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Forecasting crude oil futures
volatility with extreme-value
information and dynamic jumps

Wenliang Shu and Huiyu Luo*

School of Finance, Anhui University of Finance and Economics, Bengbu, China

In this paper, we propose the realized EGARCH model with jumps (hereafter
REGARCH-Jump model) to model and forecast the crude oil futures volatility.
A key feature of the proposed REGARCH-Jump model is its ability to account
for the extreme-value information as well as time-varying jump intensity. We
apply the REGARCH-Jump model to the Brent crude oil futures price data.
Our empirical results provide evidence of the presence of time-varying jumps
in the crude oil futures market. More importantly, we show that our proposed
REGARCH-Jumpmodel outperforms the GARCH, EGARCH, HAR, and REGARCH
models in terms of both empirical return fit and out-of-sample volatility forecast.
Moreover, the superior forecast performance of the REGARCH-Jump model
is robust to alternative out-of-sample forecast windows. Finally, a Value at
Risk (VaR) analysis demonstrates the economic value of the improved volatility
forecasts from the REGARCH-Jump model. In summary, our findings highlight
the importance of accommodating the extreme-value information and jump
dynamics in forecasting the volatility of crude oil futures prices.
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1 Introduction

As an indispensable energy resource in a country’s development, the crude oil plays a
vital role in industrial production and transportation. In recent years, major events, such as
the outbreak of the COVID-19 pandemic at the beginning of 2020 and the Russia-Ukraine
conflict in 2022, have lead to significant impact on the crude oil futures markets, resulting
in large fluctuations in crude oil futures price. Notably, this would have adverse effects on
economic activities. As a consequence, accurately modeling and forecasting the volatility
of crude oil futures prices has become a crucial concern for market participants and policy
makers. In fact, crude oil futures volatility plays an important role in asset allocation,
risk management and derivative pricing. And there is now a large body of literature on
forecasting the volatility of crude oil futures prices (Zhang et al., 2019, 2023; Kazemzadeh
et al., 2022; Li et al., 2022; Zhang and Zhang, 2023a,b; Xu et al., 2024).

Given the importance of accurately forecasting the crude oil futures volatility, this
paper aims to develop a new volatility model, namely the realized EGARCH model
with jumps (hereafter REGARCH-Jump model), to model and forecast the crude oil
futures volatility. Our proposed model has the capacity to account for the extreme-value
information and the time-varying jumps in the crude oil futures prices. Moreover, the
model is able to capture the complex volatility characteristics, such as the time-varying
volatility and volatility asymmetry.
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This paper contributes to the literature on crude oil futures
volatility forecasting in several aspects. Firstly, we extend the
REGARCH model to incorporate the dynamic jumps, and propose
the REGARCH-Jump model to model and forecast the crude oil
futures volatility. Our proposed model can capture the extreme-
value information and the time-varying jumps in the crude oil
futures prices simultaneously, which has the potential to improve
the crude oil futures volatility forecasts.

Secondly, we apply the REGARCH-Jump model to the Brent
crude oil futures price data. Our empirical results provide evidence
of the presence of time-varying jumps in the crude oil futures
market. More importantly, we show that our proposed REGARCH-
Jump model outperforms the GARCH, EGARCH, HAR and
REGARCH models in terms of both empirical return fit and
out-of-sample volatility forecast. Moreover, the superior forecast
performance of the REGARCH-Jumpmodel is robust to alternative
out-of-sample forecast windows.

Finally, a Value at Risk (VaR) analysis is conducted to
demonstrate the economic value of the improved volatility
forecasts from the REGARCH-Jump model. We confirm that the
REGARCH-Jump model can produce reasonable VaR forecasts.

To facilitate quick reference for readers, Table 1 summarizes
the model names and their abbreviations used in this paper. The
remainder of the paper is organized as follows. Section 2 reviews
relevant literature on crude oil volatility forecasting. In Section
3, we describe the REGARCH-Jump model and the maximum
likelihood method for parameter estimation. In Section 4, we
introduce the methods used for out-of-sample evaluation. The
empirical results are presented in Section 5, and Section 6 concludes
the paper.

2 Literature review

Accurately forecasting the crude oil futures volatility is
important for market investors, risk managers and policy markers,
since it has an important influence on investors’ financial strategies
and policymakers’ decisions (Agnolucci, 2009;Wei et al., 2017;Wen
et al., 2019; Lyu et al., 2021a,b; Huang et al., 2023). It has been
well documented in the literature that financial Volatility exhibits
complex characteristics, such as volatility clustering, leverage
effects and mean-reverting properties, which poses great challenges
in volatility measuring and forecasting. Traditionally, volatility
estimator is derived from closing prices, and a variety of volatility
models have been proposed to describe its dynamics in the last three

TABLE 1 Table of abbreviations.

Abbreviations Meaning

GARCH Generalized AutoRegressive conditional
heteroskedasticity

EGARCH Exponential generalized AutoRegressive conditional
heteroskedasticity

HAR Heterogeneous autoregressive

REGARCH Realized exponential generalized autoregressive
conditional heteroskedasticity

decades. Since the seminal work by Engle (1982) and Bollerslev
(1986), who propose the generalized autoregressive conditional
heteroskedasticity (GARCH)-type models, numerous studies have
been devoted to investigating the crude oil volatility modeling and
forecasting by using GARCH-type models (see, e.g., Iglesias and
Rivera-Alonso, 2022; Hong et al., 2022; Wang et al., 2021; Lin
et al., 2020; Pan et al., 2017; Kang and Yoon, 2013). An alternative
to the GARCH volatility model is the stochastic volatility (SV)
models of Taylor (1986) and Heston (1993). Tsay (2005) presents
a review of the two strands of the literature. Lyu et al. (2021a,b)
analyse the time-varying effects of global economic uncertainty
shocks on the volatilities of Brent andWTI crude oil prices through
a time-varying parameter structural vector autoregressive model
with stochastic volatility. Essentially, both the GARCH and SV
models are return-based models, which are constructed based on
daily closing prices, neglecting all intraday price movement, which
reduces the predictive power of the models (Pu et al., 2016; Gong
and Lin, 2018).

