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While economic development brings serious environmental problems,

technological advances can e�ectively reduce pollution, which helps to

achieve the Sustainable Development Goals. Although the impact of green

technology innovation on atmospheric pollutants and carbon emissions

has been extensively studied, the e�ect of such innovation on pollutant

reduction varies due to the diverse regional distribution characteristics of

di�erent pollutants. Thus, this paper contributes to the literature by examining

the influence of green technology innovation on water pollution from a

regional perspective, with a particular emphasis on the pronounced clustering

of wastewater pollution in China’s coastal areas. Both Fixed-E�ect model

and spatial analysis are adopted. Our findings reveal a significant U-shaped

relationship between technology innovation and water pollution, as measured

by both industrial wastewater and the ratio of unprocessed sewage. Interestingly,

this pollution reduction e�ect also exhibits a U-shaped spatial spillover. Given

the rapid development of the digital economy, it can further amplify the spatial

spillover e�ect of green innovation, especially in eastern regions. This study

also provides recent empirical evidence from China to the Environmental

Kuznets Curve.

KEYWORDS

green technical innovation, water polllution, spatial spillover, environmental Kuznets

Curve, China

1 Introduction

While China is experiencing rapid economic growth after the opening-up reform

in 1978, the country has also been grappling with serious environmental pollution

issues. Since 2012, the 18th National Congress of the Chinese Communist Party has

aimed to make great efforts to promote ecological progress. Moreover, in 2017, the 19th

National Congress of the Chinese Communist Party established the goal of achieving

high-quality development. This goal recognizes the importance of promoting green,

low-carbon, and circular economies as the country transitions from high-speed growth

to high-quality development. Meanwhile, pollution also poses significant challenges to

the health of our planet and its inhabitants, which directly contradicts the United

Nation’s Sustainable Development Goals (SDGs). Therefore, the foundation for achieving

high-quality development and SDGs lies in enhancing innovation capability. This

capability includes not only traditional R&D activities but also research activities in

sustainable development, with a focus on developing and applying green technologies.
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Green innovation encompasses a range of technologies

such as renewable energy, energy conservation, recycling,

waste disposal, emission gas treatment, and environmental

assessment technologies. The adoption of these technologies is

expected to lead to more efficient and environmentally friendly

products and services, which can help to reduce pollution and

conserve resources.

Literature has demonstrated that technological advances can

ameliorate environmental pollution since the 1970s. Ehrlich and

Holdren (1971) point out that technological advances could

mitigate the growth of pollution engendered by population growth.

Besides traditional technological advances, Yang et al. (2023)

observe that enterprises are equally benefiting from the reduction

of pollutant emissions as they adopt digital technologies. However,

Brookes (1978, 1990) and Khazzoom (1980) argue that energy

savings resulting from energy efficiency improvements may be

negated by increased energy consumption due to behavioral

responses of economic individuals. They suggest that energy

efficiency improvements do not necessarily lead to a reduction

in energy demand [this is referred to as the “Khazzoom-Brookes

(K-B) hypothesis”]. Later in 1995, Grossman and Krueger (1995)

pointed out that there is an inverted U-shaped relationship

between the level of economic development and the emission of

environmental pollutants, which is known as the environmental

Kuznets Curve (EKC). The relationship between technological

or economic development levels and pollution reduction is not

only linear. Furthermore, it is necessary to consider the spatial

effects of green innovations on the reduction of industrial water

pollutants, considering the following two facts. Firstly, both green

technologies (knowledge) and industrial water pollutants are

characterized by spatial spillovers. One the other hand, there is

variation in the spatial relationship between land use and water

pollution (Huang et al., 2015), which may have implications for

the relationship between green technologies and industrial water

pollutant abatement.

At present, the effects of green technology innovation

on pollution reduction are widely confirmed (Levinson, 2009;

Dangelico and Pujari, 2010; Hecker et al., 2020; Yi et al., 2020; Zhou

et al., 2023; Tian et al., 2024; Yu and Zhang, 2024). Recent studies

also notice the spillover effect of green technology innovation on

pollutant emissions (Ma et al., 2016; Li et al., 2023; Zhang and

Xu, 2023; Zhou et al., 2023). However, the majority of studies

predominantly address air pollution issues and carbon emission,

with few addressing water pollution and wastewater management.

Particularly in China, water pollution is significantly influenced by

geographical factors, leading to considerable regional disparities

in the spatial impact of green technology innovation on water

pollution and sewage treatment. This paper aims to fill the gap

by examining the influence of green technology innovation on

water pollution from a regional perspective. First, considering

the non-linear relationship between economic development and

environmental pollution indicated by the Environmental Kuznets

Curve (EKC), this paper explores whether there is a non-

linear relationship between green technology innovation and

water pollution, measured by industrial wastewater emissions

or municipal wastewater treatment capacity. i.e., the ratio of

unprocessed sewage. Second, it analyzes both the spatial spillover

effect of water pollution between cities and water pollution, re-

examining the effect of green technology innovation on pollution

reduction considering the spatial spillover characteristic of water

pollution. We find a significant U-shaped relationship between

technology innovation and water pollution, measured by both

industrial wastewater and the ratio of unprocessed sewage.

Moreover, this pollution reduction effect of the green technology

innovation has a U-shaped spatial spillover. Considering the

rapid development of the digital economy, it can further enhance

the spatial spillover effect of green innovation and can help to

reduce the regional inequality in pollution reduction capability

between Eastern and Central-Western areas. Therefore, this paper

also provides more recent empirical evidence of China to the

Environmental Kuznets Curve.

This paper is organized as follows: Section 1 provides an

introduction; and Section 2 discusses the literature. Section 3

describes the research methodology and data; Section 4 shows the

empirical results; Section 5 provides further analysis of the results

in terms of spatial heterogeneity and Section 6 concludes.

2 Literature review

2.1 Green technology and pollutant
emissions

The relation between technology and pollution reduction has

long been studied. Levinson (2009) contend that technology and

international trade could diminish the level of environmental

pollution. A significant portion of the pollution reduction in

the U.S. manufacturing sector has primarily resulted from

technological advances, given that technology can further decrease

the level of environmental pollution through economies of scale

and learning-by-doing methods. Some literature argues that green

technology, which encompasses the use of clean energy, pre-

treatment, and final treatment technologies for pollution, can

reduce wastewater emissions through improvements in these

technologies. Due to the physical life cycle of green products,

green product innovation has varying impacts onmaterials, energy,

and pollution in the three stages of manufacturing, product use,

and disposal. Although not all products have significant impacts

during every stage of their physical life cycle, most products do

have a considerable environmental impact during at least one stage.

