −0.008 0.003 0.252 −0.237 0.196 1

CODeff 0.014 0.166 −0.131 −0.052 −0.285 0.050 0.114 −0.441 −0.100 0.380 0.344 0.625* 1

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).
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organizing in this classification, which serves as the foundation
for the development of self-organizing maps.

The main working strategy of such maps is the geometrical
transformation of non-linear and complex correlation among high-
dimensional data into a relatively simple low-dimensional view.
SOM is made up of neurons arranged on standard one or two-
dimensional grids, with each neuron, i, represented by an n-
dimensional weight/reference/codebook vector given by,

mi � mi1, ...min[ ] (1)
where n is the input vector dimension. These weight vectors
comprise the codebook, which depicts the characteristics of the
data or process. Figure 3 demonstrates that each neuron has two
locations: one in the prototype vector, which is the input space, and
another in the map grid, which is the output space (Vesanto et al.,
2000a; 2000b). Thus, self-organizing maps are a vector projection
method that converts high-dimensional input to low-dimensional

output. The connection between adjacent n is determined by the
neighborhood relationship.

The mapping is performed from the input Euclidean data space
Rn to a two-dimensional nodule lattice. Every node i is connected to
a unique reference vectormi ∈ Rn. When there is input data x ∈ Rn,
it is compared to all themi to find the best match or response. Input
is mapped to specific locations during this process. The Euclidean
distance ‖x −mi‖, as illustrated in Eq. 2 is used to identify the best
matching node,mc, also known as Best Matching Unit as illustrated
in Figure 3B (Kangas and Simulation, 2003).

x −mc‖ ‖ � min i x −mi‖ ‖{ } (2)
The basic steps in the development of the map, according to the

SOM toolbox developed by the Helsinki University of Technology
(Vesanto et al., 2000a), are initialization, training, and validation.
Normalization is a process that prevents process variables from
having a greater impact than other variables, ensuring that the entire

TABLE 3 The structure of the ANFIS models developed and tested in the study for predicting effluent BOD values using Gaussian membership functionsa.

Model
No

Number of
input
parameters

Input
parameters

Number of
membership
functions in
each
input (Nmf)

Number of
linear
parameters
P1=l×(Ninput+1)

Number of
nonlinear
parameters
P2=Ninput×Nmf×2

Total
number of
parameters
P=P1+P2

Number
of fuzzy
rules
l=(Nmf)
Ninput

M1 4 (Raw) Tinf, pHinf, DOinf,
CODeff

2 48 16 64 16

M2 2 (Raw) pHinf CODeff 2 12 8 20 4

M3 3 (Raw) pHinf, ECinf,
CODeff

4 320 24 344 64

M4 3 (Raw) TURBinf, ECinf,
CODeff

2 24 12 36 8

M5 3 (Raw) TDSinf, TSS inf,
COD inf

3 108 18 126 27

M6 3 (Raw) TDSinf, TSS inf,
COD SL inf

3 108 18 126 27

M7 4 (Raw) Tinf, pHinf, DOinf,
CODeff

3 324 24 348 81

M8 2 (Raw) pHinf COD inf 2 12 8 20 4

M9 4 (Features) Tinf, pHinf, DOinf,
CODeff

2 48 16 64 16

M10 2 (Features) pHinf CODeff 2 12 8 20 4

M11 3 (Features) pHinf, ECinf,
CODeff

4 320 24 344 64

M12 3 (Features) TURBinf, ECinf,
CODeff

2 24 12 36 8

M13 3 (features) TDSinf, TSS inf,
COD inf

3 108 18 126 27

M14 3 (Features) TDSinf, TSS inf,
COD SL inf

3 108 18 126 27

M15 4 (Features) Tinf, pHinf, DOinf,
CODeff

3 405 24 429 81

M16 2 (Features) pHinf COD inf 2 12 8 20 4

aThe choice of Gaussian membership functions was because it has just two modified parameters, the center, and width, hence it requires less training data.
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TABLE 4 The performance of the ANFIS models to predict BOD5.

Model No No of Input parameters (N) CRM MPE (%) R

Training Testing Validation Training Testing Validation Training Testing Validation

M1 4 (Raw) −23.36 21.27 26.76 55.92 48.53 51.24 0.18 0.48 0.39

M2 2 (Raw) 21.89 20.11 26.77 39.76 37.58 48.23 0.66 0.71 0.55

M3 3 (Raw) −35.91 −24.23 13.44 57.49 52.55 47.44 0.13 0.25 0.58

M4 3 (Raw) 19.16 18.22 −22.11 51.11 46.81 57.32 0.57 0.72 0.67

M5 3 (Raw) 9.45 0.01 5.11 43.23 3.33e-6 2.300e-4 0.71 0.91 0.83

M6 3 (Raw) −0.02 −0.01 −0.01 0.77 1.54 0.69 0.84 0.79 0.91

M7 4 (Raw) 1.124e-7 3.78e-7 0.03 7.51e-5 8.11e-3 4.66e-4 0.92 0.90 0.81

M8 2 (Raw) 21.03 20.05 −18.58 45.7 38.32 5.88 0.51 0.56 0.71

M9 4 (Features) 1.00e-4 −0.44 0.99 12.24 14.55 22.65 0.89 0.73 0.66

M10 2 (Features) 23.22 −12.62 0.004 46.31 35.22 5.19 0.59 0.71 0.81

M11 3 (Features) −4.56e-5 −0.234 11.24 5.21 7.33 11.23 0.93 0.86 0.77

M12 3 (Features) −8.11e-4 −0.025 −0.089 6.01 8.31 17.76 0.85 0.81 0.74

M13 3 (features) 0.03 7.6e-2 −2.29-3 7.22e-4 2.65e-10 5.10e-11 0.85 0.91 0.94

M14 3 (Features) 0.004 0.023 0.072 0.43 4.21 14.23 0.92 0.89 0.79

M15 4 (Features) 3.78e-16 1.12e-16 −1.02e-15 1.56e-14 4.13e-10 2.30e-14 0.99 0.87 0.94