With the increasing availability of intraday high-frequency
data, many authors have introduced the realized measures
to measure the financial volatility (Andersen et al., 2001;
Barndorff-Nielsen and Shephard, 2002, 2004; Kazemzadeh et al.,
2023a,b, 2022). Corsi (2009) develop the HAR model based on
realized volatility, which effectively captures the long-memory
characteristics of volatility. Thanks to its ease of extensibility, the
model has gained wide recognition and application. Wen et al.
(2016) analyze the impact of stock market uncertainty on the
volatility of the crude oil futures market by constructing an HAR
model. Furthermore, Zhang et al. (2023) compare the performance
of HAR models with different structural changes in forecasting
the volatility of the crude oil futures market. Notably, the realized
measure contains more information about the current level of
volatility, which can provide more accurate volatility estimates
(Andersen et al., 2001; Lyócsa et al., 2021). However, the realized
measure based on intraday high-frequency data is sensitive to
market microstructure noise, which leads to a biased volatility
estimate.

As an alternative, the price range computed from the intraday
high and low prices has been proposed to measure volatility.
The idea of using price range in finance can be found in
Mandelbrot (1971), who employs it to test the existence of long-
term dependence in asset prices. The price range incorporates
more (extreme-value) information on intra-period trajectory of the
prices than the return-based volatility measure that only includes
single measurement of the closing prices each period (Wu and
Hou, 2020). Numerous studies have shown that the intraday price
range is a more efficient measure of financial volatility relative to
the commonly used return-based measure, such as the absolute
(or squared) return or even the realized volatility from intraday
returns. In fact, by employing the extreme-value theory and some
well-known properties of range, Parkinson (1980) provide evidence
of the superiority of using range as a volatility estimator. Alizadeh
et al. (2002) show theoretically, numerically and empirically that
range-based volatility estimator is not only highly efficient, but also
approximately Gaussian and robust tomicrostructure noise. Brandt
and Jones (2006) find that the range-based EGARCH model has
better volatility forecast performance compared to the return-based
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EGARCH model. More recently, Degiannakis and Livada (2013)
show that the price range volatility estimator is more accurate than
the realized volatility estimator based on five, or less, equidistance
points in time.

To explore the intraday (extreme-value) information for
modeling volatility, motivated by the insights of the realized SV
model (Shirota et al., 2014; Asai and McAleer, 2022), Hansen
et al. (2012) develop a joint model of return and realized measure,

namely the realized GARCH (RGARCH) model. The RGARCH
model can capture the leverage effect of volatility, and is well
suited for situations where volatility changes rapidly to a new level.
Using the RGARCH model, Hansen et al. (2012) demonstrate that

the inclusion of the realized measures can improve the model’s
ability to forecast volatility. Further, Hansen and Huang (2016)
extend the RGARCH model to incorporate an additional leverage
function to capture leverage effect more flexibly. The resulting

model is referred to as the REGARCH model. Importantly, the
R(E)GARCHmodel has a simple structure, which can be estimated
and filtered easily. In addition, the model can automatically adjust

the bias in the realized measures caused by non-trading hours
and market microstructure noise. Subsequently, the R(E)GARCH
model has attracted a great deal of attention in the literature.
For example, Huang et al. (2017) and Tong and Huang (2021)
apply the R(E)GARCH model to option pricing, and find that
the R(E)GARCHmodel provide better option pricing performance

than the traditional GARCH models. Chen and Watanabe
(2019) and Chen et al. (2022) apply the R(E)GARCH model to
risk measurement.

Despite the empirical success of the R(E)GARCHmodel, it does

not take into account the presence of jumps in asset prices, which
have been well recognized in the literature (see, e.g., Arouri et al.,
2019; Pan et al., 2020; Qiao et al., 2020; Guo et al., 2023; Wu et al.,
2024; Zhang et al., 2024). The huge changes (i.e., jumps) in asset
prices usually cannot be explained by the current level of volatility.
In recent years, numerous studies have shown that the occurrence

of jumps is time-varying (see, e.g., Chernov et al., 2018; Zhou et al.,
2019; Dutta et al., 2021). Most of these studies capture the risk of
market crashes by assuming that the intensity of jumps is a function
of the variance of asset returns. Although this modeling approach
is intuitive and simple, it can not capture the jumps of asset
price adequately.

Table 2 summarizes the relevant studies in the literature, while
Table 3 provides an overview of the associated econometric models.
Motivated by the above insights, in this paper we use price range
as a proxy of realized measure, and propose the REGARCH-
Jump model to modeling and forecasting the crude oil futures
volatility. Notably, our proposed model can capture the extreme-
value information as well as the dynamic jumps through assuming
the jump intensity is governed by a autoregressive conditional
jump intensity process. It is worth pointing out that although
significant contributions have been made in the literature on
crude oil futures volatility forecasting, few studies have taken
into account both the extreme-value information and dynamic
jumps in the crude oil futures prices for predicting the crude oil
futures volatility.

TABLE 2 Relevant literature review.

Theme Year References

Crude oil futures volatility 2009 Agnolucci, 2009

2017 Wei et al., 2017

2019 Zhang et al., 2019

Wen et al., 2019

2021 Lyu et al., 2021a,b

2022 Li et al., 2022

2023 Huang et al., 2023

Zhang and Zhang, 2023a,b

2024 Xu et al., 2024

High-frequency information 1971 Mandelbrot, 1971

2001 Andersen et al., 2001

2002 Barndorff-Nielsen and Shephard, 2002

Alizadeh et al., 2002

2004 Barndorff-Nielsen and Shephard, 2004

2006 Brandt and Jones, 2006

2013 Degiannakis and Livada, 2013

2020 Wu and Hou, 2020

2021

Lyócsa et al., 2021

2022 Kazemzadeh et al., 2022

Jump dynamics information 2018 Chernov et al., 2018

2019 Zhou et al., 2019

2020 Pan et al., 2020

Qiao et al., 2020

2021 Dutta et al., 2021

2006 Guo et al., 2023

2024 Wu et al., 2024

2024 Zhang et al., 2024

3 The model

In this section, we first provide a brief review of the GARCH,
the EGARCH, the HAR and the REGARCH models. Then we
introduce the extension of the REGARCH model, namely the
REGARCH-Jump model, which simultaneously accommodates
the extreme-value information and time-varying jump intensity.
Finally, we describe the maximum likelihood method for
estimation of the parameters of the proposed model.