Especially in emerging alternative energy markets, demand for

green products can be stimulated by public policies, subsidies, and

consumer rebates (Dangelico and Pujari, 2010). Nonetheless, there

are studies indicating that the impact of technology on reducing

pollution is not instantaneous. For instance, Yi et al. (2020) examine

the impact of heterogeneous technologies on haze pollution by

using interprovincial data from China. This study points out that

although technological progress can manage haze pollution in the

long run, they are not effective in haze reduction if the energy-

saving effect fails to outweigh the energy rebound effect. More

recently, Wang et al. (2019) show that industrial agglomeration,

environmental regulations, and technological inputs facilitate

emissions intensity abatement. Zhou et al. (2023) find that

green technology innovation not only plays a significant role in
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reducing atmospheric environmental pollution but also generates

spatial spillover effects. Tian et al. (2024), using data from the

Yangtze River urban agglomeration, demonstrate that technological

innovation can have an inhibitory effect on the haze pollution

effect of co-agglomeration. Yu and Zhang (2024) argue that raising

the level of urban innovation can reduce haze pollution through

the effects of technological upgrading, structural optimization, and

resource agglomeration.

In addition, the process of industrialization and urbanization

is accompanied by technological progress, which includes both

green and non-green technologies. Since technological innovation

is endogenous in economic development, the relationship

between technological progress and environmental pollution

may be influenced by the relationship between the level of

economic development and environmental pollution. However,

as previously mentioned, Grossman and Krueger (1995) propose

the Environmental Kuznets Curve (EKC), which illustrates an

inverted U-shaped relationship between the level of economic

development and emissions of environmental pollutants. The

EKC illustrates that during the primary stage of economic

development, environmental pollution increases with economic

growth. However, once a certain level of economic development is

reached, the situation of environmental pollution can be alleviated

with further economic growth. This is primarily attributed to the

fact that the emission of pollutants increases in areas at the primary

stage of economic development with their rapid industrialization

and urbanization. In regions with a lower level of economic

development, rapid development of infrastructure projects may

result in more industrial water pollutant emissions. Nevertheless,

Dasgupta et al. (2002) suggest that the curve is flattening and

shifting to the left, affected by economic liberalization, clean

technology diffusion, and new approaches to pollution regulation

in developing countries. Kaika and Zervas (2013) propose that

income is a possible factor in the EKC relationship due to energy

consumption. Later Stern (2017) proves that economic growth has

a strong positive effect on carbon dioxide, and sulfur dioxide, but

weaker effects on non-industrial greenhouse gas emissions and

concentrations of particulates.

More empirical research on EKC has shown up in the recent

decade. Huang et al. (2015) find that built-up had a positive spatial

effect on water pollutants, especially in sub-watersheds with low

build-up density, with the greatest increase in pollution per increase

in building density. However, when economic development reaches

a certain level, the environmental pollution increases prompting

the government to introduce a series of environmental regulations

used to strengthen pollution regulation and treatment, and the level

of environmental pollution will be improved. Therefore, it is likely

that there is not a simple linear relationship between technological

progress and environmental pollution reduction. Acemoglu et al.

(2016) argue that in production and innovation, clean and dirty

technologies compete with each other, and if the level of dirty

technologies is more advanced, or the gap between clean and dirty

technologies is too large, it may discourage research incentive on

directed to clean technologies. Therefore, regions with a higher

degree of economic development, where the gap between existing

technologies and green technologies is smaller, are likely to adopt

green technologies more readily and apply them quickly to reduce

emissions. Dasgupta et al. (2002), and Park and Lee (2011) also

find that the shape of the EKC is likely to be different due to the

different characteristics of each region and pollutant type. Sirag

et al. (2018) apply the dynamic panel threshold method to estimate

the EKC turning point. It reveals the existence of a nonlinear

relationship between income (GDP per capita) and carbon dioxide

emissions. Song et al. (2023) point out that there exists a typical

U-shaped curve relationship between technological innovation

and air pollution. When technological innovation falls below a

certain threshold, it will exert a noticeable inhibitory effect on air

pollution. Conversely, when technological innovation surpasses a

certain critical threshold, excessive technological innovation will

exacerbate air pollution.

However, other studies do not support the EKC hypothesis.

For instance, when assessing the impact of population, income,

and technology on energy consumption and industrial pollutant

emissions in China, Liu et al. (2015) do not find evidence of the EKC

hypothesis for industrial waste in China. Furthermore, Özokcu and

Özdemir (2017) use two different models and show that N-shape

and an inverted N-shape relationship between income and Carbon

Dioxide emissions. Thus, the result implies that environmental

degradation cannot be solved automatically by economic growth.

Allard et al. (2018) empirically investigate the relationship between

CO2 emissions and GDP per capita and find an N-shaped EKC in

all income groups, except for upper-middle-income countries.

2.2 The role of digital economics on
pollutant emissions

Since 2012, the 18th CPC National Congress has aimed

to make great efforts to promote ecological progress and low-

carbon economic. To achieve this goal and accelerate the green

transformation, in addition to focusing on previous technological

innovations (e.g., traditional technologies in the past), more

attention is being paid to green technology innovations. In this

context, with the arrival of the fourth industrial revolution and

the rapid development of digital technology, more and more

scholars are focusing on the digital technology application on green

technology innovation.

The digital economy has rapidly developed and expanded

since 2011. The overall scale of China’s digital economy

expanded from 9.49 trillion yuan in 2011 to 31.29 trillion

yuan (added value) in 2018, and the proportion of the digital

economy in GDP rose from 20.3% in 2011 to 32.9% (China

Academy of Information and Communications Technology, 2020).

With the rapid development of the digital economy, digital

technology is constantly infiltrating China’s social development.

This includes digital industrialization, industrial digitization,

and digital governance. Industrial digitization helps to improve

the production efficiency of traditional industries, while digital

governance helps the government optimize governance models

and improve the quality of public services. Zhang et al. (2024)

argue that digital technology applications help companies to save

energy and reduce emissions. The improvement of productivity

in traditional industries and the improvement of the quality
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of government public services are closely related to pollution

reduction and the improvement of urban municipal pollution

treatment capabilities. The digital economy can contribute to

pollution reduction primarily in two ways.