M16 2 (Features) 10.68 16.32 8.71 10.78 12.87 9.21 0.82 0.73 0.83

CRM, coefficient of residual mass; MPE, mean percent error; R, correlation coefficient.

The bold values represent the model that had the better performance compared to the rest.
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TABLE 5 Statistics summary of the ANFIS models to predict effluent BOD5.

Model No No of Input parameters (N) Minimum Maximum Mean

Training Testing Validation Training Testing Validation Training Testing Validation

Observed 9 12 7 56 55 40 22.27 21.87 21.64

M1 4 (Raw) −14.77 −10.90 5.88 46.74 39.34 31.63 22.67 22.01 19.88

M2 2 (Raw) −17.75 11.22 −29.15 63.53 48.60 36.66 24.46 18.26 20.71

M3 3 (Raw) −19.99 −14.67 −28.73 109.00 104.00 98.11 23.77 19.72 20.84

M4 3 (Raw) −18.66 −11.60 −17.74 206.13 199.06 204.68 22.44 21.50 22.89

M5 3 (Raw) 9.11 14.23 8.45 54.75 58.33 43.41 23.81 20.70 23.77

M6 3 (Raw) 9.51 −12.75 8.23 54.22 56.19 39.73 22.11 21.52 21.71

M7 4 (Raw) 9.21 11.92 7.13 55.47 55.14 42.54 22.76 22.19 22.74

M8 2 (Raw) −8.45 14.23 8.69 54.89 53.99 39.28 22.66 21.59 22.80

M9 4 (Features) 8.79 11.81 6.73 54.32 54.23 41.45 21.90 21.89 21.23

M10 2 (Features) 9.22 13.43 8.91 60.12 57.90 42.90 22.41 21.66 21.17

M11 3 (Features) 10.16 13.89 8.23 58.61 51.70 58.91 22.90 23.71 22.50

M12 3 (Features) 7.90 11.90 8.90 53.80 57.10 39.88 21.98 22.73 21.70

M13 3 (Features) 8.92 13.74 7.89 53.61 51.82 40.71 22.84 22.81 21.72

M14 3 (Features) 9.66 11.27 9.03 53.47 54.71 43.82 22.17 21.57 21.75

M15 4 (Features) 8.86 14.12 8.19 55.62 43.29 38.56 22.31 20.74 22.08

M16 2 (Features) 9.41 11.45 8.45 55.39 56.29 41.71 23.80 21.67 22.71

M1, Model No 1.

This is descriptive statistics for the model that had better performance compared to the rest. It has been highlighted to reflect its significance.
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set of variables has the same significance in the construction of maps.
Initialization aids the algorithm’s convergence to a good result by
assigning weight vector values either randomly or linearly. During
this process, each neuron is assigned random weight vectors ranging
from zero to one (Vermasvuori et al., 2002). The main goal of
training is to find the Best Matching Unit (BMU) or winning node
among the map units for each input prototype. This unit is very
similar to the input pattern. A distance function is commonly used
to measure similarity, with closer distances defining greater
similarity as defined by the Euclidean distance function. The best
matching unit and its neighboring units are updated to reduce the
difference between these units and the input pattern (Hsu, 2006).
Two types of algorithms are used for updating: sequential training
algorithms and batch training algorithms. Once the best matching
unit is identified, its weight vectors are shifted closer to the input
vector in the input space, a process known as updating. The best
matching unit’s topological neighbor units are also treated in the
same way. The size of the adjustment of the weight vector is
determined by the distance of these neighborhood neurons or
units from the winner output array. More information on
training the map can be found in Vesanto et al. (2000a), Lopez
Garca and Machon Gonzalez (2004), Rustum (2009).

The SOM’s quality is determined primarily by two error
measurements: quantization error (qe) and topographic error (te)
(Jorge et al., 2013). The mean Euclidean distance from the input
vector to its best matching unit is used to calculate the
quantization error.

This, in turn, provides map resolution and aids in identifying
outliers. A high quantization error indicates that those input
patterns are most likely outliers. The percentage of input vectors
for which the best matching unit and the next best are not grid
neighbors is referred to as topologic or topographic error. This error
indicates the degree of data topology preservation while the map is
fitted into the original dataset.

ANFIS

ANFIS modeling is the method of applying various learning
techniques developed in the neural network literature to a fuzzy
inference system (FIS) (Brown et al., 1994; Brown et al., 1994). The
FIS maps its input space to the output space using a fractional non-
linear relationship and a set of fuzzy if-then rules (Noori et al.,
2013b. A FIS typically has five components: a fuzzification interface,

TABLE 6 Comparative studies in utilization of ANFIS for optimization problems.