3.1 GARCH model

In financial econometric literature, the GARCH model
proposed by Bollerslev (1986) is a popular approach for measuring

Frontiers in Environmental Economics 03 frontiersin.org

https://doi.org/10.3389/frevc.2025.1511074
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Shu and Luo 10.3389/frevc.2025.1511074

TABLE 3 Relevant models review.

Theme Year References

GARCH-type models 1982 Engle, 1982

1986 Bollerslev, 1986

2013 Kang and Yoon, 2013

2017 Pan et al., 2017

2019 Zhang et al., 2019

Wen et al., 2019

2020 Lin et al., 2020

2021 Wang et al., 2021

Lyu et al., 2021a,b

2022 Hong et al., 2022

Iglesias and Rivera-Alonso, 2022

Li et al., 2022

2023 Huang et al., 2023

Zhang and Zhang, 2023a,b

2024 Xu et al., 2024

SV-type models 1986 Taylor, 1986

1993 Heston, 1993

2005 Tsay, 2005

2016 Pu et al., 2016

2017 Pan et al., 2017

2018 Gong and Lin, 2018

2021 Lyu et al., 2021a,b

Realized volatility models 2009 Corsi, 2009

2012 Hansen et al., 2012

2014 Shirota et al., 2014

2016 Hansen and Huang, 2016

Wen et al., 2016

2017 Huang et al., 2017

2019 Chen and Watanabe, 2019

2021 Tong and Huang, 2021

2022 Chen et al., 2022

Asai and McAleer, 2022

2023 Zhang et al., 2023

and forecasting financial volatility. The GARCH model can be
written as

rt = µ+ zt (1)

zt =
√
htǫt , ǫt ∼ i.i.d.N(0, 1) (2)

ht = ω + αz2t−1 + βht−1 (3)

where rt = log(Pt/Pt−1) is the log-return on day t, where Pt is the
closing price on day t; µ is the conditional mean of rt ; ht is the

conditional variance of rt ; zt is the return innovation, and ǫt is the
standardized return innovation.

3.2 EGARCH model

The EGARCH model was proposed by Nelson (1991), which
has the capacity to capture the leverage effect, which has been found
to be important for volatility forecasting. The EGARCH model is
given by

rt = µ+ zt (4)

zt =
√
htǫt , ǫt ∼ i.i.d.N(0, 1) (5)

log(ht) = ω + β log(ht−1)+ γ ǫt−1 + α(|ǫt−1| − E(|ǫt−1|)) (6)

where the coefficient γ captures the leverage effect when γ < 0.

3.3 HAR model

Based on the Heterogeneous Market Hypothesis, the HAR
model proposed by Corsi (2009) aims to capture the volatility
dynamics in financial markets, which can be written as

xt+1 = ct + βdxt + βwx
w
t + βmx

m
t + ωt+1 (7)

ωt = σdǫt ǫt ∼ i.i.d.N(0, 1) (8)

xwt =
xdt + xdt−1 + · · · + xdt−4

5
(9)

xmt =
xdt + xdt−1 + · · · + xdt−21

22
(10)

where xt is the realized measure of volatility on day t; xwt and xmt
represent the average realized volatility for the past weekly and
monthly periods, respectively. (corresponding to lags of 5 days,
and 22 days).

3.4 REGARCH model

Considering the fact that the RGARCH model cannot capture
the leverage effect (asymmetric response of volatility to positive and
negative shocks) adequately, Hansen and Huang (2016) extend the
RGARCH to the REGARCHmodel, which can be written as

rt = µ+ zt (11)

zt =
√
htǫt , ǫt ∼ i.i.d.N(0, 1) (12)

log(ht) = ω + β log(ht−1)+ d(ǫt−1)+ αut−1 (13)

log(xt) = ξ + ϕ log(ht)+ υ(ǫt)+ ut , ut ∼ i.i.d.N
(
0, σ 2

u

)
(14)

d (ǫt) = d1ǫt + d2
(
ǫ2t − 1

)
(15)

υ (ǫt) = υ1ǫt + υ2
(
ǫ2t − 1

)
(16)

where ut is the realized measure innovation, which is independent
of the return innovation ǫt ; d (ǫt) and υ (ǫt) are the leverage
functions, which are used to capture the leverage effect, satisfying
Et−1

[
d (ǫt)

]
= Et−1 [v (ǫt)] = 0. If d1 < 0, υ1 < 0, it means that

there exists leverage effect.
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In the REGARCH model, Equations 11, 13 and 14 are referred
to as the return equation, the variance (GARCH) equation and the
measurement equation, respectively. The measurement equation
relates the ex-post realized measure to the ex-ante conditional
variance, with bias-correction coefficients ξ and ϕ used to correct
the bias in the realized volatility measure caused by non-trading
hours and market microstructure noise. Consistent with Takahashi
et al. (2009), Koopman and Scharth (2012) and Wu et al. (2020),
we assume that ϕ = 1 to facilitate model estimation and to improve
out-of-sample performance.