First, it provides robust technical support for green technology

innovation activities. Hampton et al. (2013) found that the

emergence of big data during the information age has facilitated

ecologists’ scientific research and turned ecology into a data-

intensive industry. Lee et al. (2022) consider that information and

communication technology (ICT) contribute to the advancement

of renewable energy technology innovation (RETI) by influencing

human capital accumulation, financial development and

information disclosure. Intelligent manufacturing can significantly

reduce the concentration of PM2.5 in the air and environmental

pollution by optimizing resource allocation during production

and operation. Tang et al. (2022) find that telecommunications

infrastructure fosters eco-efficiency growth by facilitating green

innovation, upgrading industrial structure, and enhancing

resource allocation efficiency. Xu et al. (2022) find that the

digital economy can reduce urban carbon emissions. Shen and

Zhang (2023) discover that intelligent manufacturing can notably

decrease the concentration of PM2.5 in the air and environmental

pollution by optimizing resource allocation throughout production

and operations.

Second, through the development of modern information

networks, the digital economy enhances environmental

monitoring and improves the efficiency of resource use. Moyer

and Hughes (2012) argue that ICT technologies can reduce

overall energy intensity and help to reduce carbon emissions.

Angelidou (2017) considers that the digital economy favors

networking at the physical and digital levels. Participation

in networks for exchanging knowledge and experience, as

well as sharing of resources, is achieved through cooperation

with other cities. Deng and Zhang (2022) use Chinese urban

panel data to investigate the impact of the digital economy

on urban pollution. The study revealed that the digital

economy significantly reduced urban environmental pollutant

emissions and contributed to the reduction of overall regional

environmental pollution emissions. This effect was mainly

achieved through the green innovation effect and the optimization

of industrial structures to reduce urban environmental

pollution emissions.

While the development of the digital economy has a positive

effect on pollution reduction and the urban governance capacity,

it may also have a negative impact on the environment. Ren

et al. (2021) discuss that the Internet promotes the energy

consumption scale through economic growth. Moreover,

Lange et al. (2020) argue that digitalization leads to more

energy consumption when the direct energy growth effects

from economic growth are greater than the energy efficiency

improvement effects from digitalization. Thus, the impact

of the digital economy on the relationship between green

technology innovation and industrial wastewater emission

reductions may vary, given the regional imbalances in China’s

economic development and the degree of development of

digital economics.

2.3 Spatial spillover e�ects of green
technology innovation on pollutant
emissions

Since environmental pollutants spread from one region to

another with air and water flow, spatial spillover effects should

be considered when studying pollutant emissions. Ma et al.

(2016) pointed out that the relationship between economic

development and PM2.5 pollution in China is consistent

with the EKC hypothesis, and factors such as urbanization,

population density, number of cars, and energy intensity are

the main sources of haze pollution. There is also a spatial

spillover effect of PM2.5 influenced by inter-regional economic

linkages. Wang et al. (2021) find that the rationalization and

upgrading of the industrial structure in neighboring cities help

alleviate local haze pollution. Similarly, Zhou et al. (2023)

construct a spatial measurement model and find out green-

technology innovation has a significant inhibitory effect and a

spatial spillover effect on atmospheric environmental pollution.

When environmental regulation reaches a level of intensity,

green-technology innovation can effectively curb atmospheric

environmental pollution. Accordingly, environmental regulations,

especially on green technology innovation can effectively reduce

pollution in various ways. For instance, Keller and Levinson (2002),

and Copeland and Taylor (2004) argue that the strengthening

of environmental regulations can induce firms to relocate

their businesses to reduce the cost of environmental pollution

management. More recently, Li et al. (2023) assess the effect of

green technology innovation on energy-environmental efficiency

and find a U-shaped impact, while environmental regulation can

mitigate the negative impact while strengthening its positive effect.

Interestingly, Zhang and Xu (2023) use panel data from 284

prefecture cities in China between 2007 and 2019 to demonstrate

the existence of the spatial spillover effect of green technology

innovation, which is affected by different types of environmental

regulations in distinct ways. More specifically, Chang et al. (2023)

investigate the moderating effect of environmental regulations

on green innovation and carbon dioxide emissions reduction.

Among different types of regulatory instruments, investment-based

regulation is the most effective in promoting the relationship

between green innovation and emissions reduction. Besides

regulations, financial agglomeration level is another influencing

factor in the effect of green technology innovation on carbon

emission (Han et al., 2022). In addition, the exchange of knowledge

and experience through digital technologies may result in spatial

spillovers from the role of green technologies in pollutant

emissions. Therefore, the efficiency of environmental management

may also be influenced by spatial factors.

Although previous research has established the spatial spillover

effect of green technology innovation on carbon emission, we

found fewer studies have focused on the spatial spillover effects of

industrial wastewater. Hecker et al. (2020) suggest that wastewater

treatment spills over among neighboring municipalities. But their

study focuses on the spatial spillover effects of the degree of

social development and urbanization on sewage treatment capacity.
Shao (2020) finds that per capita gross ocean product has notably
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intensified marine pollution. Nevertheless, the impact of this trend
appears to be diminishing over time, indicating that China is still

situated in the early phase of the EKC, with the peak yet to be
reached. Furthermore, high-quality marine patents exhibit a more

pronounced effect in reducing marine pollution. However, the

study focuses on the marine economy and does not provide a

detailed analysis of wastewater generated by industry as a whole,

as well as municipal wastewater management.

Different from the existing literature on the effect of green

technology innovation on atmospheric pollutants and carbon

emissions, this paper contributes to the literature by focusing more

on wastewater and municipal pollutant treatment capacity. More

specifically, we analyze the spatial spillovers of green technology

innovations on wastewater reduction and municipal wastewater

treatment capacity improvements, and on this basis we compare

whether such spatial spillovers differ between regions due to

differences in the level of economic development or the degree of

development of digital economics.

3 Methodology and data

3.1 Model

3.1.1 E�ect of green innovation on water
pollution

As previously stated, there exists a non-linear relationship

between the level of technological or economic development

and pollution reduction. One of the objectives of this paper

is to ascertain whether a similar non-linear relationship exists

between the level of innovation in green technology innovation

and pollution reduction. To test whether there is a nonlinear

relationship between green technology innovation and integrated

water pollution prevention and control, the following basic model

(Equation 1) is estimated:

Yit = a0 + a1Grinvit + a2Grinv
2
it + a3CVit + γi + λt + εit (1)

Where i and t represent the city and year respectively. a0 is a

constant term, Grinvit represents the green technology innovation

level, and Grinv2it represents the square of green technology

innovation. CVit is the vector of control variables, γi and λt

are the city and year fixed effect, respectively, and εit is an

error term. Yit is the vector of dependent variables to represent

the degree of integrated water pollution prevention and control.

