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Introduction: China’s environmental policies and the green transformation of
its industries have attained paramount significance in the wake of intensifying
climate change and soaring carbon emissions, critically shaping sustainable
development at both national and international scales. As the exploration of the
drivers and outcomes of this green revolution on carbon emissions gains traction
as a focal point of research, this study endeavors to assess the e�ects and their
underlying causes.

Methods: Utilizing a systems thinking methodology, a dynamic spatial Durbin
model was constructed, analyzing statistical data spanning from 2004 to 2021,
encompassing 30 Chinese provinces.

Results: China’s green transformation significantly influences the spatial
distribution patterns of carbon emissions across various regions.

Discussion: Environmental Protection investment has been e�ective in curbing
carbon emissions from local businesses, yet it may also prompt a relocation of
these businesses to neighboring provinces, inadvertently elevating their carbon
emissions. Green innovation and the adoption of green energy technologies
have proven instrumental in reducing carbon emissions in a region, with positive
spillover e�ects extending to nearby areas. The dynamic spatial Durbin model
analysis further underscores the inertia of carbon emissions, indicating that
achieving carbon reduction is a process requiring consistent and sustained
e�orts over the long term. The findings of this study o�er valuable insights
and recommendations for the government in devising and implementing green
transformation policies that align with the dual-carbon target, aiming to achieve
a greener and more sustainable future.

KEYWORDS

carbon emissions, green transformation, systems thinking, dynamic spatial, Durbin

model

1 Introduction

We confront a diverse array of intricate global challenges, including a staggering

25% loss in biodiversity, a 30% retreat in glacier coverage, and a surge in extreme

weather events by 50% over the past decade. These phenomena form an intricate web

of interconnectedness, extending beyond purely environmental concerns to encompass

critical domains such as the economy, society, and population dynamics. As we progress

into the future, we must navigate a dynamic and unpredictable environment, eschewing

reliance on conventional linear models for forecasting trends (Shi and Yang, 2022).

Global anxiety over the relentless rise in carbon emissions is widespread, particularly

within the energy and industrial sectors. Our dependence on fossil fuels and unsustainable,
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imbalanced energy consumption has led to a significant increase

in the average global temperature by ∼1.1◦ Cover the past

century (IPCC, 2023). According to the Sixth Comprehensive

Assessment Report issued by the International Panel on Climate

Change (IPCC), global sea levels have risen by ∼20 cm, and this

upward trend is accelerating at an alarming rate. The list of

major socioeconomic issues triggered by climate change is lengthy,

encompassing fluctuations in agricultural output, skewed resource

allocation, and the burgeoning concern of environmental refugees,

affecting millions of lives worldwide.

The surge in global carbon emissions is primarily fueled by

the relentless march of industrialization and the relentless urban

sprawl, despite a few developed nations witnessing a modest retreat

in their carbon footprints. The complex and carbon-intensive

nature of the current global energy consumption pattern has

positioned carbon emissions as a formidable obstacle to the path

of sustainable development. According to the Carbon Emissions

Report 2023 by the International Energy Agency (IEA, 2024),

China’s carbon emissions have seen a significant rise, increasing by

a staggering 565 million tons, with energy combustion emissions

alone surging by 5.2%. This highlights the urgency of the situation

and the need for immediate action. China, recognized as the world’s

largest developing nation (UN, 2020), has set ambitious goals to

combat climate change. It aims to achieve carbon neutrality by

2060 and has set a milestone to peak carbon emissions by 2030.

To reach this target, China has formulated a comprehensive action

plan for 2030 carbon peaking. This plan envisions a substantial

reduction in carbon emissions per unit of GDP by more than 65%

from 2005 levels, and an increase in the share of non-fossil energy

use by 5% from the 2025 levels. By 2060, China is determined to

not only achieve carbon neutrality but also to ensure that the share

of non-fossil energy use exceeds the significant threshold of 80%

(SCPRC, 2021). This comprehensive program encompasses the

energy, industry, transport, and other sectors, showcasing China’s

commitment and responsibility as a major global player.

The objective of this scholarly work is to delve into the

intricate nexus between China’s green transformation and its

carbon emissions, meticulously examining the policy, innovation,

and energy mechanisms that underpin this critical relationship.

The paper meticulously assesses the efficacy of these three pivotal

components in propelling the reduction of carbon emissions,

providing empirical evidence that underscores the potential of

green transformation to catalyze regional decarbonization efforts.

Drawing upon a wealth of data, the paper presents a robust

spatial econometric model that incorporates first-order lagged

variables, thereby accounting for the temporal dynamics inherent

in the data. This sophisticated model is designed to capture

the complex interplay between carbon emissions and green

transformation across various provinces, shedding light on the

spatial dependencies and spillover effects that characterize this

relationship. By analyzing the dynamic spatial effects of carbon

emissions and the spatial correlation with green transformation,

the model reveals the extent to which regional initiatives can

influence broader carbon reduction strategies. The paper not

only offers a nuanced understanding of the mechanisms at

play but also provides actionable insights for policymakers and

stakeholders aiming to harness green transformation as a lever for

sustainable development.

The paper is structured as follows: a comprehensive

assessment of the pertinent literature is given in Section 2.

The study’s primary variables and the sources of the data are

outlined in Section 3. The results of the empirical analyses are

summarized in Section 4. Extensive analyses and discussions of

the aforementioned empirical data are presented in Section 5.

Section 6 concludes by summarizing the key findings and offering

policy recommendations.

2 Literature review

2.1 Drivers of green transformation

A key factor in lowering carbon emissions and advancing

sustainable economic growth is industrial green transformation.

Incorporating environmentally friendly and sustainable practices

into the industrial production process, green transformation

exemplifies a paradigm of resource-efficient and eco-friendly

development (Lü et al., 2015). This concept emerges from an

in-depth analysis of conventional industrialization, striving

to reconcile the inherent tensions between environmental

conservation and the imperatives of industrial growth. A multitude

of scholars have conducted extensive research on the impacts of

environmental regulation, technological innovation, and energy

structure on green transformation. Zhao et al. (2021) employed

SYS-GMM and DIF-GMM to explore the driving factors of

green transformation, and they found that first-order lag has a

favorable impact, environmental regulation has an adverse effect,

technological innovation will enhance the efficiency of green

transformation, and economic development will only exert a

positive influence once it attains a specific level. Hou et al. (2018)

probed into the dynamic effect of different levels of environmental

regulation on carbon intensity and determined a threshold. The

influence of industrial green transformation on carbon intensity

is constrained by environmental regulatory thresholds. Weak

regulations promote carbon reduction, while strong regulation

might lead to failure. Based on this, Zhai and An (2020) verified

that technological innovation has a remarkable positive effect

on the performance of manufacturing green transformation,

and environmental regulation can positively influence green

transformation through technological innovation.

The effect of policy change on carbon emissions is a

negative externality, meaning that emitters bear the costs of their

detrimental effects without receiving compensation (Grau, 2011).

Emissions can be made to pay for production costs by emitters

through carbon trading, environmental taxes, and other means.

The foundation of green transformation is green innovation, as

it produces novel and inventive outcomes that can be applied

and shared across various areas (Yan et al., 2021). Fossil fuels

and other non-renewable resources are crucial to the economic

prosperity of developing nations, but their availability in the natural

world is restricted. The green growth hypothesis states that to

break free from the resource curse, technological advancements

in green technology should be paired with regulatory measures

and modifications to the energy structure to steer the economy

toward low-carbon, clean energy, and environmentally sustainable

development (Qiu et al., 2021).
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Research on the drivers of green transformation was

comparatively late to begin, with early studies neglecting potential

non-linear correlations and interactions between components in

favor of concentrating on the effects of a single element. Xie et al.