3.5 REGARCH-jump model

The REGARCH model fall short in capturing the jumps
(huge changes) in the asset prices. In light of this, this paper
proposes the REGARCH-Jump model that extends the REGARCH
model of Hansen and Huang (2016) to incorporate the dynamic
jump intensity to model and forecast the volatility of crude oil
futuresmarkets. The specification of the REAGRCH-Jumpmodel is
as follows

rt = µ+ zt + yt (17)

zt =
√
hz,tǫt , ǫt ∼ i.i.d.N(0, 1) (18)

yt =

nt∑

j=0

Y
j
t , j = 0, 1, 2, . . . , nt (19)

log(hz,t) = ω + β log(hz,t−1)+ d(ǫt−1)+ αut−1 (20)

log(xt) = ξ + ϕ log(ht)+ υ(ǫt)+ ut , ut ∼ i.i.d.N(0, σ 2
u ) (21)

where zt and yt denote the normal component and the jump
component, respectively, which are assumed to be independent.
The normal component zt is assumed to be distributed as
N(0, hz,t), where hz,t is the conditional variance of the normal
component, which is governed by the REGARCH dynamic. The
jump component yt follows a compound Poisson process with
jump intensity hy,t and jump size Y

j
t , where Y

j
t is independently

drawn from a normal distribution with mean θ and variance δ2,
that is, Y

j
t ∼ i.i.d.N(θ , δ2). The mean and variance of the jump

component, yt , are given by θhy,t and
(
θ2 + δ2

)
hy,t , respectively.

nt is the number of jumps arriving between t − 1 and t, which
follows a Poisson counting process with intensity hy,t , that is, nt ∼
Poisson

(
hy,t
)
. The conditional probability of nt can be written as

Prt−1(nt = j) =
exp(−hy,t)h

j
y,t

j!
, j = 0, 1, 2, . . . (22)

Therefore, the conditional expectation of the number of jumps
arriving over the time interval (t − 1, t) equals the jump intensity,
that is, Et−1 [nt] = hy,t . To describe the dynamics of jump intensity
process hy,t , we followMaheu andMcCurdy (2004) and assume that
it follows the autoregressive conditional jump intensity model:

hy,t = ρ + κhy,t−1 + ψζt−1 (23)

where ρ > 0, κ > 0,ψ > 0; ζt−1 denotes the jump intensity
residual, which can be written as

ζt−1 = Et−1 (nt−1)− hy,t−1

=

∞∑

j=0

jPrt−1
(
nt−1 = j

)
− hy,t−1

(24)

It is clear that E(ζt−1) = 0. Thus, κ describes the persistence of the
jump intensity process. If hy,t is stationary, we have 0 < κ < 1.

Then the unconditional jump intensity is given by E(hy,t) =
ρ

1− κ
.

In the measurement Equation 21, ht denotes the total
unconditional variance of return, which can be written as

ht = hz,t +
(
θ2 + δ2

)
hy,t (25)

It has been well documented in the literature that the use
of intraday high and low prices leads to more accurate estimate
of volatility than daily returns (Molnár, 2011; Chou and Liu,
2010). Therefore, in the paper we utilize the intraday price range
calculated from the intraday high and low prices as a proxy for
the realized measure in the HAR, REGARCH specifications, and
their extensions. The intraday price range of Parkinson (1980) is
defined as

RNGt =
log (Ht)− log (Lt)√

4 log(2)
(26)

where Ht and Lt are the high and low prices observed at day t,
respectively. The intraday range given by Equation 26 is not only
a highly efficient volatility proxy, capturing information regarding
the entire intraday trajectory of the price, but also robust to
microstructure noise (Alizadeh et al., 2002; Brandt and Jones,
2006). In this paper, we set xt = RNG2

t the HAR, REGARCH
specifications, and their extensions.

3.6 Maximum likelihood estimation

The proposed REGARCH-Jump model is intuitive and easy
to implement. We can use the classical maximum likelihood
method to estimate the parameters of the model. To be specific,
the log-likelihood function of the REGARCH-Jump model can be
written as

ℓ(r, x;2) = ℓ(r;2)+ ℓ(x|r;2) (27)

ℓ(r;2) ∝
T∑

t=1

ln(ft−1(rt)) (28)

ℓ(x|r;2) ∝
T∑

t=1

ln(ft−1(xt|rt)) (29)

where 2 =
(
µ,ω,α,β , d1, d2, ξ ,ϕ, σu, υ1, υ2, ρ, κ ,ψ , θ , δ

)′
is

the vector of model parameters, ℓ(r;2) and ℓ(x|r;2) are the
partial log-likelihood functions for the returns and realized
measure, respectively. ft−1(rt) and ft−1(xt|rt) denote the conditional
probability density functions of rt and xt , respectively, which can be
written as

ft−1 (rt) =

∞∑

j=0

ft−1
(
rt | nt = j

)
Prt−1

(
nt = j

)
(30)
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ft−1 (xt | rt) =
1√
2πσ 2

u

exp

(
−

(
log (xt)− ξ − ϕ log

(
ht
)
− v (ǫt)

)2

2σ 2
u

)
(31)

where Prt−1
(
nt = j

)
is the conditional probability of the number

of jumps, which is given in Equation 22. It should be noted that the
summation in Equation 30 must be truncated when implementing
the maximum likelihood estimation. We truncate the summation
at 50 jumps per day. In fact, since the tail probability of Poisson
distribution at nt ≥ 50 is sufficiently small and negligible, summing
to nt = 50 can ensures the accuracy of the estimation process.
ft−1

(
rt | nt = j

)
in Equation 30 can be written as

ft−1
(
rt | nt = j

)
=

1√
2π
(
hz,t + jδ2

) exp
(
−

(
rt − µ− jθ

)2

2
(
hz,t + jδ2

)
)

(32)

In order to calculate the likelihoods (Equations 30–32), it is
necessary to determine the normal innovation zt and the number
of jumps nt , and further filter the conditional variance hz,t+1 and
the conditional jump intensity hy,t+1. This process can be easily
implemented by using analytic filtering. Applying Bayes’ rule, the
filtering density is given by

Prt
(
nt = j

)
≡ Prt−1

(
nt = j | rt

)

=
ft−1

(
rt | nt = j

)
Prt−1

(
nt = j

)

ft−1 (rt)

(33)

where the expressions on the right-hand side of the Equation 33
are given by Equations 22, 30 and 32. Prt

(
nt = j

)
represents the

ex-post inference on nt , or the probability that j jumps have arrived
between time t − 1 and t conditional on the information available
at time t. The filtered number of jumps is then given by

ñt = Et (nt) =

∞∑

j=0

jPrt
(
nt = j

)
(34)