Reference Objective Nature of the data used Remarks on the model
performance

Qiao et al. (2023) Employed ANFIS to predict removal of
pollutants in Wastewater treatment plant

Utilized data that was first screened by utilizing
principal Component analysis (PCA) and
Orthogonal Experiments

Satisfactory findings with R2 values greater than
0.950 were notived. However, there was disparities
between anticipated and actual results

Cheng et al.
(2018)

Predicted influent characteristics using
integrated Wavelet packet decomposition with
ANFIS

Utilized historical data that was first decomposed
by wavelet packet decomposition approach prior
to feeding the data into ANFIS

Multi-scale ANFIS methodology that outperformed
previous methods for predicting influent
characteristics

Obasi et al. (2022) Applied ANFIS, and a classical multi-linear
regression analysis (MLR) to predict the
performance of Abuja WWTP

Utilized preprocessed data to predict
Conductivity, pH, Iron content, BOD, COD, TSS
and TDS

MLR model outperformed ANFIS model

FIGURE 7
The structure of Model number 15.
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a rule base, a database, a decision-making unit, and a defuzzification
interface. One of the most important steps in ANFIS development is
the selection of a FIS type. There are various methods for developing
the FIS. The first-order Sugeno FIS with two fuzzy rules (Figure 4) is
used in this study as given by Eqs 3, 4:

Rule 1: If x is A1 andy is B1; thenf1 � p1x + q1y + r1 (3)
Rule 2: If x is A2 andy is B2; Thenf2 � p2x + q2y + r2 (4)

where A1; A2 and B1; B2 are the membership functions (MFs) for
inputs x and y; respectively; and p1;q1;r1 and p2;q2;r2 are the
parameters of the output function. Also, the output f is the
weighted average of the individual rule outputs. To implement
these two rules, an equivalent ANFIS structure (Figure 5) should
be developed. In Figure 5, the characteristics of each layer are as
follows (Jang, 1993; Lei, 2017).

Layer 0: It is called the input layer, and has n nodes where n is
the number of inputs to the system

Layer 1: Input membership function—The first layer is used to
fuzzificate the inputs, and all the nodes of this layer are adaptive. Its
outputs are the membership grade of the inputs as given by Eqs 5, 6

o1i � uAi x( ), i � 1, 2. (5)
o1i � uBi−2 y( ), i � 3, 4, (6)

where uAi(x) and uBi−2(y) are the fuzzy membership functions.
Conventionally, the bell-shaped membership function is used, and it
is expressed by Eq. 7

uAi x( ) � 1

1 + x−ci
ai

( )2[ ]bi i � 1, 2. (7)

where ai, bi, and ci are the parameters of the membership functions
Layer 2: Rule—The nodes in this layer are fixed (Not adaptive).

These are labeled M to indicate that they play the role of simple

multipliers. The outputs of this layer represent the fuzzy strengths ω
of each rule and can be expressed as

o21 � ωi � uAi x( )uBi y( ), i � 1, 2. (8)

Layer 3: Normalization—In this layer, the nodes are also fixed.
These nodes are labeled with N, which means that they play a
normalization role in the fuzzy strengths from the previous layer.
The normalization factor is computed by the sum of the weight
functions. The outputs of this layer are called normalized fuzzy
strengths and are expressed as shown in Eq. 9

o3i � �ωi � ωi∑2
i�1ωi

, i � 1, 2. (9)

Layer 4: Output membership function—The nodes of this layer
are adaptive ones. Its outputs are represented by Eq. 10

o4i � ωizi � ωi pix + qiy + ri( ), i � 1, 2. (10)
where pi, qi, ri are the parameters of the membership functions,
respectively.

Layer 5: Output—Only one single fixed node, labeled with S, is
in this layer. This node performs the sum of the incoming signals.
Thus, the overall output is expressed as shown in Eq. 11.

o5i � z � ∑2
i�1
ωizi � ∑2

i�1ωizi∑2
i�1ωi

(11)

Model evaluation criteria

After fitting the input data into ANFIS or any other model, it is
important to evaluate how well the model performs. MATLAB offers
“goodness of fit”which has a set of parameters that describe themodel’s
accuracy. Evaluation can be done graphically using residual plots and

FIGURE 8
Schematic diagram of Model number 15 with 3 membership functions and 81 “IF -THEN” rules.
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prediction bounds and numerically using statistical parameters
explained below. Graphical measures help the evaluation of the entire
dataset at once and can display a wide range of relationships between the
model and data (MathWorks, 2020). Numerical evaluation measures
include correlation coefficient R, Average Absolute Error (AAE), Mean
square error (MSE), and RootMean Square Error (RMSE). In this study,
however, only three indices as given by Eqs 12–14 were used due to their
robustness, namely, the correlation coefficient (R) (Wang et al., 2006),
the Coefficient of residual mass (CRM) (El-Sadek, 2006), and the Mean
percent error (MPE) (Moriasi et al., 2007)

R � N∑OiPi −∑Oi∑Pi






























N∑O2

i − ∑Oi( )2[ ] N∑P2
i − ∑Pi( )2[ ]√ (12)

CRM � ∑N
i�1Oi − ∑N

i�1Pi∑N
i�1Oi

(13)

MPE � ∑N
i�1

Oi − Pi| |
Oi

( ) × 100% (14)

where Pi is the predicted value, Oi is the observed value and N is the
number of data entries.