We utilize two primary indicators to assess the water pollution

treatment. The first is the volume of industrial wastewater, which

is known as a major component of water pollution. The second

indicator is the ratio of wastewater untreated by the centralized

sewage treatment plants. This measures the degree of a city’s

sewage collection and treatment capabilities from the perspective

of municipal infrastructure construction. Indeed, lower values of

these two indicators signify a better level of water pollution control.

Furthermore, considering the spatial spillover of pollutant

emissions, the subsequent spatial Durbin model is estimated

to control the possible bias. This bias could be caused by

the influence of spatial correlation of wastewater emissions

or municipal wastewater treatment capacity on the non-linear

relationship between green innovation and pollution. To test

whether there is a spatial effect, we estimate the following model

(Equation 2):

Yit = ρ
∑n

j=1 WijPollutionit + a0 + a1Grinvit+a2Grinv
2
it

+
∑n

j=1 WijGrinvitϕ1+γi + λt + εit (2)

Where ρ is the spatial lag estimator and shows the degree of

mutual influence of pollutant emissions in neighboring areas, ϕ

represents the spatial lag estimator of explanatory variables, and

Wij represents the spatial weight matrix. The spatial matrix here

is established in two ways: one is the spatial proximity matrix,

which assigns a value of 1 if two cities are geographically adjacent,

and 0 otherwise. The other is the spatial distance matrix, which

assigns a value of 1 according to the reciprocal of the distance

between cities. Given that neighboring regions have greater weights

in the spatial weight matrix, there may be a proximity transfer

effect of the positive impact of green technology innovation

on pollution reduction or an increase in municipal wastewater

treatment capacity.

The key independent variable Grinvit represents the green

technology innovation level, presented by the natural logarithm of

the amount of a city’s green invention patents. There are two main

dependent variables are selected as the proxies of integrated water

pollution prevention and control in cities, including industrial

wastewater (lnew) and the ratio of wastewater untreated by the

centralized sewage treatment plants, representing the municipal

wastewater treatment capacity, i.e., the ration of unprocessed

sewage (sewage ratio).

In terms of control variables, we utilize the ratio of the

secondary industry to GDP (IS) to represent the industrial

structure. The natural logarithm of per capita GDP (lnpgdp) is used

to measure the level of economic development in cities. Referring

to Shen et al. (2017), we use the proportion of actual FDI to total

GDP (Open) by cities to represent the degree of trade openness, and

the proportion of total retail sales of social consumer goods to total

GDP (Consumption) is adopted to indicate domestic consumption.

Additionally, we also included population density (PD) as a control

variable to measure urbanization level.

3.1.2 The influence of the digital economics
The above section aims to demonstrate the effect of green

innovation on water pollution, now we further explore how digital

economic development affects the relationship between green

technology innovation and pollutant reduction (Equation 3):

Yit = ρ
∑n

j=1 WijPollutionit + a0 + a1Grinvit

+a2Grinv
2
it + a3digitalit + a4Grinvit∗digitalit

+
∑n

j=1 WijGrinvitϕ1+γi + λt + εit (3)

According to the principal component analysis by Zhao et al.

(2020), wemeasure the level of digital economic development using

the following five indicators: the number of Internet users per 100

people, the proportion of employment in the computer service
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and software industry, per capita telecommunications cost (yuan),

the number of mobile phone users per 100 people, and the China

Digital Inclusive Finance Index. Therefore, the index digitalit is

obtained to measure the level of digital economic development in

city i in year t.

By adding the interaction of the digital economic development

proxy digitalit and the green innovation variable Grinvit and

comparing it with Model (2), we can observe how digital economic

development affects the relationship between green innovation

level and pollutant reduction.

3.2 Data

The key explanatory variable in this study is the number

of green invention patents granted in each city, published by

China’s National Intellectual Property Administration. Based on

the definition of green patents from the International Patent

Green Classification List published by the World Intellectual

Property Organization (WIPO GREEN), it includes Alternative

energy production, Transportation, Energy conservation, Waste

management, Agriculture/Forestry, Administrative, Regulation or

design aspects and Nuclear power generation. Notably, the actual

patents granted can filter out invalid applications and represent

the quality of invention patents. Besides, considering obtaining

patent grants is generally 2 years after patent application, using the

number of patents granted can more accurately measure the effect

of green inventions on pollutant reduction (Xu and Zhang, 2021).

The wastewater emissions data, the ratio of unprocessed

sewage and control variables are from the China Urban Statistical

Yearbook. Some missing values are replaced by data in the city’s

statistical yearbooks. For missing values that cannot be obtained

from either resource, we use linear interpolation to make them

balance. The China Digital Inclusive Finance Index is collected

from the Digital Finance Research Center of Peking University.

This paper focuses on 283 prefecture cities in China from

2011 to 2018, with a total of 2264 observations. Table 1 shows the

descriptive statistics of the main variables in this paper.

Figure 1 demonstrates the geographical distribution

characteristics of industrial wastewater emissions in 2011 and

2018. It shows a significant reduction in industrial wastewater

emissions in 2018 compared to 2011. Meanwhile, regions with

high industrial wastewater levels are mainly concentrated in the

eastern coastal areas. In 2018, the cities with the highest industrial

wastewater were Shanghai, Suzhou, and Zhangzhou. The Pearl

River Delta urban agglomeration, Fujian Province, Shandong

Province, and the Yangtze River Delta urban agglomeration are all

heavily affected by industrial wastewater emissions. In the central

region, Wuhan and Jiujiang have higher industrial wastewater

emissions, while in the western region, Chongqing has higher

industrial wastewater emissions.

Figure 2 illustrates the ratio of unprocessed sewage in the East,

Central, and West regions from 2011 to 2018, reflecting changes

in municipal wastewater treatment capacity in each region. It is

evident that there has been a substantial increase in municipal

wastewater treatment capacity nationawide. Notably, in 2011, the

Central region’s municipal wastewater treatment capacity was close

to that of the Western region, but by 2018, it had nearly equaled

the capacity of the Eastern region. For the Eastern region, the

significant improvements in sewage treatment capacity is primarily

due to the concentration of industrial wastewater discharges and

the persistent gap between sewage collection capacity, treatment

technology, and that of developed countries.

4 Empirical results

4.1 Baseline FE results

Table 2 shows the baseline results of the fixed-effects model (1).