The actual number of jumps, nt , can be larger than one but is
restricted to be less than fifty as mentioned above. According to
Christoffersen et al. (2012), the filtering of the normal innovation
zt can be written as

z̃t = Et (zt) =

∞∑

j=0

h̃z,t

h̃z,t + jδ2

(
rt − µ− jθ

)
Prt

(
nt = j

)
(35)

Once ñt and z̃t are known, we can infer the filtered h̃z,t+1 and h̃y,t+1

easily through Equations 20 and 23.
Finally, the parameters of the REGARCH-Jump model can be

estimated via maximum likelihood method by solving

2̂ = argmax
2
ℓ(r, x;2) (36)

4 Volatility forecast evaluation

4.1 Loss function

The loss function is commonly used to evaluate the forecasting
accuracy of the competing models. In the paper, we employ four

popular loss functions, including the mean absolute error (MAE),
mean absolute percentage error (MAPE), mean squared error
(MSE) and Quasi-likelihood (QLIKE). The four evaluation criteria
are defined as

MAE =
1

T

T∑

t=1

∣∣∣ht+1 − ĥt+1(m)
∣∣∣ (37)

MAPE =
1

T

T∑

t=1

∣∣∣ht+1 − ĥt+1(m)

ht+1

∣∣∣ (38)

MSE =
1

T

T∑

t=1

(
ht+1 − ĥt+1(m)

)2
(39)

QLIKE =
1

T

T∑

t=1

( ht+1

ĥt+1(m)
− log

( ht+1

ĥt+1(m)

)
− 1

)
(40)

whereT is the number of out-of-sample forecasts, ht+1 and ĥt+1(m)
denote the measured (true) volatility and forecasted volatility,
respectively, and m stands for the GARCH, EGARCH, HAR,
REGARCH or REGARCH-Jump models. It is worth noting that
MSE and QLIKE are robust loss functions, which could provide
a consistent ranking of the volatility models with a conditionally
unbiased volatility proxy (Patton, 2011).

Since the true volatility is unobservable, the evaluation and
comparison of volatility forecasting models requires the proxy of
true volatility. In the paper, we employ the scaled realized volatility
(RV) as a proxy of the true volatility. The scaled RV is defined as
RVscale

t = c × RVt , where RVt is computed based 5-min intraday
returns on day t and c =

∑T
t=1 r

2
t /
∑T

t=1 RVt . This adjustment is
used to account for the non-trading hours.

4.2 MCS test

For robustness, we adopt the model confidence set (MCS) test
proposed by Hansen et al. (2011) to examine whether the difference
in forecasting performance between the competing models is
statistically significant. The MCS method tests a given set of
competing models and identifies a set of optimal predictive models
or MCS with a certain level of confidence. Specifically, the MCS
test relies on an equivalence test δM and an elimination rule eM.
Let M0 be the initial set of all competing models. Set M = M

0,
and use the equivalence test δM to test the null hypothesis that the
competing models have the same expected loss (equal forecasting
performance), i.e.,

H0,M :E
[
duv,t

]
= 0, ∀u, v ∈ M (41)

where duv,t = Losst(u)− Losst(v) is the loss difference between the
models u and v. Hansen et al. (2011) propose the following statistics
to test the null hypothesis H0,M:

TM = max
u,v∈M

|tuv|, tuv =
d̄uv√

v̂ar(d̄uv)
(42)

where d̄uv is the average loss difference, and v̂ar(d̄uv) is the
bootstrapped estimate of the variance of d̄uv, i.e., var(d̄uv). For a
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TABLE 4 Descriptive statistics of Brent crude oil futures.

Mean Min Max SD Skew Kurt J-B Q(20)

rt 0.0001 –0.2798 0.1908 0.0233 –0.6860 16.0821 33,811.4909 53.8946

RNGt 0.0184 0.0016 0.2489 0.0127 4.8252 56.7418 582,597.2715 22,881.7334

SD, standard deviation; J–B, Jarque–Bera statistics; Q(20), Ljung-Box Q-statistic for autocorrelation up to 20 lags.

given significance level α, if the null hypothesis H0,M is accepted,
defineM∗

1−α = M. Otherwise, we use the elimination rule eM =

argmaxu∈M supv∈M tuv to exclude the model that has poor
forecasting performance. This process is repeated until no model
can be excluded. Finally, the set of surviving models M∗

1−α = M

is referred to as the MCS, i.e. the set of optimal predictive models at
a given confidence level of 1− α.

Since the asymptotic distribution of the test statistics TM is
non-standard, this paper uses a block bootstrap of 105 replications
for approximate calculation. In addition, we set the significance
level as α = 10%.

5 Empirical application

5.1 Data and descriptive statistics

For our empirical analysis, we use data on the daily open, high,
low and close prices for the Brent crude oil futures. We focus on
Brent crude oil futures market due to the fact that Brent crude
oil is currently considered to be the global oil pricing benchmark
(Dowling et al., 2016; Zavadska et al., 2020).We employ the squared
price range (RNG2

t ) as the realized volatility measure (i.e., xt). The
data is obtained from Wind Database of China, and the sample
period is from January 4, 2005 to February 28, 2023.

Table 4 presents the descriptive statistics of the daily returns
and price ranges of Brent crude oil futures. As can be seen
from the table, the return distribution for the Brent crude oil
futures is negatively skewed and leptokurtic, while the price range
distribution is positively skewed and leptokurtic. The Jarque-Bera
statistics indicate that both the return and price range distributions
are non-Gaussian. The Ljung-BoxQ-statistic for autocorrelation up
to 20 lags shows that the price range series is highly autocorrelated,
suggesting high persistence of Brent crude oil futures volatility.

Figure 1 presents the time series plots of the daily Brent
crude oil futures returns and price ranges. It can be seen from
the figure that the well-known behavior of volatility clustering
is apparent. In addition, the Brent crude oil futures experience
large fluctuations (jumps) during the periods of 2008–2009 global
financial crisis (GFC), 2020 COVID-19 pandemic and 2022
Russo-Ukrainian conflict.