FIGURE 9
Fuzzy membership Functions in the input space.

TABLE 7 The parameters of Gaussian membership functions associated
with input variables.

Inputs Membership function b (Width) C (center)

Temp_Inf Low 1.551 20.4

Medium 1.549 24.05

High 1.552 27.7

pH_inf Low 0.3747 6.09

Medium 0.3893 6.999

High 0.389 7.908

DO_Inf Low 0.6679 0.06926

Medium 0.6709 1.639

High 0.6589 3.216

COD_Eff Low 8.111 20

Medium 8.11 39.68

High 8.11 58.2
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TABLE 8 Optimised fuzzy rules generated using modeling strategy developed in this study for model number 15.

Rule number Rule antecedent (IF) THEN Consequent parameters

Temp_Inf pH_Inf DO_Inf COD_Eff a1 a2 a3 a4 a0

1 Low Low Low Low −0.37 −0.51 −0.23 −0.09 42.17

2 Low Low Low Medium 6.44 −16.84 11.48 −1.66 26.5

3 Low Low Low High 66.22 −35.35 −61.86 −3.48 55.61

4 Low Low Medium Low −27.29 71.38 88.92 7.02 −112.3

5 Low Low Medium Medium 9.94 26 −45.51 −2.56 40.91

6 Low Low Medium High −6.99 18.29 38.88 4.8 −28.77

7 Low Low High Low −222.06 30.32 1.27 −500.78 716.3

8 Low Low High Medium −23.01 25.19 105.33 10.92 −94.69

9 Low Low High High 95.2 −55.45 −97.03 −5.45 87.23

10 Low Medium Low Low 41.8 −12.55 −21.97 −1.23 19.75

11 Low Medium Low Medium 21.75 −9.81 −0.016 −0.96 15.43

12 Low Medium Low High 15.57 −22.43 −1.24 −2.21 35.28

13 Low Medium Medium Low 46.13 −13.43 −23.49 −1.32 21.12

14 Low Medium Medium Medium 62.95 −26.03 −45.55 −2.56 40.95

15 Low Medium Medium High 58.93 −23.36 −40.88 −7.3 36.75

16 Low Medium High Low −4.54 11.88 20.79 13.17 −18.69

17 Low Medium High Medium 180.37 −134.38 −235.15 −1.21 211.4

18 Low Medium High High −13.58 35.53 52.17 3.49 −55.89

19 Low High Low Low 22.7 −43.7 −76.46 54.3 68.74

20 Low High Low Medium −27.63 72.27 90.47 4.11 −113.7

21 Low High Low High 110.96 −65.28 −114.24 −6.42 102.7

22 Low High Medium Low 36.2 −8.38 −14.66 −0.82 13.18

23 Low High Medium Medium −3.38 25.84 15.46 0.87 −13.9

24 Low High Medium High −392.69 833.22 1097.55 101.02 −1,616

25 Low High High Low 175.42 288.84 −605.45 −290.41 454.4

26 Low High High Medium −3.69 25.65 16.89 0.95 −15.18

27 Low High High High −6.28 16.42 38.73 1.61 −25.83

28 Medium Low Low Low 55 −23.54 −41.19 −2.31 37.03

29 Medium Low Low Medium 40.66 −12.18 −21.31 −1.2 19.16

30 Medium Low Low High 83.7 −46.29 −81 −4.55 72.82

31 Medium Low Medium Low 31.3 −3.4 −5.96 −0.33 5.355

32 Medium Low Medium Medium 44.51 −14.41 −25.22 −1.42 22.67

33 Medium Low Medium High −26.27 30.71 120.24 6.76 −108.1

34 Medium Low High Low 66.61 −32.98 −57.72 −3.24 51.89

35 Medium Low High Medium −7.95 20.81 36.41 9.05 −32.73

36 Medium Low High High 47.25 −18.97 −33.19 −1.87 29.84

37 Medium Medium Low Low 35.79 −9.92 −17.36 −0.98 15.61

(Continued on following page)
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TABLE 8 (Continued) Optimised fuzzy rules generated using modeling strategy developed in this study for model number 15.