Columns 1 and 3 indicate that green innovation has a negative

impact on both industrial wastewater emission and the wastewater

untreated by the centralized sewage plants, but these estimators

are not significant. Columns 2 and 4 show the estimation with the

addition of the quadratic term of green innovation. It reveals a U-

shaped relationship between green technology innovation and both

wastewater emissions and the ratio of unprocessed sewage. More

specifically, as green technology innovation progresses, industrial

water pollution first decreases and then increases, and so does the

ratio of unprocessed sewage.

A possible reason for the observed trends is that wastewater

primarily originates from industries such as papermaking, chemical

production, coal mining, and food processing, while wastewater

treatment relies on biochemical technology. When purifying

industrial wastewater, physical and chemical treatments of higher

difficulty commence after biochemical treatment. It means that,

when a city promotes biochemical green technology due to

environmental regulations, it can quickly reduce industrial

wastewater emissions through biochemical green technology

and also relocate enterprises that fail to meet environmental

requirements to other areas with less stringent requirements. As

a result, wastewater reduces quickly. Combined with Figure 1

above, cities most affected by industrial wastewater are mainly

concentrated in the economically better-developed eastern coastal

areas. Compared with the central and western regions, the level

of green technology innovation in the east is higher, which is

also the reason why wastewater treatment regulation has achieved

instant results. However, when considering cost, it is still difficult

to biodegrade polluted wastewater that cannot be treated by

green technology, especially when the wastewater containing toxic

substances cannot be treated by biochemical green technology. At

this time, this reduction effect decreases. After the biochemical

treatment facilities reach their limit, the mismatch between

the technology improvement and the accumulation of hard-to-

biodegrade pollution has led to a decreasing trend in the emission

reduction effect of green technology on industrial wastewater.

Regarding control variables, scientific and technological

expenditure and domestic consumption levels have a significant

impact on industrial wastewater emissions. The higher scientific

and technological expenditure is associated with lower wastewater

emissions. On the contrary, the higher scientific and technological

expenditure raises the sewage unprocessed rates. Besides, a higher

domestic consumption level is associated with lower wastewater

emissions and sewage unprocessed rates.
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TABLE 1 Descriptive statistics.

Variables Observation Mean SD Min. Max.

lnew 2264 8.222 1.103 2.079 11.450

Sewage ratio 2264 0.142 0.148 0.000 0.796

Grinv 2264 2.821 1.694 0.000 8.845

Grinv2 2264 10.830 11.890 0.000 78.230

digital 2264 −0.090 1.126 −2.180 14.030

IS 2264 0.471 0.104 0.144 0.893

lnpgdp 2264 −0.872 0.691 −2.823 1.714

PD 2264 0.044 0.034 0.001 0.265

Consumption 2264 0.389 0.116 0.000 0.878

Open 2264 0.181 0.291 0.000 2.284

FIGURE 1

The geographical distribution of wastewater in 2011 and 2018.

4.2 Spatial autocorrelation analysis

The above FE models illustrate the relationship between green

technology innovation and wastewater emissions or the ratio of

unprocessed sewage. However, can this effect spatially spill over

to neighboring companies? To answer this question, we employ

Moran’s Index (Moran, 1950) to identify the spatial association.

The Global Moran’s I is used to reflect the degree of correlation

differences between the attribute values of spatially adjacent or

neighboring regions at the global level.

Table 3 displays the global Moran’s I index of wastewater

emissions and the ratio of unprocessed sewage using both spatial

proximity and spatial distance matrices. It shows that Moran’s I

index is always significantly positive regardless of different spatial

weight matrices. Besides the overall agglomeration characteristics,

Moran’s I index of water pollution indicates different trends.

More specifically, compared to 2011, Moran’s I index of industrial

wastewater volume in the spatial adjacency matrix has a downward

trend, but it still remains above 0.3 in 2018. It indicates that

the spatial agglomeration characteristics of industrial wastewater

discharge volume are relatively obvious. Moran’s I index of

the untreated sewage rate, on the other hand, has an upward

trend, reflecting that the centralized untreated rate of sewage is

relatively similar among neighboring cities. From the results of the

spatial distance matrix, Moran’s index is much smaller than the

results of the spatial adjacency matrix, reflecting that the spatial

agglomeration characteristics of industrial wastewater discharge

volume and the untreated rate of urban sewage are more obvious

among neighboring cities. In addition, Moran’s I index in Table 4

also indicates that green innovation patents have significant spatial

agglomeration characteristics, and the spatial agglomeration of

green innovation is also on an upward trend.

4.3 General spatial autoregressive model

To test the validity of the spatial model, this paper first conducts

Wald and LR tests. This result shows that the hypothesis that the

spatial Durbin model can be degraded to the spatial lag model and

spatial error model is rejected at a 1% significance level. It means

Frontiers in Environmental Economics 07 frontiersin.org

https://doi.org/10.3389/frevc.2024.1393583
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Ruan and Zhang 10.3389/frevc.2024.1393583

FIGURE 2

The ratio of unprocessed sewage in eastern, central and western region (2011–2018).

that the spatial Durbin model with spatiotemporal double fixed

effects is superior to other models. Since the spatial Durbin model

assumes that the dependent variable of one region is affected by

the independent variable of other regions, that is, considering the

spatial lag of independent variables in the model, it is consistent

with the research question of testing the impact of local green

innovation on pollutant emissions in surrounding areas in this

paper. Therefore, all tests in this paper use the spatial Durbin

model. Table 5 shows the results of the spatial Durbin model

analysis of both the spatial proximity matrix and spatial distance

matrix of each city. It shows that in both the analysis of the spatial

proximity and distancematrix, we can see results that are consistent

with the baseline FE model in terms of direct effects.

When industrial wastewater is the dependent variable, in the

spatial proximity matrix analysis, both the linear and quadratic

terms of local green technology innovation are significantly

negative in terms of indirect effects. In the spatial distance

matrix analysis, both the linear and quadratic terms of green

innovation are significant, similar to direct effects, both showing

a U-shaped curve. When the ratio of unprocessed sewage is

the dependent variable, both indirect and direct effects show

a U-shaped relationship between green technology innovation

and the centralized untreated rate of sewage using both the

spatial distance matrix and spatial proximity matrix. Comparing

the results of spatial rho in the spatial proximity and spatial

distance matrix, the spatial rho of the spatial distance matrix

is not significant, reflecting that compared to city distance,

the spatial spillover effect of industrial wastewater discharge

volume and centralized untreated rate of sewage between

adjacent cities is stronger. In both spatial matrices, local

green technology innovation has an effective spillover effect on

reducing industrial wastewater in neighboring areas, indicating

that this conclusion is robust. This reflects that local industrial

wastewater discharge volume and untreated sewage rate are

influenced by the level of green innovation development in

neighboring cities.