(2022) emphasized that while technological advancements in the

green field can lower emissions of pollutants, this benefit could

be negated if the proportion of heavily polluting businesses in

the industrial structure increases. Moreover, a few studies have

suggested that excessively strict environmental regulations may

have unfavorable effects (Leeuwen and Mohnen, 2013). Businesses

might, for example, move to less regulated areas, which would

hinder the flow of new practices from adjacent regions (Zheng

and Shi, 2017). Porter’s innovation compensation hypothesis

suggests that businesses may be encouraged to innovate with

mild environmental legislation (Porter and van der Linde, 1995).

These creative actions not only maximize resource allocation

but also greatly increase production efficiency, which lowers an

organization’s operational expenses. The energy substitution theory

(Wang and Jiang, 2019) suggests that replacing conventional high-

carbon energy sources with newly developed green technologies

can change the pattern of energy use and lower carbon emissions.

To sum up, green transformation is believed to be primarily driven

by environmental regulation, green innovation, and green energy

(Busch et al., 2018; Li et al., 2019).

2.2. Spatial econometric analysis of carbon
emissions

Years have been spent by researchers examining the causes of

carbon emissions. Researchers have carefully examined how one

variable affects carbon emissions, and the methods used to lower

emissions (Mi et al., 2016; Zhang et al., 2017; Spaiser et al., 2018;

Li Z. et al., 2021). The effects of technical innovation (Liu et al.,

2023), collaborative agglomeration (Chen et al., 2023), and regional

economic competition (Pan and Guo, 2024) on carbon emissions

have also received a great deal of attention from academics.

Researchers’ interest in the spatial distribution effect of carbon

emissions has increased recently due to the growth of spatial

econometrics. The intricate relationship between economic growth,

industrial upgrading, and carbon dioxide emissions has been shown

through a thorough study of China’s energy resources and industrial

structure, underscoring the difficulty of managing carbon dioxide

emissions (Wu et al., 2021; Cao et al., 2023). Moreover, notable

regional variations were seen when the carbon emissions patterns

of Chinese provinces were compared (Du et al., 2017). Zhang

et al. (2022) used dynamic spatial models, the relationship between

low-carbon innovation, economic growth, and carbon dioxide

emissions is examined. This demonstrates how important it is to

use a dynamic methodology in order to understand how carbon

emissions are evolving. Although conventional static spatial models

have been the mainstay of research on carbon emissions, it has

been demonstrated that they are unable to adequately represent the

complexity of modern carbon emissions and are difficult to modify

to account for changes over time, between sectors, and across

regions. It is imperative that static models give way to dynamic

models to more correctly address the challenge of carbon emissions

(Liu and Dong, 2023).

2.3. Interdisciplinarity and systems thinking

Beginning in the early 1900s, the field of systems thinking

emerged from the general systems theory put forth by biologist

Bertalanffy. This formalized logical-mathematical theory

offered common concepts and models for a variety of fields

(Bertalanffy, 1950). The study of carbon emissions involves several

interacting topics in a continually changing context, just like

most sustainability concerns. Since multiple system components

can learn from one another over time to develop new patterns,

these changes do not fit into linear or simple patterns (Rosely

and Voulvoulis, 2024). One of the main advantages of systems

thinking’s interdisciplinary approach is its capacity to challenge

conventional wisdom in fields like sustainable development,

information systems, and socioeconomics. A unifying framework

is necessary to incorporate many organizational, human, and

cultural variables in problem resolution and decision-making

(Mingers and White, 2010).

With a particular emphasis on an integrated interdisciplinary,

cross-sectoral, and multi-factor viewpoint, scholars are seeking to

study the mechanisms impacting CO2 emissions within the same

framework (Zhang W. et al., 2024). Yin et al. (2022) constructed

a multi-level system structure model and adopted the partial

least squares approach to formulate a structural equation for

analyzing the heterogeneity of green transformation efficiency

in diverse resource-based cities. Zhou et al. (2022) advocated

integrating carbon peak factors into the technical framework of

industrial green transformation, and they devised the CEP-IGT

model to demonstrate the influence of seven selected indicators

on industrial carbon emissions. Their research indicates that

reducing carbon emissions and attaining green transformation

necessitate a reform of the energy structure. Mao et al. (2019)

formulated a three-stage case learning theoretical framework for

learning, verification, and promotion, examined historical cases

of industrial green transformation in several regions of China,

and identified the driving mechanism at the regional level. The

results reveal that there are differences and distinct regional

effects in the primary driving elements of structural and efficiency

transformation. According to Wu et al. (2021), energy endowment,

industrial structure upgrading, and carbon emissions must all

be included in a single framework for thorough analysis when

using spatial modeling to look at the elements impacting carbon

emissions. In a composite system that was developed by various

stakeholders, including governments, enterprises, and individuals,

there is a relationship between green transformation and carbon

emissions. Every stakeholder has a unique role and way of acting

(Wei et al., 2022). Systems thinking considers carbon emissions as

a complex system made up of many subsystems to understand the

numerous components contributing to the problem and how they

change over time (Cheng et al., 2023). Therefore, it is crucial to use

the systems thinking approach while studying green transformation

and carbon emissions.

Although most existing literature has focused on the impact

of green transformation on carbon emissions, scant attention has

been paid to the underlying mechanisms of this process. This

paper posits that there is a pressing need for further research in

three critical areas. Firstly, the current research landscape, which

predominantly examines a single element of green transformation,
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contradicts the principles of social functioning. Reducing carbon

emissions is a complex, systematic endeavor that necessitates

the engagement of the entire community. An overemphasis on

one aspect could lead to a myopic view, obscuring the broader

dynamics of play. Secondly, the influence of green transformation

on carbon emissions is intricate and multidimensional. The drivers

of green transformation have not been thoroughly examined in

literature, with academics often focusing on isolated factors. There

is a significant gap in research concerning the spatial impacts

and interactions among the various components within a systems

thinking framework. Lastly, given that carbon emissions are the

result of long-term processes, literature has yet to construct a

dynamic spatial model to study these emissions.

3 Materials and methodology

3.1. Research framework

This paper introduces a systems thinking framework that

encompasses three main drivers: policy regulation, green

innovation, and green energy. By employing systems thinking

methodologies, this study quantitatively evaluates the dynamic

spatial interactions between carbon emissions and green

transformation. Figure 1 vividly captures the dual impact of

policy, innovation, and energy drivers on green transformation

across both spatial and temporal dimensions. It demonstrates

how these drivers can synergistically influence the trajectory of

carbon emissions.

Green transformation is a system involving the synergy

of multiple factors, covering the interactions of multiple

elements such as economy, society, resources, and environment.

Environmental regulations provide a policy framework and

restraint mechanism for green transformation. By making

and following strict rules for protecting the environment, the

government can push businesses to cut down on pollution, make

better use of resources, and encourage the improvement and

optimization of the industrial structure. Environmental regulations

in China have transitioned from a competitive approach to a

more strategic approach. This optimized form of environmental

regulations has significantly facilitated the green transformation of

the economy (Sarkis, 2003). Green innovation is the core driving

force of green transformation. It includes technological innovation,

management innovation, and model innovation, aiming to reduce

the negative impact on the environment through new technologies,

new products, and new services. In the construction field, the

installation of solar energy and the use of biodegradable materials

not only help reduce the environmental costs of enterprises but

also enhance their market competitiveness and economic benefits

(Aravindh et al., 2022). Green energy is the fundamental support

for green transformation. The development of renewable energy

and energy storage technologies effectively reduces reliance on

fossil fuels and lowers carbon emissions. For example, the creative

use of “renewable energy + energy storage” helps the green and

low-carbon transition by making the best use of space for energy

storage and raising the output of renewable energy power plants

(Wang et al., 2019).