Rule number Rule antecedent (IF) THEN Consequent parameters

38 Medium Medium Low Medium 55.38 −24.54 −42.95 −2.41 38.61

39 Medium Medium Low High 46.28 −16.43 −28.75 −1.62 25.85

40 Medium Medium Medium Low 40.73 −12.38 −21.67 −1.22 19.48

41 Medium Medium Medium Medium 38.49 −11.75 −20.57 −1.16 18.49

42 Medium Medium Medium High 65.51 −32.73 −57.27 −3.22 51.49

43 Medium Medium High Low 53.96 −23.44 −41.02 −2.31 36.88

44 Medium Medium High Medium 45.13 −16.03 −28.05 −1.58 25.22

45 Medium Medium High High 46.13 −16.04 −28.08 −1.58 25.24

46 Medium High Low Low 29.88 −4.91 −8.6 −0.48 7.732

47 Medium High Low Medium 52.9 −23.44 −41.01 −2.3 36.87

48 Medium High Low High −57.37 150.08 152.62 14.76 −236.1

49 Medium High Medium Low 84.25 −47.74 −83.55 −4.7 75.11

50 Medium High Medium Medium −3.83 27.03 17.55 0.99 −15.78

51 Medium High Medium High 129.2 −84.22 −147.39 −8.28 132.5

52 High High High Low −28.48 74.5 85.37 7.33 −117.2

53 High High High Medium 122.33 −79.33 −138.82 −7.8 124.8

54 High High High High 140.51 −90.26 −157.95 −8.88 142

55 High Low Low Low 50.36 −19.25 −33.68 −1.89 30.28

56 High Low Low Medium −20.73 56.23 66.91 5.33 −85.32

57 High Low Low High 38.31 −11.28 −19.74 −1.11 17.75

58 High Low Medium Low 32.98 −7.79 −13.64 −0.77 12.26

59 High Low Medium Medium 107.9 −67.76 −118.58 −6.66 106.6

60 High Low Medium High 104.93 −65.22 −114.13 −6.41 102.6

61 High Low High Low −0.73 24.91 3.34 0.19 −3.002

62 High Low High Medium 86.53 −51.08 −89.38 −5.02 80.35

63 High Low High High 31.99 −5.82 −10.18 −0.57 9.156

64 High Low Low Low 43.22 −13.65 −23.89 −1.34 21.48

65 High Medium Low Medium 42.97 −13.01 −22.77 −1.28 20.47

66 High Medium Low High −1.95 25.11 8.94 0.5 −8.038

67 High Medium Medium Low 51.25 −21.59 −37.78 −2.12 33.96

68 High Medium Medium Medium 30.94 −5.07 −8.87 −0.5 7.976

69 High Medium Medium High −2.04 24.33 9.32 0.52 −8.378

70 High Medium High Low 41.02 −13.12 −22.96 −1.29 20.64

71 High Medium High Medium 28.12 −2.94 −5.14 −0.29 4.622

72 High Medium High High 29.61 −4.21 −7.36 −0.41 6.616

73 High High Low Low 42.89 −15.4 −26.94 −1.51 24.22

74 High High Low Medium 42.94 −12.92 −22.6 −1.27 20.32

75 High High Low High 430.33 −319.99 −559.95 −31.47 503.4

(Continued on following page)
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The goodness of fit measures the similarity of the shapes of
the original and predicted cited time series and ranges
between −1 and 1; the absolute value of the correlation
coefficient for perfect prediction is unity (Rustum, 2009). The
CRM characterizes the tendency to over-estimate CRM < 0 or
under-estimate a property (CRM > 0) (Malota et al., 2022) on the
other hand, MPE measures the magnitude of errors between the
measured and predicted values relative to the measured values.
MPE value closer to zero indicates that the predicted values are
very close to the measured values (Legates and McCabe, 1999;
Malota et al., 2022). To overcome the problem of overfitting, an

early stop rule was applied by dividing the KSTP data into three
subsets: training (432 data points), validation (92 data sets), and
testing (92 data sets).

Ethical consideration

The study sought clearance from theMzuzu University Research
Ethics Committee (MZUNIREC) Ref No: MZUNIREC/DOR/21/62.
Permission was also obtained from Lilongwe City Council to engage
Laboratory technicians during data collection processes. Informed

TABLE 8 (Continued) Optimised fuzzy rules generated using modeling strategy developed in this study for model number 15.

Rule number Rule antecedent (IF) THEN Consequent parameters

76 High High Medium Low −6.03 25.77 27.6 1.55 −24.81

77 High High Medium Medium 95.95 −54.8 −95.9 −5.39 86.21

78 High High Medium High 62.88 −28.82 −50.43 −2.83 45.34

79 High High High Low 55.92 −23.33 −40.82 −2.29 36.7

80 High High High Medium 78.63 −43.49 −76.11 −4.28 68.42

81 High High High High 48.13 −18.65 −32.64 −1.83 29.34

inf, Influent; eff, Effluent; Temp, Temperature; DO, dissolved oxygen; COD, chemical oxygen demand.

Fuzzy Inference Diagram for model number 15.

FIGURE 10
(Continued).
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consent was also obtained from the Laboratory technicians and
KSTP who participated in the study.

Results and discussions

Descriptive statistics of Kauma sewage
treatment plant data

The preprocessed data, with a sample size of 616 data sets per
variable, was examined. The estimated descriptive statistics for a

number of variables at the KSTP (Table 1) offered an in-depth
overview of influent and effluent characteristics. The pH of the
influent wastewater averaged 7.01, indicating slightly alkaline
conditions, with a standard deviation (SD) of 0.46, indicating
steady pH levels. The upper bound (UB) and lower bound (LB)
values (7.05 and 6.97, respectively) set the 95% confidence interval
for pH readings. In terms of temperature (Temp inf), the mean of
24.73°C demonstrates a moderate thermal condition, with an SD of
1.83 suggesting variability. UB (24.88) and LB (24.58) determined
the 95% confidence interval. BOD5inf and CODinf results, with
mean values of 228.47 mg/L and 358.34 mg/L, respectively,

FIGURE 10
(Continued). Fuzzy inference diagram for model number 15 predicting effluent BOD. To obtain the output value as shown in the picture, the user
only needs to enter the input values.