4.4 Robust checks

Considering that the improvement of green technology

innovation may have a long-term impact on pollutant

reduction, we further conduct the following tests using

the lagged one and two terms of all explanatory variables.

The results in Tables 6, 7 show that in the direct effects

of local lagged one and two green innovation levels on

local industrial wastewater emissions and the ratio of

unprocessed sewage, the relationship between green technology

innovation level and industrial wastewater emissions and

the ratio of unprocessed sewage is U-shaped. This result is

rather robust.

From the perspective of indirect effects, the quadratic

terms of green innovation lagged by one and two periods

in both the spatial proximity and spatial distance matrixes

are significantly positive for the ratio of unprocessed sewage,

which is similar to the analysis results in Table 5. This

shows that after a certain time and reaching a certain level,

the level of green innovation in neighboring cities has a

negative impact on the ratio of unprocessed sewage. This

also indicates that once municipal sewage collection capabilities

and supporting facilities are improved, they are not easily affected

by time changes.
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TABLE 2 Baseline results.

(1) (2) (3) (4)

lnew lnew Sewage ratio Sewage ratio

Grinvit −0.022 −0.138∗∗∗ −0.002 −0.022∗∗

(0.027) (0.037) (0.006) (0.009)

Grinv2it 0.030∗∗∗ 0.005∗∗

(0.006) (0.002)

DPit 2.775 0.858 1.031∗ 0.698

(3.320) (2.809) (0.600) (0.534)

lnpgdpit −0.323∗∗ −0.350∗∗ −0.016 −0.020

(0.157) (0.156) (0.038) (0.037)

Consumtionit −1.161∗∗∗ −1.093∗∗∗ −0.183∗∗ −0.171∗∗

(0.304) (0.297) (0.084) (0.082)

openit −0.231∗ −0.117 0.026 0.046

(0.139) (0.138) (0.030) (0.033)

ISit 0.005 −0.035 0.168 0.161

(0.488) (0.492) (0.141) (0.138)

_cons 8.372∗∗∗ 8.411∗∗∗ 0.077 0.084

(0.275) (0.256) (0.090) (0.087)

City FE YES YES YES YES

Year FE YES YES YES YES

N 2264 2264 2264 2264

R-sq 0.924 0.925 0.761 0.764

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

TABLE 3 Moran’s I index of industrial wastewater and the ratio of unprocessed sewage: 2011–2018.

Year 2011 2012 2013 2014 2015 2016 2017 2018

Spatial proximity matrix

lnew 0.363∗∗∗

(8.996)
0.319∗∗∗

(7.917)
0.336∗∗∗

(8.328)
0.345∗∗∗

(8.572)
0.336∗∗∗

(8.335)
0.301∗∗∗

(7.484)
0.327∗∗∗

(8.123)
0.324∗∗∗

(8.038)

Sewage 0.204∗∗∗

(5.091)
0.141∗∗∗

(3.566)
0.177∗∗∗

(4.459)
0.222∗∗∗

(5.573)
0.198∗∗∗

(5.008)
0.198∗∗∗

(5.007)
0.223∗∗∗

(5.667)
0.290∗∗∗

(7.495)

Spatial distance matrix

lnew 0.077∗∗∗

(15.576)
0.083∗∗∗

(16.728)
0.083∗∗∗

(16.835)
0.084∗∗∗

(17.027)
0.083∗∗∗

(16.796)
0.076∗∗∗

(15.470)
0.088∗∗∗

(17.692)
0.086∗∗∗

(17.326)

Sewage 0.044∗∗∗

(9.183)
0.035∗∗∗

(7.527)
0.041∗∗∗

(8.740)
0.045∗∗∗

(9.481)
0.037∗∗∗

(8.049)
0.038∗∗∗

(8.119)
0.044∗∗∗

(9.394)
0.043∗∗∗

(9.512)

Z-value in parentheses: ∗∗∗p < 0.01.

However, the local green innovation level lagged by one or

two periods is not significant with the industrial wastewater in

neighboring areas. This reflects that the longer the time, the

beneficial spillover of green technology innovation in neighboring

areas to industrial wastewater reduction is not significant. A

possible explanation is that, with the influence of time or policy

changes, local areas become more willing to carry out green

innovation to reduce pollutant emissions, while the beneficial

spillover effect of green innovation in neighboring areas on

industrial wastewater reduction in the early stage is weakened.

5 Further analysis

5.1 The e�ect of digital economic
development

The previous results demonstrate a U-shaped relationship

between technology innovation and water pollution, in terms of

both industrial wastewater and the ratio of unprocessed sewage.

Moreover, this effect has a spatial spillover effect on neighboring

areas under certain conditions. Next, we analyze whether this

Frontiers in Environmental Economics 09 frontiersin.org

https://doi.org/10.3389/frevc.2024.1393583
https://www.frontiersin.org/journals/environmental-economics
https://www.frontiersin.org


Ruan and Zhang 10.3389/frevc.2024.1393583

TABLE 4 Moran’s I index of green technology innovation: 2011–2018.

Year 2011 2012 2013 2014 2015 2016 2017 2018

Spatial proximity matrix

Grinv 0.219∗∗∗

(5.445)
0.234∗∗∗

(5.827)
0.247∗∗∗

(6.136)
0.234∗∗∗

(5.829)
0.273∗∗∗

(6.773)
0.320∗∗∗

(7.929)
0.294∗∗∗

(7.291)
0.312∗∗∗

(7.734)

Spatial distance matrix

Grinv 0.056∗∗∗

(11.514)
0.059∗∗∗(12.229) 0.064∗∗∗

(13.202)
0.059∗∗∗

(12.105)
0.066∗∗∗

(13.539)
0.078∗∗∗

(15.751)
0.076∗∗∗

(15.460)
0.084∗∗∗

(16.918)

Z-value in parentheses: ∗∗∗p < 0.01.

relationship is related to the level of digital economic development

in cities.

The larger value of the digital economic development proxy

variable indicates a higher level of development. In Model (3),

the interaction term Grinv∗itdigitalit is the main research focus.

After adding the digital economic development level index, in the

analysis of the spatial proximity and distance matrix, the U-shaped

relationship between green innovation level and sulfur dioxide

emissions remains significant.