Carbon abatement requires a thorough green transformation

revolution (Wilberforce et al., 2021). We should construct

a composite and systematic strategy, starting from policies,

innovation, and energy, to achieve the coordinated development

of the economy and the environment. Formulate strict emission

standards and environmental protection regulations, force

enterprises to reduce pollutant emissions, and prompt enterprises

to improve production processes and technologies and reduce

energy consumption, thereby reducing carbon emissions (Liu et al.,

2015). Innovate production processes and management models,

reduce energy waste and waste emissions in the production process,

and reduce carbon emissions per unit of product. Develop more

efficient clean energy technologies, such as new solar panels and

energy storage technologies, improve energy utilization efficiency,

and reduce reliance on traditional high-carbon energy (Kirichenko

and Kustov, 2024). Increasing the proportion of green energy,

such as solar energy, wind energy, and hydropower, in the energy

supply, directly reduces the demand for high-carbon energy,

such as coal and oil, thereby reducing the total amount of carbon

emissions. The large-scale application of green energy can make

the energy structure more diversified and stable and reduce the risk

of excessive reliance on high-carbon energy due to fluctuations in

energy supply (Liang and Pan, 2023).

From the perspective of spatial influence, there is a spatial

spillover effect of environmental regulations (Zhang and Xu,

2023). When region A implements strict access restrictions

and emission standards for highly polluting enterprises, it may

cause these enterprises to migrate to the neighboring region B

where environmental regulations are relatively lenient, or prompt

surrounding areas to strengthen environmental regulations in

advance to avoid the transfer of polluting industries. The spatial

diffusion and knowledge sharing of green innovation accelerate

(Tan et al., 2024). If city A achieves a breakthrough in green

building technology, its experience and technology may be learned

and applied by surrounding cities, thereby promoting emission

reduction on a larger scale. The spatial distribution and synergy

of green energy are prominent (Zhang X. et al., 2024). Region

A, which is rich in wind energy, and region B, which is rich

in solar energy, can be interconnected through the power grid

to achieve complementary and collaborative supply of green

energy, improving energy utilization efficiency and emission

reduction effects.

From a dynamic perspective, in the early stage of economic

development, industries with high energy consumption and high

emissions usually dominate, and carbon emissions often increase

along with economic growth. However, over time, as the economic

structure gradually transforms toward the service industry and

high-tech industries, energy demand and carbon emission intensity

will decrease, showing a trend of rising first and then falling,

as depicted by the Environmental Kuznets Curve (Grecu and

Rotthoff, 2015). In the early stage of development, environmental

policies may be relatively lenient. However, with the deepening

understanding of climate change and increasing international

pressure, policies have become increasingly strict (Duan et al.,

2024). For example, gradually higher carbon emission taxes, stricter

emission standards, etc., will all prompt enterprises and society

to reduce carbon emissions. In the long term, the proportion

of traditional fossil fuels in energy consumption may gradually
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FIGURE 1

Systems thinking framework.

decrease, while the proportion of renewable energy, such as solar

energy, wind energy, and hydropower, will continue to rise (Zhou

et al., 2009). This transformation of the energy structure takes time

to achieve, but it will eventually have a significant inhibitory effect

on carbon emissions (Guo et al., 2019). With the passage of time,

the improvement of energy production and utilization technologies

has increased energy efficiency, and carbon emissions per unit of

output have gradually decreased. The research and development

and application of new low-carbon technologies and clean energy

technologies, such as more efficient solar panels and advanced

energy storage technologies, can directly reduce reliance on high-

carbon energy and thereby reduce carbon emissions (Hodgkinson

and Smith, 2021). To reach the dual-carbon goals, the government,

businesses, and the market must all work together, and there

needs to be multi-regional systematic guidance to help the green

transformation go smoothly.

3.2 Spatial econometric model

3.2.1 Moran’s I and scatter plot
This paper’s goal is to show the spatial correlation between

carbon emissions and green transformation, as well as to clarify the

relationship between the two. The global Moran’s I is commonly

used in spatial econometrics to evaluate the spatial correlation

between variables (Anselin, 1988). Equation 1 defines the global

Moran’s I:

I =

∑n
i=1

∑n
j=1 Wij

(

Xi − X
) (

Xj − X
)

S2
∑n

i=1

∑n
j=1 Wij

(1)

Let n be the total number of spatial units and let Xi be the

observed value of the i spatial unit. Moran’s I has a value range

of [−1, 1]. Positive spatial correlation between the variables is

indicated when its value is >0, while negative spatial correlation

is indicated when its value is <0. Conversely, the higher the spatial

correlation, the smaller the absolute value of Moran’s I. The spatial

distance weighting matrix Wij was used to evaluate the spatial

correlation of variables throughout the region. The first law of

geography states that spatially close items are always more related

than those that are further away (Tobler, 1970).

A statistical instrument that shows the worldwide regional

economic activity’s spatial correlation is Moran’s I. On the other

hand, to show local spatial relationships and determine whether

high or low observations of carbon emissions are geographically

grouped, the Moran’s I scatterplot is utilized. A two-dimensional

visualization of an array of spatial lag factors (z,Wz), where

Wz indicates the spatial weighting derived from spatially unitary

observations, is produced via a scatterplot with (z,Wz) as the

coordinate point (where zi = xi − x represents the spatial lag

factor). Equation 2 illustrates how we can obtain the local spatial

autocorrelation for each province in China by decomposing the

global Moran’s I for each province:

Ii =

(

Xi − X
)

S2

n
∑

j=1,j6=i

Wij

(

Xj − X
)

,where S2 =

∑n
i=1

(

Xi − X
)2

n
(2)

3.2.2 Description of the spatial model
Both static and dynamic types of spatial econometric models

are distinguished. Over a variety of time periods, the geographic

effects of the explanatory variables on the explained variables

are examined by the static spatial model. To fully evaluate the

effects of factors other than the explanatory variables, the dynamic

spatial model incorporates first-order lagged terms of the explained

variables (Anselin and Kelejian, 1997). As a result, one-period lags

of the explanatory variables are incorporated into the dynamic

spatial Durbin model developed in this paper. Equations 3, 4

indicate the econometric model:

Yit = ρWYit + θWXit + βXit + ψi + λt + εit (3)

Yit = τ1Yi,t−1 + τ2WYi,t−1 + ρWYit + θWXit + βXit

+ ψi + λt + εit (4)

Where ψi and λi are time effect and spatial effect, β is

corresponding parameter, εit denotes random error term, ρ and

θ are spatial regressive coefficients, τ1 and τ2 is the spatial lag

Frontiers in Environmental Economics 05 frontiersin.org

https://doi.org/10.3389/frevc.2025.1478861
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Gao and Qu 10.3389/frevc.2025.1478861

coefficients. If θ = 0, SDM will degrade to SAR. If θ =

−ρα, SDM will degrade to SEM. Wij is the spatial weight matrix

based on geographical distance, which distance data sources are

collected manually.

3.3 Description of variables

The explained variable in this paper is carbon emissions,

while the main explanatory variables are green energy, green

innovation, and environmental regulation. The following are the

variables involved in this study and are presented with a statistical

description in Table 1.