FIGURE 11
Graphical user interface of model number 15. Contrary to Figure 10, To obtain the output value as shown in the picture, the user only needs to enter
the input values.
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emphasized the organic load in the influent. TDSinf and TSSinf
provide information on total dissolved and suspended solids, with
values of 465.15 mg/L and 173.28 mg/L, respectively. ECinf (mean:
783.83 S/cm) and TURBinf (mean: 9.649 NTU) measurements

provided information about electrical conductivity and turbidity.
The mean DOinf of 1.12 mg/L indicated the concentration of
dissolved oxygen, which is essential for aerobic living activity.
Effluent BOD5eff (mean: 22.06 mg/L) and CODeff (mean:

FIGURE 12
Time series plots of observed and predicted BOD during training for model number 15.

FIGURE 13
Time series plots of observed and predicted BOD during testing for model number 15.

Frontiers in Environmental Engineering frontiersin.org18

Mng’ombe et al. 10.3389/fenve.2024.1373881

https://www.frontiersin.org/journals/environmental-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fenve.2024.1373881


40.41 mg/L) demonstrated a significant reduction in organic and
chemical oxygen demand, demonstrating the efficacy of the
treatment technology.

The mean COD to BOD5 ratios were found to be 1.57 and
1.83 for influent and effluent wastewater, respectively. However,
samples from septage lagoon had a much higher ratio of 3.18, which
is above the average range of 1.25–2.5 for domestic wastewater
(Metcalf and Eddy, 2013). This discrepancy stems from various
factors as highlighted by Niwagaba et al. (2014). Firstly, wastewater
from septic tanks and pit latrines contains more organic and
inorganic constituents, such as feces and household chemicals,
that can elevate COD levels. In addition, longer retention times
in septic tanks and latrines facilitate greater organic decomposition

resulting into high COD than BOD5 levels. Furthermore, anaerobic
conditions prevalent in septic tanks produce non-biodegradable
compounds that contribute to COD. Lastly there is minimal
dilution in septic systems compared to sewered networks, this
maintains higher COD concentrations until discharge (Niwagaba
et al., 2014).

Before beginning the modeling process, the entire dataset was
divided into three sets: the first set of 432 observations was used to
train themodel, the second set of 92 observations was used to test the
model, and the final set of 92 observations was used to validate the
model. The study looked at two scenarios: the first consisted of
developing an Adaptive Neuro-Fuzzy Inference System (ANFIS)
Model from raw data, and the second involved developing a hybrid

FIGURE 14
Time series plots of observed and predicted BOD during Validation for model number 15.

FIGURE 15
The scatter plot of modeled versus observed data during training, testing, and validation for model number 15.
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Self-Organizing Map (SOM) and ANFIS model using
extracted features.

SOM component planes

The generation of component planes, a key feature of SOMs, is a
rigorous procedure that demonstrates relationships between variables in
the data. These planes are created during SOM training, which involves
mapping the input space onto a two-dimensional grid of neurons. Each
neuron corresponds to a weight vector, whose dimensions match those
of the input data (Mng’ombe et al., 2023). By iteratively altering these
weights, the SOM learns to represent the data’s underlying structure.
Once trained, component planes are created by assigning colors or
intensities to neurons based on the values of specified dimensions in the
input data (Kumar et al., 2021a). This visualization technique provides
useful insights on the relationships and distributions of distinct
elements, making it easier to explore and analyze complex datasets
(Nkiaka et al., 2016). These component planes, as shown in Figure 6,
represent each variable in the SOM. Each plane is effectively a sliced
SOM, with a single vector variable indicating its value in each map unit
(Kalteh et al., 2008). To improve readability, the component planes are
color-filled or grey-scaled, depicting the feature values of each SOMunit
inside the 2-D lattice. Darker hues imply that the associated variable
component has a lower relative value. This visual depiction efficiently
delineates zones where a variable is high, low, or average, allowing for a
simple understanding of the correlation between SOM-simulated values
of selected wastewater parameters (Kumar et al., 2021b).

A visual analysis of the component planes indicates that the
BOD5inf plane’s color (or gray) gradient aligns parallel to the CODinf

gradient, demonstrating a correlation where high BOD5inf values are
associated with high CODinf values and vice versa. Similarly, greater
BOD5eff levels correlate with high CODeff levels and vice versa. The
component planes support a negative association between pH and
BOD5inf, CODinf, and DOinf, with low pH values associated with
high BOD5inf, CODinf, and DOinf values. The expected positive
association between BOD and COD has been validated,
correlating with expectations that COD values are often greater
than BOD values, with the ratio fluctuating depending on
wastewater characteristics (Rai et al., 2019). The entire
correlation matrix containing all 11 variables of the prototype
vectors is shown in Table 2. While this table is a simple tool for
examining the linear relationships between different variables, its
findings are consistent with the cross-correlation indications derived
from the much more complex SOM analysis, which resulted in the
development of the component planes.