5.2 In-sample parameter estimation

In this subsection, we estimate the five competitor models
(GARCH, EGARCH, HAR, REGARCH and REGARCH-Jump)
using the maximum likelihood method based on the in-sample
data covering the period from January 4, 2005 to December 31,

2020. Table 5 reports the maximum likelihood estimates for the five
models. As can be seen from the table, the daily coefficient of xt in
the HARmodel is significantly positive, while the weekly coefficient
is significantly negative. This indicates that daily information
positively affects crude oil futures volatility, whereas weekly
information has a negative impact. Additionally, the estimates
of volatility persistence in the GARCH, EGARCH, REGARCH
and REGARCH-Jump models are larger than 0.98, suggesting the
stylized fact of high volatility persistence. Regarding the leverage
parameters, γ , d1, d2, υ1 and υ2, they are all significantly different
from zero. In particular, γ , d1 and υ1 are all negative, suggesting the
presence of the leverage effect in the Brent crude oil futures market.

Moreover, the jump intensity parameters (ρ, κ , ψ) are all
positive and statistically significant, suggesting the presence of
time-varying jump intensity and that the REGARCH-jump model
is correctly specified. In particular, the parameter κ is estimated
to be 0.9578, which provides evidence of high persistence of the
conditional jump intensity process. The estimated mean jump
size θ in the REGARCH-Jump model is significantly negative,
while the estimated jump volatility δ is significantly positive. The
unconditional mean of dynamic jump intensity is E(hy,t) =

ρ
1−κ =

0.1493, implying that jumps arrive at a frequency of 37.6 jumps
per year. In addition, the contribution of return jumps to the

total return variance is
(θ2 + δ2)hy,t

(θ2 + δ2)hy,t + hz,t
= 12.73%, which

is close to the results reported in Christoffersen et al. (2012)
(12% ∼ 15%), Andersen et al. (2007) (14.6%) and Pan et al. (2020)
(11%), suggesting that our estimation results of jump intensity
is reasonable.

Finally, we can observe that the REGARCH-Jump model
improves the empirical return fit relative to all other models
(GARCH, EGARCH and REGARCH) in terms of the partial log-
likelihood for the returns ℓ(r) and the full log-likelihood ℓ(r, x).

Figure 2 presents the time series plots of the jump intensity and
the number of jumps. It is clear that the jumps have a time-varying
feature, and the number of jumps related to market uncertainty
events have increased during the periods of 2008–2009 global
financial crisis, 2015 global oil price decline and 2020 COVID-19
pandemic. Note also that, the number of jumps in most cases is less
than one jump per day.

5.3 Out-of-sample forecast results

In the in-sample analysis, we document that the jump
intensity and the number of jumps has time-varying characteristic.
Moreover, we show that incorporating the extreme-value
information and jump dynamics into the REGARCH model
could improve the model’s ability to fit the Brent crude oil futures
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FIGURE 1

Time series plots of the daily Brent crude oil futures returns and price ranges.

returns. In this subsection, we investigate the importance of
accounting for the extreme-value information and jump dynamics
for forecasting the crude oil futures volatility relying on our
proposed REGARCH-Jump model. Importantly, we compare
the out-of-sample forecasting performance of the REGARCH-
Jump model with that of the GARCH, EGARCH, HAR and
REGARCHmodels.

The out-of-sample forecast exercise is performed relying on a
rolling window scheme. The out-of-sample period is from January
4, 2021 to February 28, 2023. Figure 3 presents the out-of-sample
volatility forecasts for the competing models. Table 6 reports the
out-of-sample forecast evaluation results based on the four loss
functions. As can be seen from the table, the REGARCH model
offers smaller loss values (MAE, MAPE, MSE, QLIKE) than the
GARCH and EGARCHmodels. In particular, the REGARCH-Jump
model yields the smallest loss values in all cases. Our findings
indicate that incorporating the extreme-value information and
jump dynamics into volatility model is important for improving the
out-of-sample volatility forecasts.

Further, Table 7 presents the MCS test results for the out-
of-sample forecasts of competing models. It is clear that the
REGARCH-Jumpmodel is always included in theMCS, and always
has the highest MCS p-value (p = 1), confirming the superior
performance of the REGARCH-Jump model over all other models
in forecasting the crude oil futures volatility.

5.4 Robustness check

For robustness, we perform the out-of-sample forecast
exercise for different out-of-sample windows. To be specific,
we consider two alternative out-of-sample windows: 200
and 400. The out-of-sample forecast evaluation results
for the alternative out-of-sample windows are reported
in Table 8.

In line with the results reported in Tables 6, 7, the REGARCH-
Jump model that accounts for the extreme-value information
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TABLE 5 Parameter estimation results for the Brent crude oil futures.

GARCH EGARCH HAR REGARCH REGARCH-Jump

µ 0.0005 (0.0003) 0.0002 (0.0002) –0.0000 (0.0002)

c 0.0001 (0.0000) –0.0000 (0.0002)

ω 0.0000 (0.0000) 0.0001 (0.0010) –0.1154 (0.0012) –0.1034 (0.0012)

α 0.0866 (0.0039) 0.1290 (0.0034) 0.1311 (0.0021) 0.1286 (0.0030)

β 0.9053 (0.0046) 0.9994 (0.0002) 0.9855 (0.0002) 0.9863 (0.0002)

βd 0.9053 (0.0046) 0.9994 (0.0002) 0.3898 (0.0031) 0.9855 (0.0002) 0.9863 (0.0002)

βw 0.9053 (0.0046) 0.9994 (0.0002) –0.0205 (0.0103) 0.9855 (0.0002) 0.9863 (0.0002)

βm 0.9053 (0.0046) 0.9994 (0.0002) –0.4674 (0.0132) 0.9855 (0.0002) 0.9863 (0.0002)

γ –0.0670 (0.0025)

d1 –0.0847 (0.0022) –0.0732 (0.0025)

d2 0.0423 (0.0012) 0.0455 (0.0023)

ξ -0.4010 (0.1240) –0.3737 (0.0031)

σu 0.6103 (0.0060) 0.5600 (0.0049)

σd 0.0013 (0.0000)

υ1 –0.0272 (0.0058) –0.0704 (0.0055)

υ2 0.2191 (0.0024) 0.4149 (0.0047)

ρ 0.0063 (0.0005)

κ 0.9578 (0.0034)

ψ 0.7475 (0.0062)

θ –0.0040 (0.0006)

δ 0.0217 (0.0006)

ℓ(r) 10,464.1643 10,487.7063 21,492.5989 10,552.1596 10,602.4880

ℓ(r, x) 6,737.8636 7,141.7314

The number in parenthesis is the standard error; ℓ(r) denotes the partial log-likelihood for the returns, ℓ(r, x) denotes the full log-likelihood.

and jump dynamics yields the most accurate volatility forecasts,
dominating all other models. This result confirms that the superior
performance of the REGARCH-Jump model in forecasting the
crude oil futures volatility is robust to alternative out-of-sample
forecast windows.