Carbon emissions: the Intergovernmental Panel on Climate

Change (IPCC) suggested technique is followed in the estimate

of carbon emissions in this paper. The combustion of 17 fossil

fuels, including raw coal, crude oil, and natural gas, as well as the

manufacturing of cement and lime, are included in the scope of

carbon dioxide emissions. Given that the production of cement

and lime has recently resulted in increased carbon emissions, it is

essential that this scenario be taken into account in this paper (Shan

et al., 2018, 2020).

Environmental regulation: environmental regulation stands as

a pivotal factor influencing carbon emissions. Despite the current

consensus on its importance, there is a notable divergence among

scholars regarding the optimal methodologies for quantifying the

impact of environmental regulation. Common indicators include

pollutant emission intensity, the stringency of environmental

regulation laws, the operating costs of pollution treatment

facilities and sewage charges. However, these indicators, while

widely used, show a certain homogeneity and universality, and

fail to reflect the government’s regulation of corporate carbon

emissions, which complicates the precise measurement of both

the drivers and the outcomes of environmental regulation

on market dynamics (Zhao, 2024). Environmental protection

investment illustrates how much a country or company invests

in environmental conservation. A higher investment indicates

increasing spending on environmental infrastructure development

and the research, development, and distribution of pollution

control technology. This investment often grows in sectors

which face stricter environmental regulations. According to

environmental regulations, companies that invest in waste gas

treatment incur expenditures for equipment purchase, operation,

and maintenance. However, these investments have other benefits,

such as avoiding environmental penalties, improving corporate

reputation, and addressing consumer desires for environmental

preservation. Companies will make decisions based on the balance

of costs and benefits. Therefore, the paper uses the waste gas

treatment investment as an environmental regulation indicator

(Zeng et al., 2021).

Green innovation: research and development (R&D) inputs

(Yang and Yang, 2015), green patents as defined by the IPC

green inventory (Popp and Newell, 2012), and green total factor

productivity (TFP) (Costantini et al., 2017) are the three main

components of the current methodology used to measure green

innovation. R&D inputs and innovation outputs are not precisely

equivalent, though, because of capital utilization constraints

(Tumelero et al., 2019). This is due to the challenge of precisely

measuring the degree of green innovation in R&D inputs.

Meanwhile, because of regional and industry variations, it may be

challenging to gather reliable environmental and economic data

needed to calculate green TFP. Therefore, this paper adopts the

ratio of the number of green inventions and green utility models

submitted in the current year to the total number of submissions as

a proxy for the nation’s technological innovation in environmental

protection, in line with the diffusion effect theory (Chen et al.,

2023).

Green energy: the process of burning leads to notable variations

in carbon emissions among various forms of energy. Coal has

been the primary energy source in China for a long time—more

than 70%—in this regard. Oil and natural gas have 1.2 and 1.6

times, respectively, more carbon emissions than coal combustion

(IEA, 2024). Carbon dioxide is not released by clean energy

sources like solar, wind, tidal, or nuclear power. When researching

energy structure, most of the literature to date concentrates on

the structure of fossil energy consumption. The green energy

consumption structure—which is the proportion of solar, wind and

nuclear power generation in total electricity generation—is used

in this paper (Wang et al., 2005). Green energy is becoming a

transitional energy source for energy consumption from fossil fuels

to non-fossil fuels since it helps reduce climate change and improve

environmental quality.

Economic development: according to the Environmental

Kuznets Curve (EKC) hypothesis, economic growth and carbon

emissions do not directly correlate. Different components are

needed for economic growth at different phases of development.

Economic growth may initially encourage careless development

but frequently comes at the expense of the environment. But as

economic growth reaches a certain point, the government starts

to see the negative effects of development and starts to focus

on environmental quality. As a result, the two have an inverse

U-shaped relationship (Grossman and Krueger, 1995). Based on

earlier studies, this paper employs per capita GDP as a gauge

of economic expansion. This paper uses 2003 as the base period

and converts each year’s nominal GDP to real GDP to maintain

data comparability.

Education: most of the previous studies on the influencing

factors of carbon emissions have mainly concentrated on aspects

like industrial production, energy structure, and transportation. As

the concept of sustainable development has been deeply ingrained

in people’s minds, education has gained attention as a new crucial

factor. On the one hand, global investment in environmental

protection education is gradually escalating to enhance the public’s

capacity to protect the environment and respond to climate change.

On the other hand, disparities in educational levels across various

regions might be associated with the performance of carbon

emission control, and educational development is also indirectly

influencing carbon emissions. The human capital theory indicates

that education can enhance an individual’s capability, which can

be transformed into the ability to develop low-carbon technologies

and formulate policies in the context of carbon emissions (Horan

et al., 2019). Therefore, this paper uses the number of graduates

from institutions of higher learning as a proxy variable to measure

the level of education (Tian et al., 2017).
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TABLE 1 Statistical description of all variables.

Variable Definition Units Mean SD Min Max

Explained variable CE Carbon emissions 106tons 292.671 204.418 16.462 947.163

Explanatory variable ER Environmental regulation 108yuan 11.490 13.836 0.014 128.135

GI Green innovation % 4.249 2.391 0.941 13.234

GE Green energy % 24.440 23.443 0.000 91.867

Control variable GDP per Economic development 104yuan/person 4.29 2.962 0.424 18.752

Edu Education 104person 19.991 13.682 0.580 67.840

FDI Foreign direct investment 108yuan 333.605 359.623 0.114 1,702.705

Open Trade openness 108yuan 5,780.738 10,447.08 11.966 61,572.116

Foreign direct investment: the relationship between FDI and

carbon emissions is a complicated one. Based on the “Pollution

Haven Hypothesis,” China’s relatively lax environmental rules may

attract enterprises that pollute, leading to an increase in CO2

emissions within the country (Copeland and Taylor, 2004). The

“pollution halo hypothesis” suggests that FDI could also result

in a learning and demonstration effect, which could encourage

technological and managerial innovation in the receiving nation

through technology spillovers. Consequently, this will raise the bar

for environmental governance (Pao and Tsai, 2011). As a result,

there are two ways that FDI affects carbon emissions, and both

require careful thought.

Trade openness: industrial production activities are typically

more common in nations with strong trade openness, with the

goal of supporting the manufacture of goods shipped to other

nations. Energy consumption is high in this process; additionally,

the use of vehicles for transportation, such as ships, aircraft,

and trucks, during the transport phase is associated with high

energy consumption and emissions of greenhouse gases, such as

carbon dioxide (Lin and Benjamin, 2017), which raises total carbon

emissions. As a result, the relationship between trade openness

and carbon emissions is positive. This paper uses the ratio of

GDP to total imports and exports as a stand-in variable to gauge

trade openness.

3.4 Specification of spatial measurement
models

In order to construct a dynamic spatial model that explains the

impact of green transformation on carbon emissions, this paper

follows the methodology suggested by Zhang M. et al. (2024). The

time lag and spatial spillover effects are taken into consideration

in the model design, which is essential for assessing the dynamic

changes in carbon emissions. A static spatial model is represented

by Equation 5. It can be used to generate the dynamic spatial model

by including the lag terms of the explanatory variables, which yields

Equation 6:

l nCEit = ρWl nCEit + θ1Wl nERit + θ2Wl nGIit + θ3Wl nGEit

+ β1l nERit + β2l nGIit + β3l nGEit + ηiWZit + γiZit

+ ψi + λt + εit + αi (5)

l nCEit = τ1l nCEi,t−1 + τ2Wl nCEi,t−1 + θ1Wl nERit

+ θ2Wl nGIit + θ3Wl nGEit + β1l nERit + β2l nGIit

+ β3l nGEit + ηiWZit + γiZit + ψi + λt + εit + αi (6)

Where CEit represents the carbon emissions of province i in

year t. ER denotes environmental regulation, GI denotes green

innovation, GE denotes green energy, and W denotes the spatial

weight matrix. In addition, Z denotes a series of control variables

including GDP per capita, education, FDI and trade openness.