Table 2 presents a thorough perspective of the correlationmatrix
for the variables within the code vectors, giving insights into the
complex relationships between different parameters within the
wastewater treatment framework. Among the notable findings
was a modest positive correlation between pH and temperature
(Tinf), indicating a minor tendency for both variables to fluctuate
together. Furthermore, a strong negative connection occurred
between influent BOD5inf and CODinf, which corresponded to
the expected inverse association in wastewater. The component
planes revealed the influence of the septage lagoon (BODinf SL
and CODinf SL) on numerous parameters, demonstrating a
complicated interaction between the septage lagoon and other
wastewater properties. Positive correlations between total
dissolved solids (TDSinf) and total suspended solids (TSSinf) in

FIGURE 16
3D response graphs for model number 15.
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the influent indicated a simultaneous increase in both metrics. In
contrast, electrical conductivity (ECinf) exhibited a negative
relationship with turbidity (TURBinf), implying that higher
electrical conductivity is associated with clearer wastewater. DOinf

(dissolved oxygen in influent) had a substantial negative correlation
with effluent biochemical oxygen demand (BOD5eff), highlighting
the relevance of dissolved oxygen in the treatment process.
Furthermore, effluent chemical oxygen demand (CODeff)
demonstrated a positive association with TSSinf, indicating a
possible relationship between suspended solids concentration and
chemical oxygen demand in effluent. In conclusion, our correlation
matrix gave a foundational understanding of the interplay of several
wastewater metrics, stressing the importance of these correlations in
describing wastewater quality, as highlighted by the significant
correlations at the 0.05 and 0.01 levels.

ANFIS model structure

Table 3 displays the model architectures of several models
developed and evaluated with Gaussian membership functions.
Multiple models were developed by experimenting with different
combinations of input variables and using various membership
functions. The association of these input factors to effluent BOD5

and the promptness with which each variable could be measured
influenced their selection. Given the available database, the inclusion
of four input variables was assessed to be the maximum number of
combinations possible. For example, when using four inputs, each
associated with three membership functions, the total number of
adjusted parameters, as calculated by Eq. 15, was 430—well within
the 432 data points available for training. The evaluation of five
parameters, however, using five parameters could exceed the
number of training data sets, limiting the model’s degrees
of freedom.

Ntotal � Ninput × Nmf × Npp( ) + l × Ncp( ) (15)
l � Nmf( )Ninput

(16)
Ncp � Ninput + 1 (17)

whereNtotal is the total number of modified parameters,Ninput is the
number of inputs, Nmf is the number of membership functions
associated with each input, Npp is the number of modified
parameters per membership function, i. e., in the case of the
Gaussian membership function; l in Eq. 16 is the number of
rules; Ncp in Eq. 17 is the number of modified parameters in the
sequence part of each rule

Table 4 presents a detailed summary of the performance of
produced models in two scenarios: M1–M8, where models were
built using raw data, and M9–M16, where models were built using
extracted features using SOM. The results show that model
M1–M16’s performance was unsatisfactory, as shown by higher
values of the Coefficient of Residual Mass (CRM) and Mean Percent
Errors (MPE). Furthermore, as seen in Table 5, models developed
utilizing raw data produced negative results.

Table 4 shows that improving the raw data by pre-processing
with the SOM technique considerably improved model
performance. Consider models 7 and 15, which both had the

same structure—four inputs and three membership functions
associated with each input. However, model number
15 outperformed model number 7, with the correlation
coefficient in the validation dataset increasing from 0.81 to 0.94.
This trend is repeated for the remaining models, demonstrating the
effectiveness of raw data pre-processing with the SOM algorithm in
enhancing overall model performance.

The ANFIS models’ performance, as presented in Tables 4, 5,
provides a more comprehensive understanding of the predictive
abilities for BOD5 concentrations. The coefficient of residual mass
(CRM), mean percent error (MPE), and correlation coefficient for
models with raw and extracted features are presented in Table 4.
Model M1, which had four raw input parameters, had negative CRM
values during testing and validation, indicating a probable model
fitting issue. Similarly, during testing, Model M5 demonstrated an
MPE close to zero, indicating a near-perfect match. Models M3 and
M11, which used three raw input parameters, had negative CRM
values, indicating an overestimation of BOD5 concentrations. The
addition of feature extraction in Models M9–M16 significantly
increased performance, with the Model M15 exhibiting excellent
results including nearly minimal CRM and MPE values and
excellent correlation coefficients.

Table 5 summarizes statistics on predicted effluent BOD5

concentrations, which offer light on the models’ ability to mimic
observed values. Models containing raw input parameters, such as
M3 and M4, had broader ranges and higher mean values, indicating
difficulties in predicting extreme concentrations. Model M5 stood
out for its consistency with observed values, having a shorter range
and closer mean value alignment. Models M9–M16, on the other
hand, demonstrated competitive performance with reduced ranges
andmean values by leveraging extracted characteristics. Model M15,
in particular, displayed distinct match with observed values.
However, negative predictions in raw data, as demonstrated in
Models M2 and M8, should be taken into account because they
may reflect limits in effectively capturing complex relationships.
Overall, the introduction of feature extraction demonstrated
potential to enhance the predicted accuracy of ANFIS models for
effluent BOD5 values.

These findings are consistent with previous research, as shown
in Table 6, and highlight the need of combining ANFIS algorithms
with complementing approaches such as SOM to improve model
accuracy. Discrepancies discovered in similar studies highlight the
complexities of this methodology and its critical role in improving
the reliability and overall performance of ANFIS models.