Based on the calculation of the full sample mean of digitalit ,

the overall effect of green innovation level on water pollution

should be the sum of the first-order green innovation level and

the coefficient of Grinv∗itdigitalit multiplied by the mean value of

digitalit (see Table 1). For green innovation’s effect on industrial

wastewater, spatial proximity matrix analysis, as shown in column

(1) of Table 8, after adding, the green innovation level’s estimator

changes from −0.126 to −0.081 and the U-shaped bottom point

was postponed from 2.520 to 2.696. Meanwhile, in the spatial

distancematrix analysis column (3) of Table 8, the green innovation

changes from −0.129 to −0.080, while the U-shaped bottom

point increases from 2.688 to 3.076. The postponed inflection

point means that digital economic development enhances green

innovation’s negative regulatory effect on industrial wastewater.

This shows that when a city’s digital economic development

improves along with urbanization, it makes resource-intensive

industries, such as papermaking and oil processing, relocate to

other cities with lower levels of digital economic development.

In addition, digital technology development brought about by

improved digital economic development can in turn empower

traditional industries to optimize resource allocation. This would

limit large-scale emissions that need to be physically treated

and increase biochemical green technology’s contribution to

reducing industrial wastewater. However, regarding the ratio of

unprocessed sewage, i.e., the city’s capability of collecting and

treating sewage, the development of digital economics does not

impose a significant impact.

Next, whether the digital economic development has a spatial

spillover effect on green technology innovation’s impact on

pollutant reduction is analyzed. Grinvit , Grinvit
2, digitalit and

the interaction Grinv∗itdigitalit are significant when industrial

wastewater is used as a dependent variable in spatial distance

matrix analysis. It shows that in spatial distance matrix analysis

for industrial wastewater, the city’s digital economic development

has a beneficial spatial spillover effect on green innovation’s impact.

However, since industrial wastewater is mainly concentrated along

coastal areas, this benign effect is more significant using a spatial

distance matrix.

5.2 Geographical heterogeneity

The impact of green technology innovation on water pollution

may have spatial heterogeneity. This paper uses spatial proximity

weights and divides the analysis into eastern, central and western

regions to analyze the impact of geographical heterogeneity. Table 9

shows the regression results for the eastern region. First, there

is a U-shaped relationship between green technology innovation

and industrial wastewater emissions. After adding the digitalit (the

mean value of digitalit in the eastern region is 0.451), the interaction

digital∗itGrinvit remains statistically significant. The total effect of

green technology innovation on industrial wastewater emissions

changed from−0.237 to−0.175, and the bottom point of U-shaped

innovation changed from 4.740 to 5.462. The postponed U-shaped

inflection point indicates that the digital economy helps mitigate

the negative effect of green technology innovation on industrial

wastewater emissions after reaching a certain technological level.

Furthermore, as the industrial wastewater is concentrated in the

Eastern areas, it requires a higher technology level to achieve the

national average processing rate.

Regarding indirect effects, in eastern cities, for industrial

wastewater, both direct and indirect effects are similar and

show a U-shaped relationship reflecting that green technology

innovation’s effect on first inhibiting and then increasing industrial

wastewater emissions has a spatial spillover effect. This is because

industrial wastewater is mainly concentrated in the eastern coastal

areas, where the direct effect of green innovation level on local

industrial wastewater and the indirect effect of neighboring cities

on local industrial wastewater are more pronounced. However,

in the eastern group, the digital economy does not have a

significant spatial spillover effect on the emission reduction of

green innovation, which may be due to the higher level of

economic development and more matured digital economy in the

eastern coastal cities. In addition, the impact of the level of green

innovation is not significant on the ratio of unprocessed sewage.

For the central region, the direct effects of green technology

innovation on industrial wastewater still show a significant U-

shaped relationship [Table 10, column (1)]. Compared to the U-

shaped turning point of 4.740 in the eastern region, while that

in the central region is 1.538, reflecting that the level of green

technology innovation in the central region is significantly lower
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TABLE 5 Pollution reduction and spatial spillover.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Spatial proximity matrix Spatial distance matrix

Grinvit −0.126∗∗∗ −0.019∗∗∗ −0.129∗∗∗ −0.021∗∗∗

(0.022) (0.005) (0.023) (0.005)

Grinv2it 0.025∗∗∗ 0.004∗∗∗ 0.024∗∗∗ 0.004∗∗∗

(0.004) (0.001) (0.004) (0.001)

W×

Grinvit −0.115∗∗ −0.034∗∗ −1.396∗∗∗ −0.416∗∗∗

(0.044) (0.010) (0.342) (0.083)

Grinv2it 0.009 0.005∗∗ 0.143∗∗∗ 0.052∗∗∗

(0.007) (0.002) (0.040) (0.010)

Spatial

rho 0.095∗∗∗ 0.072∗∗ 0.238 0.143

(0.028) (0.029) (0.178) (0.179)

LR_Direct

Grinviv −0.128∗∗∗ −0.020∗∗∗ −0.131∗∗∗ −0.021∗∗∗

(0.023) (0.006) (0.024) (0.006)

Grinv2iv 0.025∗∗∗ 0.004∗∗∗ 0.024∗∗∗ 0.004∗∗∗

(0.004) (0.001) (0.004) (0.001)

LR_Indirect

Grinvit −0.139∗∗ −0.038∗∗∗ −1.957∗∗ −0.504∗∗∗

(0.045) (0.011) (0.653) (0.137)

Grinv2it 0.013∗ 0.006∗∗∗ 0.205∗∗ 0.063∗∗∗

(0.008) (0.002) (0.066) (0.016)

LR_Total

Grinvit −0.267∗∗∗ −0.058∗∗∗ −2.089∗∗ −0.525∗∗∗

(0.050) (0.012) (0.656) (0.138)

Grinv2it 0.038∗∗∗ 0.010∗∗∗ 0.229∗∗∗ 0.068∗∗∗

(0.008) (0.002) (0.066) (0.016)

N 2264 2264 2264 2264

R-sq 0.000 0.043 0.000 0.003

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

than that in the eastern region. The green technology innovation

has a significant promoting effect on the centralized treatment rate

of sewage [Table 10, column (2)]. From the perspective of indirect

effects, there is no significant spatial spillover effect in the U-shaped

relationship between the level of green technology innovation and

industrial wastewater discharge and the centralized treatment rate

of sewage treatment plants.