All variables are presented in logarithmic forms to eliminate

possible heteroscedasticity.

3.5. Data collection and spatial matrix

The panel data set used in this study includes 540 sample

points that correspond to 30 administrative regions1 in China

at the provincial level between 2004 and 2021. The study uses

data from respected organizations and international government

bodies to guarantee the validity of the research findings. The

provincial CO2 emissions inventory provided by China Carbon

Emission Accounts & Datasets (http://www.ceads.net.cn) served

as the source of the carbon emissions data from 2004 to 2021.

The inventory, which covered 17 different categories of fossil fuel

emissions from 47 industries, was put together using a combination

of complete accounting and apparent energy use. It incorporates

carbon emissions from the cement and lime sectors in accordance

with the IPCC’s emissions accounting methodology (Shan et al.,

2020). The China National Intellectual Property Administration

(CNIPA) was searched for green patents from 30 provinces for

this paper. The green patent codes obtained from the global

IPC Green Inventory were then compared. Information on the

quantity of green inventions and green utility model patents filed

in the current year was taken from the State Intellectual Property

Office’s 2004–2021 annual reports (http://www.cnipa.gov.cn). The

China Energy Statistical Yearbook provided data on the power

generation of new energy and the total power generation. The waste

gas treatment investment, GDP, the number of graduates, FDI,

and total import and export figures were taken from the China

Statistical Yearbook. Since the geographic adjacency matrix and

geographic straight-line distance matrix are unable to account for

1 Tibet is not included in the statistical analysis due to a lack of data.
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FIGURE 2

Kernel density curve of variables: (A) Carbon emissions; (B) Environmental regulation; (C) Green energy; (D) Green innovation.

distance differences, topographic factors, and the structure of road

and railway transport networks, they are unable to accurately reflect

the actual transport costs associated with China’s vast landmass and

complex topography, which includes a variety of terrains such as

oceans, mountains, and rivers. Therefore, using data from CHINA

RAILWAY (http://www.12306.cn), this paper suggests a treatment

based on the spatial matrix of geographical distance of railway

transportation, which is created by calculating the shortest railway

mileage between provinces.

4 Empirical results

4.1 Characterization of dynamical evolution

This research utilizes the Gaussian kernel density estimation

approach, the study aims to uncover the dynamic evolution

characteristics of these variables, providing a nuanced

understanding of their interplay and impact over time. A

comprehensive visualization of the kernel density distribution

is presented in Figure 2, offering a graphical representation of

the data’s statistical properties. The study’s findings reveal highly

significant insights into the dynamic evolution of the four variables.

Notably, the CE and GE kernel density curve has shifted to the

right over the study period, indicating a substantial increase in

carbon emissions and green innovation activities. Conversely, the

positions of the distribution forms of the kernel density curves

of ER and GI along the x-axis do not display any conspicuous

overall deviation, indicating that their averages are comparatively

stable and revealing that the principal factors influencing these

two variables have not experienced considerable alterations.

Furthermore, the horizontal widening of the breadth of the CE

kernel density distribution suggests that the carbon emissions gap

among provinces persists in growing and the distribution is more

dispersed, that is, the inequalities among individuals become more

prominent. This could be attributed to the factors influencing

carbon emissions are becoming more diverse. The slopes of the

ER and GI curves have become steeper. This might imply that the

intensity of ER is more centralized and homogeneous, and the

enforcement of related policies is becoming more standardized

and stricter, resulting in a more concentrated distribution of the

environmental regulation level. For GI, the steeper slope intimates

that the distribution of green innovation is more condensed,

suggesting that within some predominant green innovation

fields, a considerable number of participants have merged their
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FIGURE 3

Spatial distribution of carbon emissions: (A) 2004; (B) 2010; (C) 2014; (D) 2021.

resources and efforts, thereby generating intensified competition.

The slope of the kernel density curve of GE reveals no discernible

modification but presents two peaks. This indicates that there are

two disparate forms or stages throughout the evolution of green

energy. Each peak could denote a relatively restricted development

pattern, and there are notable variations in the utilization of green

energy among various regions or at separate times. For example,

some regions may prioritize large-scale wind energy development,

while others may have a stronger inclination for the centralized

utilization of solar energy.

4.2 Spatial pattern of carbon emissions in
China

To illustrate the spatial variety and aggregation of carbon

emissions across Chinese provinces, Figure 3 provides a summary

of carbon emissions statistics at significant intervals from 2004 to

2021. 2004, 2010, 2014, and 2021 are a few of these. Only these four

representative years have been chosen for the representation of the

spatial distribution due to the visualization’s space constraints. Each

province’s carbon emissions intensity is represented by the red color

in the figure, with the color’s depth corresponding to the amount

of carbon emissions. Therefore, the higher the carbon emissions,

the darker the color. Carbon emissions in multiple provinces

across the country have exhibited a gradually increasing trend,

with the magnitudes of increase varying among different regions.

By 2021, carbon emissions in Shandong, Shanxi, Inner Mongolia

and Hebei had witnessed a significant surge. Shandong Province,

which serves as a crucial industrial base, is characterized by a

relatively high density of heavy industries. Owing to the high energy

consumption and emission levels of its industrial sectors, it makes

a relatively prominent contribution to carbon emissions. Shanxi

Province has formed a “path dependence” on coal on account of
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TABLE 2 Global Moran’s I of China’s carbon emissions and its statistical

test.

Variable Global Moran’s I P-value

CE 0.036∗∗∗ 0.005

EPT 0.040∗ 0.054

GI 0.038∗∗ 0.034

GE 0.093∗∗∗ 0.000

∗∗∗ , ∗∗ and ∗ indicate that coefficients are statistically significant at 1%, 5% and

10%, respectively.

its abundant coal reserves and low-cost advantage, thereby leading

to a relatively high aggregate level of carbon emissions and a

distinct development trajectory. Inner Mongolia has experienced

a steady growth in carbon emissions, given that its rapid economic

expansion has been consistently reliant on substantial energy input

and resource exploitation. Apart from elements like industrial

structure, energy consumption, and transportation, the relocation

of high-energy-consuming and high-emission industries from

Beijing is likewise the principal cause of the rise in carbon

emissions in Hebei Province. From a spatial perspective, the

characteristics of carbon emissions in different provinces have

undergone significant alterations, manifesting evident regional

disparities. The carbon emission levels of northern provinces

surpass those of southern provinces, signifying an apparent

propensity for geographical agglomeration. Carbon emissions in

the economically developed eastern coastal regions, exemplified by

Jiangsu, Zhejiang, and Guangdong, are relatively higher compared

to those in the inland provinces of the central and western regions.

Meanwhile, Hainan and Qinghai have sustained relatively stable

and low emission levels. Consequently, carbon emissions in China’s

provinces not only exhibit a pronounced increasing trend over

time but also manifest distinct geographical spatial agglomeration

and heterogeneity.

4.3 Spatial correlation test

The fundamental premise that guides the creation of spatial

econometric models is the existence of spatial correlation in

the sample data (Cox et al., 1984; Anselin, 1995). This paper

uses the global Moran’s I for assessment to measure the spatial

autocorrelation of CE, ER, GI, and GE, strengthening the validity

of the spatial model (Moran, 1948). The global Moran’s I of CE,

ER, GI, and GE are all significantly positive in Table 2, which

shows the results of the spatial autocorrelation test. This implies

that these variables have a strong positive spatial association.