5.5 Economic value analysis

To illustrate the economic value of the improved volatility
forecasts from the REGARCH-Jump model, we perform a
VaR analysis in this subsection. Accurate measurement of
financial market risk is of great significance to the investors,
policy makers and regulators who are trying to manage the
risk of portfolio as well as to maintain the functioning
and the stability of financial markets. The standard tool for
measuring market risk is VaR, which is intuitive, simple
and easy to compute. It is used by financial institutions
and financial regulators worldwide for market risk mointoring
and management.

5.5.1 VaR forecast
The one-day-ahead forecast of VaR for a given probability

(significance level) α satisfies:

Prt−1(rt < VaRt(α)) = α (43)

According to the definition of VaR in Equation 39, the VaR
under the REGARCH-Jump model can be formulated as

VaRt(α) = µ+ ǫ̃α

√
hz,t + (θ2 + δ2)hy,t (44)

where ǫ̃α can be written as follows (Chiu et al., 2006):

ǫ̃α = ǫα +
1

6
(ǫα − 1)× Sk(rt) (45)

Sk(rt) =
hy,t(θ3 + 3θδ2)

(
hz,t + hy,tθ2 + hy,tδ2

)3/2 (46)

where ǫα is the left quantile at level α for standard normal
distribution, and Sk(rt) is the conditional skewness of returns.
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FIGURE 2

Time series plots of the jump intensify hy,t and the number of jumps nt for the Brent crude oil futures.

5.5.2 Backtesting
To examine the accuracy of VaR forecast, we perform the

backtesting relying on the failure rate test, the likelihood ratio test
of unconsitional coverage (Kupiec, 1995) and the likelihood ratio
test of consitional coverage (Christoffersen, 1998).

The likelihood ratio test statistic of unconsitional coverage can
be written as

LRuc = −2 ln
[
αT1 (1− α)T1−T0FR−T0 (1− FR)T1−T0

]
∼ χ2(1) (47)

where FR is failure rate, that is, FR = T0/T1, T0 is the number
of times the VaR is violated, T1 is the total number of VaR forecasts.

The likelihood ratio test statistic of unconsitional coverage
(LRuc) can not examine the independence of VaR exceptions. In
light of this, Christoffersen (1998) propose the conditional coverage
test that can examine the independence of VaR exceptions, which
can be written as

LRcc = LRuc + LRind ∼ χ2(2) (48)

where

LRind = −2 ln

[
(1− FR2)T00+T10FR

T00+T11
2

(1− FR01)T00FR
T10
01 FRT1111

]
∼ χ2(1) (49)

and Tij is the number of observations with value i followed

by j, FR01 =
T01

T00 + T01
, FR11 =

T11

T10 + T11
, FR2 =

T01 + T11

T00 + T01 + T10 + T11
. It is clear that the conditional coverage test

LRcc builds on the LRuc and LRind tests.
Figure 4 presents the VaR forecasts for the competing models.

Table 9 reports the results of VaR backtesting including the failure
rates (FR) test, the likelihood ratio test of unconsitional coverage
(LRuc) and the likelihood ratio test of consitional coverage (LRcc)
for the five competing models. As can be seen from Table 9,
all models have passed the likelihood ratio test at the 10%
and 5% significance levels, indicating that they all perform well
in measuring the crude oil futures market risk in the cases.
Importantly, it is interesting to note that the FR of the VaR forecasts
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FIGURE 3

Out-of-sample volatility forecasts.

for the REGARCH-Jump model are closer to the corresponding
theoretical values (α) under the 95% and 90% confidence levels
than the other models.

Regarding the confidence level of 99%, the FR of VaR
forecasts of the EGARCH model significantly deviates from the

theoretical value (α = 0.01), and all of the models can not
forecast VaR accurately in terms of the unconditionally covered
likelihood ratio test. However, in terms of the conditionally covered
likelihood ratio test, all the models except for the EGARCH model
performs well.
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TABLE 6 Out-of-sample forecast evaluation results.

GARCH EGARCH HAR REGARCH REGARCH-Jump

MAE 3.9727e-04 4.5305e-04 3.7919e-04 3.9187e-04 3.7141e-04

MAPE 1.3601e+00 1.5519e+00 1.5427e+00 1.4622e+00 1.3364e+00

MSE 9.2982e-07 1.0537e-06 8.9767e-07 9.0246e-07 8.6799e-07

QLIKE 4.0616e-01 5.3022e-01 3.5707e-01 3.4907e-01 3.4152e-01

The bold numbers in the table indicate that the model yields the lowest loss value (in each row).

TABLE 7 MCS test results.

GARCH EGARCH HAR REGARCH REGARCH-Jump

MAE 0.0114 0.0000 0.4581 0.0159 1.0000

MAPE 0.8253 0.0008 0.3805 0.0181 1.0000

MSE 0.0231 0.0231 0.4992 0.0231 1.0000

QLIKE 0.0013 0.0013 0.3546 0.3546 1.0000

Shaded entries indicate the model is included in the MCS at a significance level of 10%. The numbers in the table are the p-values of the MCS test. The bolded numbers represent the model with

the best predictive ability relative to the other competing models.

TABLE 8 Out-of-sample forecast evaluation results for alternative out-of-sample windows.