Given Model 15’s higher performance as compared to its
competitors, an in-depth scrutiny was conducted solely on this
model. Model 15 is distinguished by three membership functions
associated with each of its four input variables, namely, Tinf, pHinf,
DOinf, and CODeff, as illustrated in Figures 7, 8. Figure 9 depicts the
membership functions and Gaussian membership functions based
on the operational range of the model.

Membership functions play an important role in defining and
expressing the fuzzy sets that are essential to a fuzzy inference
system. Figures 7–9 exemplify how these functions help to
express fuzzy thinking and decision-making based on
linguistic considerations. Membership functions, in essence,
quantify the degree to which an input value aligns with a
given fuzzy set. These functions, which typically span a
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specific range of input values, assign a membership degree,
ranging from 0 to 1, to each value inside that range. This
degree of membership indicates the input value’s association
with the given fuzzy set, providing a deeper understanding of the
input’s participation in the larger fuzzy set.

The parameters for the Gaussian membership functions related
to input variables are summarized in Table 7, which includes the
center (c) and width (b) components. The developed model is
distinguished by a thorough set of 81 rules that comprise a total
of 429 modified parameters. There are 24 non-linear parameters
among these, with the remaining 405 linear parameters forming the
model’s complicated framework.

Table 8 illustrates the optimized fuzzy rules that govern Model
15. These 81 rules define the complex relationships between input
and output variables. Figure 10 illustrates the integration process of
these rules, which complements this tabular representation. Table 8
systematically details each rule, with discrete parts dedicated to the
“IF and THEN” conditions for each rule. The IF component defines
a set of criteria depending on input variables, whereas the THEN
component defines the expected consequence or action. For
example, rule 1 in Table 8 can be understood as follows:

IF (TEMP) is Low and (pH) is Low and (DOinf) is Low and
CODeff is low, THEN (effluent BOD) is 42.17 - (0.37*temp) - (0.51*
pH) - (0.23*DO) -(0.09*CODeff)

Data that was not used in the training phase was used for
testing and validation of the trained model. Figures 11–13 depict
time series plots of observed and anticipated effluent BOD5

alongside their corresponding residuals during the training,
testing, and validation processes. Figure 14 depicts the
modeled data in comparison to the observed data during the
training, testing, and validation phases.

To determine the number of rules, the typical fuzzy inference
approach relies on an expert judgment which is well-versed in the
simulated system. This expert employs heuristic insights gained
from vast experience gained from the simulations. In this study,
however, the number of membership functions allocated to each
input variable was established empirically by trial and error,
eliminating the requirement for an expert judgement. The
suggested model accurately determines process conditions by
combining values from multiple factors. Furthermore, the
suggested model is resistant to missing variables and outliers.
In comparison to deterministic models, creating a fuzzy logic
model is likewise a relatively simple task.

The interactions between numerous input variables and a single
output variable are frequently shown via 3D graphs when using the
Fuzzy Toolbox in MATLAB. These graphs support decision-making
and aid in understanding fuzzy systems’ behavior. To understand a 3D
graph produced by the Fuzzy Toolbox, it is necessary to examine its
shape, contours, and surface properties. As illustrated in Figure 15 the
model input variables (Temp_Inf, pH_Inf, DO_inf, and COD_eff) are
represented on the X and Y-axes of the graphs. These variables
frequently match up with linguistic concepts or membership
algorithms specified in the fuzzy system. For interpretation, it is
crucial to comprehend the range and linguistic significance of these
variables. On the 3D graph’s Z-axis, the output variable (BOD5_eff) is
shown. It displays the system’s reaction or output to the supplied inputs.
On the graph, the output variable values are typically depicted by color
or contour lines.

Conclusion

The current study offers a novel approach for predicting BOD5

values in wastewater using wastewater data collected from the KSTP in
Lilongwe City. To successfully predict effluent BOD5, the hybrid SOM-
ANFIS model was trained, validated, and tested. Initially, a set of
measured raw data was used to train and test the ANFIS model.
The model did not work well, though, because the raw data was
noisy. To tackle this issue, features from the data were extracted
using the SOM. These retrieved features were used to train and
evaluate a new set of models, thereby improving their performance.
The results showed that the SOM-ANFIS model outperformed the
ordinary ANFIS model in terms of modeling capabilities and certainty,
even when accounting for varying numbers of inputs and fuzzy
membership functions. The SOM-ANFIS model was also able to
handle blank spaces in the data or missing values without challenges.
This implies that SOM assisted models have greater capabilities
compared to ordinary ANFIS in predicting BOD5 for KSTP. Using
MATLAB’s app designer, an easy-to-use graphical user interface as
demonstrated in Figure 16 was developed to improve usability and user-
friendliness. The developed GUI was able to facilitate user interaction
and understanding the created fuzzy inference system. The developed
model is expected to reduce treatment operation and testing costs, allow
continuous monitoring, and consequently protect the environment.
Future improvement of the developed model will include integrating it
with hardware components through the Supervisory Control and Data
Acquisition (SCADA) system. The authors recommend for the
development of a specialized model, such as a Convolutional Neural
Network, intended exclusively for fecal sludge characterization.
Considering the fact that faecal sludge characteristics are highly
variable with space and time, it is further recommended that data
from other sources such as rivers and other wastewater treatment
facilities in Malawi and beyond be collected to update the developed
models. This will widen the application of developed models to expose
them to a wider range of scenarios.
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