This paper additionally computes the local Moran’s I for every

location to provide additional insight into the spatial agglomeration

phenomenon. Only the scatter plots of Moran’s I for CE, ER, GI,

and GE in 2021 are displayed in Figure 4 due to space restrictions.

The findings show that the provinces in China are not uniformly

and randomly distributed. The majority of them are located in the

first and third quadrants, corresponding to the spatial distribution

traits of high-value and high-value aggregation, and low-value and

low-value aggregation. The outcomes demonstrate that the spatial

measurement model is highly compatible with this article.

4.4. Results of empirical analysis

4.4.1 Estimation of the static spatial Durbin model
According to Table 3’s spatial Durbin model estimate results,

the spatial correlation coefficient ρ is positive at the 1% confidence

level. This suggests that there is a contagion effect, with the

province’s carbon emissions being positively impacted by those of

the adjacent provinces. This demonstrates that spatial connection

between variables cannot be disregarded, which is consistent

with the earlier Moran’s I findings (Ding et al., 2022). At the

5% confidence level, both the estimated coefficient of W×ER

and the estimated coefficient of ER under the spatial weight

matrix of railway distance are significant at 0.106 and −0.043,

respectively. This suggests that the spatial spillover impact of

ER is significantly positive. This finding implies that tougher

environmental regulations in one province may successfully

reduce carbon emissions there, but more stringent environmental

regulations in neighboring provinces will raise carbon emissions in

their respective provinces. The effect of GI on carbon emissions

is not significant from the standpoint of green innovation, nor is

the effect of W×GI on carbon emissions. This shows that carbon

emissions are not significantly affected by green innovation in

the province or in the adjacent provinces, indicating that green

innovation is not significantly effective in the short run. Being

an important part of the green transformation, green energy also

contributes significantly to carbon emissions. The GE and W×GE

regression coefficients are significantly negative at the 10% and

5% levels indicating a negative impact of green energy on carbon

emissions. This demonstrates the demonstration effect of reduced

emissions in the surrounding regions as well as the mitigating

effect of green energy (Durbin and Koopman, 2012). FDI has

a significant positive relationship with carbon emissions at the

province level, according to the regression results for the control

variables. This suggests that a province’s carbon emissions increase

with its level of foreign direct investment. Moreover, at the 5%

level, the FDI in neighboring provinces has a significant negative

influence. Particularly, FDI in neighboring provinces can reduce

carbon emissions. The influence of Edu and W×Edu on carbon

emissions is not significant. This indicates that the education

level of the province and neighboring provinces has no significant

impact, indicating that the education level has no significant effect

in the short term. On the other hand, there is no significant

correlation between carbon emissions and foreign trade openness,

as measured by Open. Additionally, GDP per capita and its squared

term are included as control variables in this paper. However, no

significant findings are found for this province or for adjacent

provinces, indicating that the EKC hypothesis cannot be verified

(Ord, 1975). This paper suggests, after a thorough analysis, that

the static Durbin model might have neglected additional long-term

effects (Ding et al., 2022).

4.4.2 Estimation of the dynamic spatial Durbin
model

The carbon emissions recorded at a previous time may have

a significant impact on the carbon emissions observed in the

current period, as carbon emissions are a continuously evolving

Frontiers in Environmental Economics 10 frontiersin.org

https://doi.org/10.3389/frevc.2025.1478861
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Gao and Qu 10.3389/frevc.2025.1478861

FIGURE 4

Moran’s I scatterplots of CE (A), ER (B), GI (C) and GE (D) in 2021.

systematic phenomenon. As such, there is a chance that the

outcomes obtained from the static spatial Durbin model contain

bias. This study uses the first-order lag term of carbon emissions

as its representation and looks at the effects of persistent factors

to determine the dynamic effect of carbon emissions. The dynamic

spatial Durbin model, which can take into account both time

and space dimensions, is then established. The results are shown

in Table 3’s column 3. The dynamic spatial Durbin model has a

higher R2 value and lower Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) values when the regression

results of the two models are compared. This shows that the

dynamic spatial Durbin model fits the data substantially better than

the static Durbin model.

The spatial correlation coefficient ρ in the dynamic spatial

Durbin model with a first-order lag term for carbon emissions is

found to be significantly positive at the 1% level. Nonetheless, it

has been discovered that the spatial correlation coefficient (0.384)

is less than the static model’s (0.422). This is because the static

spatial model classifies the long-term effects of elements like the

social environment, institutional variables, and climate as spatial

correlations while simply taking into account elements like green

transformation (Zhou et al., 2020b). On the other hand, these

possibly long-term factors are represented by the first-order lag

component of carbon emissions in the dynamic model. A more

accurate depiction of the static spatial Durbin model is thus

provided by this separation, which makes it possible to separate

the influence of these factors on carbon emissions from the impact

of spatial factors. The static spatial model overestimates the spatial

impact of green transformation on carbon emissions (Zou and

Zhang, 2020). The time lag coefficient, or CEt−1 coefficient, has a

1.019 value and is significant at the 1% level. It is also known as

the time lag coefficient. This suggests that carbon emissions have

significant temporal inertia properties, meaning that emissions

from the prior period have a positive influence on emissions at

the current time. The model predicts that if carbon emissions rise

by 1% in the current year, they will rise by an average of 1.019%

in the following year. This suggests that as the base of carbon

emissions rises, it will become harder to reduce emissions if they

are not actively managed. Additionally, the spatial lag coefficient,

or coefficient of W × CEt−1, has a value of 2.924. This suggests

that carbon emissions have a spatial contagion effect, meaning that

adjacent provinces’ carbon emissions will benefit those provinces.

Moreover, there is a greater spatial lag impact than a temporal

lag effect, indicating that the contagion effect of carbon emissions
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TABLE 3 Estimation results of Spatial Durbin Model.

Variable SDM Dynamic SDM

CEt−1 – 1.019∗∗∗

(38.89)

W × CEt−1 – 2.924∗∗∗

(11.54)

ER −0.043∗∗∗ −0.023∗∗∗

(−5.82) (−5.33)

GI −0.520 −0.599∗∗

(−0.91) (−4.03)

GE −0.008∗ −0.008∗∗

(−1.78) (−1.44)

GDPPer 0.384 0.149∗∗∗

(0.88) (3.60)

GDPPer2 −0.034 −0.071∗∗∗

(−0.85) (−4.98)

Edu 0.259 −0.043∗∗∗

(0.85) (−8.53)

FDI 0.017∗ 0.019∗∗∗

(1.71) (3.27)

Open −0.074 0.070

(−3.56)∗∗∗ (1.36)

W × ER 0.106∗∗ 0.145∗∗∗

(2.15) (6.31)

W × GI −2.190 −8.567∗∗∗

(−1.24) (−8.16)

W × GE −0.012∗∗ −0.011∗∗

(−1.87) (−2.84)

W × GDPper −1.105 −1.117∗∗

(−1.20) (−4.41)

W × GDPper2 0.026 0.041∗∗

(0.83) (1.74)

W × Edu 0.620 −0.929∗∗∗

(2.13) (−5.03)

W × FDI −0.066∗∗ −0.040

(−1.91) (−1.23)

W × Open −1.223 0.376

(−1.07) (0.84)

ρ 0.422∗∗∗ 0.384∗∗∗

(2.27) (3.91)

R2 0.296 0.576

AIC 4,769.305 3,457.247

BIC 5,264.185 3,681.240

∗∗∗1% significance level.
∗∗5% significance level.
∗10% significance level.

in space is stronger than the temporal inertia characteristics. This

suggests that when putting environmental policies into practice,

interprovincial synergistic prevention and control should receive

more consideration.