GARCH EGARCH HAR REGARCH REGARCH-Jump

Out-of-sample window: 200

MAE 3.3741e-04 4.2706e-04 3.7267e-04 3.3204e-04 3.2531e-04

MAPE 1.4942e+00 2.2955e+00 2.0547e+00 2.0871e+00 1.7982e+00

MSE 3.2299e-07 3.6970e-07 3.1801e-07 3.2705e-07 2.9816e-07

QLIKE 2.9271e-01 3.0689e-01 2.9223e-01 2.7860e-01 2.6224e-01

Out-of-sample window: 400

MAE 3.9398e-04 4.4089e-04 4.3243e-04 3.8255e-04 3.5174e-04

MAPE 1.4095e+00 1.6105e+00 1.6713e+00 1.4633e+00 1.3110e+00

MSE 8.1292e-07 9.0956e-07 1.1947e-06 7.7427e-07 7.1005e-07

QLIKE 4.1551e-01 5.1729e-01 3.4917e-01 3.5386e-01 3.4150e-01

The bold numbers of the table indicate that the model yields the lowest loss value (in each row). Shaded entries indicate the model is included in the MCS at a significance level of 10%.

Finally, we can observe that, based on the 95% and 90%
confidence levels, the VaR forecasts obtained by the GARCH,
EGARCH, HAR and REGARCH models are more conservative
than that obtained by the REGARCH-Jump model, which may
underestimate the risk. In summary, our results provide support
for combining the extreme-value information and dynamic jumps
for improving the accuracy of VaR forecasts. Note also that there
is still room to improve the accuracy of VaR forecasts in extreme
risk scenarios.

6 Conclusion

In this paper, we propose the REGARCH-Jump model, which
incorporates the extreme-value information and jump dynamics,
to model and forecast the crude oil futures volatility. An empirical
analysis based on the daily Brent crude oil futures prices

data shows the presence of time-varying jump intensity with
high persistence. In addition, we observe that the REGARCH-
Jump model outperforms the GARCH, EGARCH, HAR and
REGARCH models in terms of both empirical return fit and
out-of-sample volatility forecast. Moreover, we confirm that the
superior forecasting performance of the REGARCH-Jump model
is robust to alternative out-of-sample forecast windows. Finally,
a VaR analysis is conducted to demonstrate the economic value
of the improved volatility forecasts from the REGARCH-Jump
model. We confirm that the REGARCH-Jump model can produce
reasonable VaR forecasts. In summary, our findings highlight the
importance of accommodating the extreme-value information as
well as the jump dynamics in forecasting the volatility of the crude
oil futures market.

Our work offers theoretical and methodological insights
into modeling and forecasting the crude oil futures volatility,
with great significance related to both academic researchers and
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FIGURE 4

VaR forecasts.
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TABLE 9 Backtesting analysis of VaR forecasts.

1-α Model FR LRuc Puc LRcc Pcc

Panel A: Subsample, 2005–2020

99% GARCH 0.0218 8.6546∗∗ 0.0033 9.3538∗∗ 0.0093

EGARCH 0.0206 7.1331∗∗ 0.0076 7.9852∗∗ 0.0185

HAR 0.0290 19.9843∗∗ 0.0000 20.1080∗∗ 0.0000

REGARCH 0.0218 8.6546∗∗ 0.0033 9.3538∗∗ 0.0093

REGARCH-Jump 0.0180 2.6126∗ 0.1060 2.6126 0.2708

95% GARCH 0.0556 0.5319 0.4658 0.6121 0.7364

EGARCH 0.0520 0.0684 0.7936 0.0977 0.9523

HAR 0.0580 1.0728 0.3003 1.3491 0.5094

REGARCH 0.0508 0.0107 0.9176 0.0204 0.9898

REGARCH-Jump 0.0510 0.0141 0.9054 2.0618 0.3567

90% GARCH 0.0979 0.0391 0.8433 0.6668 0.7165

EGARCH 0.0955 0.1864 0.6659 0.6022 0.7400

HAR 0.1088 0.6980 0.4034 2.7933 0.2474

REGARCH 0.0967 0.0989 0.7531 1.4328 0.4885

REGARCH-Jump 0.1014 0.0154 0.9011 0.4816 0.7860

Panel B: Subsample, 2005–2021

99% GARCH 0.0176 2.7214∗ 0.0990 2.7214 0.2565

EGARCH 0.0212 5.4049∗∗ 0.0201 5.4049∗ 0.0670

HAR 0.0247 8.7725∗∗ 0.0031 8.7725∗∗ 0.0124

REGARCH 0.0176 2.7214∗ 0.0990 2.7214 0.2565

REGARCH-Jump 0.0194 3.9703∗∗ 0.0463 3.9703 0.1374

95% GARCH 0.0547 0.2534 0.6147 0.3106 0.8561

EGARCH 0.0529 0.0993 0.7527 0.3769 0.8282

HAR 0.0529 0.0993 0.7527 0.3769 0.8282

REGARCH 0.0459 0.2107 0.6463 0.2473 0.8837

REGARCH-Jump 0.0511 0.0156 0.9007 0.2128 0.8990

90% GARCH 0.0899 0.6567 0.4177 2.8193 0.2442

EGARCH 0.0864 1.2121 0.2709 1.6892 0.4297

HAR 0.1058 0.2098 0.6469 2.8593 0.2394

REGARCH 0.0864 1.2121 0.2709 2.9202 0.2322

REGARCH-Jump 0.0988 0.0096 0.9218 1.6757 0.4326

1-α is the confidence level, FR is the failure rate, and LRuc and LRcc denote the unconditionally covered likelihood ratio test statistic and the conditionally covered likelihood ratio statistic,

respectively. ∗ and ∗∗ indicate significant at the 10% and 5% levels of significance, respectively, indicating that the model is rejected.

practitioners. Further extensions and applications of the proposed
model are encouraged. For example, incorporating intraday high-
frequency data into the realized volatility measure presents a
promising area for future research. In addition, future studies
could involve applying the model to derivative pricing and
asset allocation.
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