To be precise, both GI and GE of their own provinces and

adjacent provinces have a significant positive spatial spillover

effect on the reduction of CO2 emissions, greatly increasing the

reduction. The dynamic spatial Durbin model yields result that are

consistent with the information presented in Zhang et al. (2020)

when compared to the static spatial Durbin model. In contrast, the

calculated coefficient of W×ER is 0.145 and significant at the 1%

level, while the projected coefficient of ER is −0.023. This finding

suggests that while ER helps reduce carbon emissions within the

province, it also causes carbon emissions in adjacent provinces

to increase. This implies that businesses might move to low-ER

areas from high-ER areas to get around the law. The estimated

coefficient of GDP per capita is notably positive at the 1% level

from the standpoint of economic development, while its squared

term coefficient is significantly negative at the same level. This

confirms the “inverted U” effect suggested by the EKC theory and

shows that economic progress has a beneficial impact on rising CO2

emissions. To put it another way, when economic development is

low, it has a significant positive impact on carbon emissions, and

when it is strong, it has a progressive negative impact (Grossman

and Krueger, 1995).

4.4.3 Robustness test
This paper divides the sample into four regions: the eastern,

central, western, and northeastern regions,2 taking into account the

spatial inequalities in carbon emissions and green transformation

throughout China’s 30 provinces. The objective of this division

is to confirm the validity of the results obtained from the

spatial Durbin model with respect to carbon emissions and green

transformation. Table 4 displays the test results, and the spatial

correlation coefficient ρ’s sign and significance are mostly in line

with Table 3’s findings. Furthermore, the four regions’ R2 values

agree quite a bit with the spatial Durbinmodel’s values for the whole

sample. Particularly, in the eastern and central regions, a larger R2

is observed. The strong robustness of the model estimate results in

this paper is reflected in the generally consistent estimation results

for the other control variables.

5 Discussion

5.1 Analysis of the time and space lag
coe�cients of the dynamic SDM regression

As is indicated in Table 3, the coefficient of the time lag

term CEt−1 amounts to 1.019 and is significant at 1% level,

demonstrating that the previous carbon emission levels exert a

2 Eastern: Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian,

Shandong, Guangdong, Hainan; Northeast: Liaoning, Jilin, Heilongjiang;

Central: Shanxi, Inner Mongolia, Anhui, Jiangxi, Henan, Hubei, Hunan;

Western: Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,

Qinghai, Ningxia, Xinjiang.
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TABLE 4 Robustness test.

Variable Eastern Central Western Northeast

CEt−1 0.677∗∗∗ 0.742∗∗∗ 0.708∗∗∗ −0.384

(10.77) (6.38) (11.24) (−1.52)

W × CEt−1 −0.153 0.381 0.422 −0.716

(−0.71) (0.77) (1.34) (−1.49)

ER 0.013∗∗∗ 0.050∗∗∗ 0.022∗ −0.033∗

(2.80) (3.79) (1.82) (−1.77)

GI −0.008∗∗∗ −0.430 −0.287 −0.321

(−8.04) (−1.36) (−0.78) (−0.69)

GE −0.009 0.001 −0.003∗∗∗ 0.018∗∗∗

(−1.06) (0.89) (−2.84) (4.14)

GDPper 0.176∗∗ 0.072 −0.167 2.114∗∗∗

(1.96) (0.63) (−0.98) (5.05)

GDPper2 −0.053∗∗∗ −0.179∗ −0.691 0.240

(−4.58) (−1.70) (−0.36) (1.38)

Edu 0.058 −0.177 −0.025 0.522∗∗

(1.45) (−1.42) (−0.30) (2.01)

FDI 0.010 −0.027∗∗ −0.010 0.132∗∗∗

(1.23) (−1.83) (−0.66) (5.10)

Open 0.091∗∗∗ −0.089∗∗ 0.020 0.094

(2.56) (−2.01) (0.65) (1.02)

W × ER 0.004 0.071 −0.002 −0.054

(0.03) (1.32) (−0.04) (−1.29)

W × GI −0.184 1.561 1.942 0.849

(−0.29) (1.23) (1.19) (0.99)

W × GE 0.001 0.013∗∗ −0.002 0.029∗∗∗

(0.56) (1.99) (−0.37) (3.8)

W × GDPper 0.572 0.733∗ −0.481 3.607∗∗∗

(1.59) (1.89) (−0.59) (5.13)

W × GDPper2 −0.035∗∗ −0.164 −0.250 −0.067

(−1.81) (−0.54) (−0.47) (−0.84)

W × Edu 0.036 −0.680 −0.634∗ 1.333∗∗

(0.28) (−1.47) (−1.75) (2.39)

W × FDI −0.013 −0.192∗∗∗ −0.048 0.197∗∗∗

(−0.47) (−3.03) (−0.88) (4.72)

W × Open 0.040 −0.211 0.033 0.071

(0.25) (−1.37) (0.28) (0.4)

ρ 0.308∗∗ 0.960∗∗∗ 0.379∗ 0.619∗∗∗

(2.03) (4.68) (1.87) (4.17)

R2 0.9026 0.9213 0.3067 0.2363

∗∗∗1% significance level.
∗∗5% significance level.
∗10% significance level.

considerable positive influence on the current carbon emissions.

From a realistic perspective, China’s swift economic growth over the

past several decades has been partly driven by the industrial model

characterized by high energy consumption and high emissions. The

time inertia of this model makes the existing emission reduction

endeavors more complicated. Nevertheless, from the perspective of

systems thinking, we should not view this event as isolation. The

previous carbon emission model takes into account the interaction

among subsystems like the economy, energy, and environmental

legislation (Kiling et al., 2021; Chen et al., 2024). In the past,

the stringency of environmental legislation was inadequate, green

innovation was not encouraged, and green energy was not utilized

to its fullest extent, leading to the accumulation of carbon

emissions. The spatial lag term W × CEt−1 has a significant

coefficient of 2.924, suggesting that regional carbon emissions are

affected not merely by their own variables but also by adjacent

regions. In China, the characteristics of imbalanced regional growth

are evident. When specific regions undertake industrial transfer,

high-carbon-emission industries might be shifted from developed

to less developed areas, causing the transfer of carbon emissions

(Zhao et al., 2022; Wang, 2023). The geographical contagion

effect of carbon emissions surpasses the temporal inertia effect (Li

et al., 2023). This spatial connection reveals the significance of

considering systems when coordinating the green transformation

and formulating emission-reduction methods that take both time

and geography into account.

5.2 Spatial e�ect analysis of green
transformation system on carbon emissions

Table 3 demonstrates that ER has a highly negative direct effect

(−0.023), implying that environmental regulation can assist reduce

carbon emissions to some extent. However, the coefficient of W ×

ER is 0.145, indicating that environmental regulation not only helps

to reduce emissions locally, but also have an impact on nearby areas

due to the spatial spillover effect. This conclusion is compatible

with several research findings (Li M. et al., 2021). Environmental

regulation can indirectly reduce carbon emissions by encouraging

the optimization of industrial structure and technical innovation.

However, some studies have shown that environmental laws

may induce businesses to relocate to locations with more lax

environmental standards, resulting in carbon transfer (Zhao and

Percival, 2017).

In this study, the estimated coefficient of GI is significantly

negative at the 1% level (−0.599), implying that green innovation

is an important factor in lowering carbon emissions. Green

innovation has a spatial influence coefficient of −8.567, indicating

that it has a significant impact not just on lowering carbon

emissions in its local area, but also on lowering carbon emissions

in adjacent areas due to the spatial spillover effect (Su et al., 2024).

Successfully adopting green innovation in one region can not only

reduce carbon emissions in that area, but it can also serve as

an example and inspiration for neighboring places, encouraging

the sharing of technology, information, and experience. This can

improve the green innovation vitality of adjacent places, hence

cutting carbon emissions on a bigger scale.
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The direct influence coefficient of GE is −0.008, indicating

that its reduction effect on carbon emissions is relatively limited.

Although the development of green energy has achieved certain

results, judging from the results of this study, its effect of being

used alone to reduce carbon emissions is not very significant. There

may be a reason for this: the amount of green energy in the current

energy structure is still low, or there are problems with promoting

and using the technology, which makes it less effective at directly

lowering carbon emissions (Li et al., 2025). But green energy has a

spatial influence coefficient of −0.011. This means that promoting

and using green energy not only helps lower carbon emissions in

the area where it is used, but it can also have an effect on other areas

by letting people share energy and technology. For example, some

regions have accumulated rich experience in the development and

utilization of green energy such as wind energy and solar energy,

and their technologies and management models can be borrowed

and adopted by other regions to jointly promote the development of

green energy and achieve broader carbon emission reduction goals.

From the perspective of systems thinking, there is a complex

interaction between environmental regulation, green innovation

and green energy and carbon emissions (Cezarino et al., 2019).

According to the above analysis, the reduction of carbon emissions

within the province and the use of green innovations and energy

sources can have a positive demonstration effect on adjacent

provinces, as evidenced by the significant spatial spillover effect

that green innovation and green energy have on decreasing CO2

emissions (Zhang et al., 2020). As a result, one of the main tactics

for lowering regional carbon emissions should be the promotion of

these green technologies and energy policies (Liao et al., 2022). It

is noteworthy that stringent environmental regulations may result

in the regional dispersion of carbon emissions. Although a green

tax lowers carbon emissions within the province, emissions in

adjacent provinces may rise as a result. This implies that, while

implementing environmental policies, interregional coordination

and collaboration should be taken into consideration. Furthermore,

the inverted U-shaped theory of the environmental Kuznets curve

is compatible with the relationship between economic progress

and carbon emissions. Carbon emissions first rise and then fall as

the economy improves (Grossman and Krueger, 1991). This trend

indicates that we need to increase the quality and efficiency of

economic development while also accelerating the transformation

and upgrading of the industrial structure to achieve the decoupling

of economic development and carbon emissions.

5.3. Regional di�erence analysis of
influencing factors of carbon emission

Considering the differences in environmental policies, green

technological innovation, and green energy among different

regions, this has had a certain impact on the carbon emissions

of the provinces and neighboring provinces. Therefore, this paper

considers and analyzes the regression results of the eastern,

central, western, and northeastern regions in Table 4. It can be

seen from the regression results that in the eastern, central,

and western regions, the time lag term of carbon emissions

is significantly positive, indicating that carbon emissions have

obvious inertial characteristics; that is, the high carbon emission

level in history will continue for a certain period in the future.

However, in the northeastern region, this coefficient is not

significant. The economic development in the eastern, central, and

western regions is relatively fast, and the continuity and stability

of economic activities are relatively strong. Consequently, the

historical accumulation of carbon emissions has a more noticeable

impact on the current situation (Fest et al., 2022). The economic

development speed in the northeastern region is relatively slow,

and the changes in the economic structure may weaken the time

continuity of carbon emissions (Wang et al., 2025).

Environmental regulations significantly affect carbon emissions

in all four regions, but the direction of their effects varies. In

the eastern, central, and western regions, the direct impact of

environmental regulations on carbon emissions is significantly

positive, while it is significantly negative in the northeastern

region. The industrial structure in the eastern, central, and western

regions is more complex. The implementation of environmental

regulations may prompt enterprises to increase costs in the short

term, causing some enterprises to temporarily increase energy

consumption to maintain the production scale, thereby increasing

carbon emissions (Zhou et al., 2020a). Stringent pollution control

may cause enterprises to move to neighboring provinces, thereby

increasing carbon emissions in neighboring areas.

In the eastern region, green innovation significantly inhibits

carbon emissions, which is closely related to the region’s developed

economy and strong technological innovation ability (Yang and

Zhu, 2022). In the central region, due to the lack of sufficient green

innovation support, environmental regulations have become the

main means of emission reduction (Li and Sun, 2020). The western

region relies on the development of green energy to reduce carbon

emissions, which is in line with the region’s abundant clean energy

resources. The northeastern region also relies on green energy, but

its emission reduction effect is relatively weak. The climate in the

northeastern region is relatively cold; the demand for heating in

the winter is high, and the total energy consumption is high (Zhu

et al., 2020). This, to a certain extent, amplifies the challenge of

reducing emissions and diminishes the impact of green energy on

emission reduction.

6 Conclusions and recommendations

This research provides a systems thinking strategy to investigate

the dynamic evolutionary features and spatial patterns of carbon

emissions and green transformation in China’s provinces. It

makes use of statistics on carbon emissions from 30 Chinese

provinces between 2004 and 2021. The three drivers of the green

transformation in carbon emissions are examined empirically

for their spatiotemporal heterogeneity and non-linear properties.

The paper builds static and dynamic spatial Durbin models.

Findings imply that: (1) The dynamic evolution characteristics

of carbon emissions show significant spatial variation across

Chinese provinces, impacted by green innovation, green energy,

and environmental protection taxes. In addition, the distribution’s

width has expanded between the peaks of carbon emissions and

green energy, and the spatial difference is progressively growing.

(2) The dynamic spatial Durbin model fits better than the static

model, which is better able to extract the ignored persistent

factors. It also highlights the spatial contagion effect and inertia
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features of carbon emissions. (3) A systematic, comprehensive,

and scientific approach to erasing carbon emissions is the green

transformation. Curbing carbon dioxide emissions in this province

is positively impacted by green energy innovation, which also has

a favorable spatial spillover effect on adjacent provinces. Although

the introduction of an environmental protection tax will help

reduce carbon emissions in this province, it will also encourage

carbon emissions in other provinces.

This study makes the following policy recommendations

in light of the aforementioned research findings: (1) The

establishment of a carbon emissions trading mechanism is crucial

for optimizing the spatial distribution of carbon emissions and

fostering collaborative governance among provinces. In order

to effectively meet emissions reduction targets, the mechanism

is intended to employ market incentives to encourage high-

carbon provinces to decrease emissions and to compensate low-

carbon provinces for their reductions. (2) In order to reduce

the spatial spread of carbon emissions, it is necessary to raise

the environmental protection tax. To guarantee the impact of

emissions reduction, it is imperative to enhance the quality

and extent of tax collection, establish fair tax rates, and levy

items in accordance with each province’s economic development

and carbon emissions to avoid overtaxing or undertaking.

Encouraging the development of green innovation and supporting

the production, application, and study of green technology are

necessary to improve the spatial spillover effect. (3) The promotion

of trans-regional green technology flow and dissemination, as

well as the achievement of spatial synergies, can be achieved

through increasing R&D expenditure, enhancing R&D efficiency,

and developing green technology transfer and sharingmechanisms.

(4) We must rely on the development and use of green energy

to optimize the energy structure, increase the efficiency of energy

usage, and lower the intensity of energy consumption. Tomaximize

the impact of green energy as a demonstration, increase the

availability of renewable energy sources, create a transregional

energy Internet, and implement efficient energy allocation. (5)

Accelerate green transformation and industrial upgrading, create

high-tech products and services with significant added value, as

well as increasing resource utilization efficiency.
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