Regarding the role of digital economic development on green

technology innovation’s pollutant reduction effect, the interaction

digital∗itGrinvitis only significant in the analysis of industrial

wastewater emissions [Table 10, column (3)]. After adding variable

digitalit(mean value is −0.388), green innovation’s effect on

industrial wastewater emissions’ U-shaped bottom points changed

from 1.538 to 1.132. This may be because industries with higher

industrial wastewater migrate from the eastern to the central

region. Accompanied by the development of the digital economy,

infrastructure construction in the central region is also expanding,

leading to a rapid increase in industrial wastewater. Given the lower

level of green innovation in the central region, this accelerates

the arrival of the U-shaped turning point. In the analysis of the

central region, the indirect effect becomes an inverted U-shaped

relationship. This indicates that cities with a better-developed

digital economy in the central region are more likely to transfer

industrial wastewater pollution to neighboring cities, leading to a
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TABLE 6 Robust Check—Using the independent variable lagged one term.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Spatial proximity matrix Spatial distance matrix

Main

L. Grinvit −0.127∗∗∗ −0.020∗∗∗ −0.120∗∗∗ −0.021∗∗∗

(0.024) (0.005) (0.025) (0.005)

L. Grinv2it 0.028∗∗∗ 0.004∗∗∗ 0.026∗∗∗ 0.005∗∗∗

(0.005) (0.001) (0.005) (0.001)

W×

L. Grinvit 0.026 −0.012 −0.340 −0.137∗

(0.047) (0.010) (0.368) (0.082)

L. Grinv2it 0.002 0.005∗∗ 0.073 0.032∗∗

(0.008) (0.002) (0.046) (0.010)

Spatial

rho 0.099∗∗∗ 0.073∗∗ 0.171 0.152

(0.030) (0.031) (0.199) (0.194)

LR_Direct

L. Grinvit −0.126∗∗∗ −0.020∗∗∗ −0.120∗∗∗ −0.021∗∗∗

(0.025) (0.005) (0.025) (0.006)

L. Grinv2it 0.028∗∗∗ 0.004∗∗∗ 0.025∗∗∗ 0.005∗∗∗

(0.005) (0.001) (0.005) (0.001)

LR_Indirect

L. Grinvit 0.013 −0.015 −0.473 −0.174∗

(0.049) (0.011) (0.458) (0.102)

L. Grinv2it 0.006 0.006∗∗ 0.101∗ 0.040∗∗

(0.009) (0.002) (0.058) (0.014)

LR_Total

L. Grinvit −0.113∗∗ −0.035∗∗ −0.593 −0.194∗

(0.054) (0.012) (0.460) (0.102)

L. Grinv2it 0.034∗∗∗ 0.010∗∗∗ 0.126∗∗ 0.045∗∗

(0.009) (0.002) (0.058) (0.014)

N 1981 1981 1981 1981

R-sq 0.033 0.003 0.271 0.002

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

significant increase in surrounding wastewater emissions. For the

centralized treatment rate of sewage, both the linear and quadratic

terms of green innovation level in the analysis of the digital

economy, are not significant in direct and indirect effects [Table 10,

column (4)], making it difficult to confirm the impact of the digital

economy on the centralized treatment rate of sewage treatment

plants in the central region.

As shown in column (1) of Table 11, we cannot find a U-shaped

direct effect between green innovation and industrial wastewater.

However, the U-shaped relationship between green innovation and

the ratio of unprocessed sewage is more pronounced than in the

eastern and central regions [Table 11, columns (2, 4)]. On the other

hand, from the perspective of indirect effects, the western region,

similar to the eastern region, exhibits a U-shaped curve when

compared to the central region. In contrast to the eastern region,

the spatial spillover effects of green technology innovation on

industrial wastewater and wastewater treatment are weaker in the

western region. A possible explanation could be the lower level of

green technology innovation in the western region compared to the

eastern. Simultaneously, constrained by the economic development

level in the western region and the distance from eastern cities,

fewer high-polluting industries relocate from the east to the west
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TABLE 7 Robust Check—Using the independent variable lagged two terms.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Main Spatial proximity matrix Spatial distance matrix

L2. Grinvit −0.114∗∗∗ −0.025∗∗∗ −0.104∗∗∗ −0.023∗∗∗

(0.026) (0.006) (0.027) (0.006)

L2. Grinv2it 0.031∗∗∗ 0.003∗∗ 0.029∗∗∗ 0.004∗∗

(0.006) (0.001) (0.006) (0.001)

W×

L2. Grinvit −0.021 0.007 0.156 −0.041

(0.051) (0.011) (0.408) (0.085)

L2. Grinv2it 0.006 0.005∗∗ 0.013 0.041∗∗∗

(0.010) (0.002) (0.054) (0.011)

Spatial

rho 0.092∗∗ 0.117∗∗∗ 0.183 0.293

(0.032) (0.034) (0.213) (0.190)

LR_Direct

L2. Grinvit −0.114∗∗∗ −0.025∗∗∗ −0.103∗∗∗ −0.023∗∗∗

(0.027) (0.006) (0.028) (0.006)

L2. Grinv2it 0.031∗∗∗ 0.004∗∗ 0.029∗∗∗ 0.004∗∗

(0.006) (0.001) (0.006) (0.001)

LR_Indirect

L2. Grinvit −0.036 0.004 0.146 −0.076

(0.053) (0.011) (0.501) (0.121)

L2. Grinv2it 0.010 0.006∗∗ 0.030 0.065∗∗

(0.010) (0.002) (0.070) (0.030)

LR_Total

L2. Grinvit −0.150∗∗ −0.020 0.043 −0.099

(0.058) (0.013) (0.503) (0.122)

L2. Grinv2it 0.041∗∗∗ 0.009∗∗∗ 0.058 0.068∗∗

(0.010) (0.002) (0.069) (0.030)

N 1698 1698 1698 1698

R-sq 0.006 0.025 0.058 0.059

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05.

than to the central region. This leads to a smaller increase in

wastewater levels in western cities compared to those in the central

region. Another possible reason for the region heterogeneity may

lie in the water distribution characteristics. Caused by the long

distance from the ocean and the fewer rivers, the western region

experiences a much drier climate than the central and eastern

regions. Therefore, water pollution in the western part may not

spread as easily as air pollutants, resulting in a weaker spillover

effect of the industrial wastewater.

Regarding the impact of the digital economy on water

pollution, column 3 in Table 11 indicates the interaction term

digital∗itGrinvit produces a significant result while the linear and

quadratic terms of green innovation show an insignificant inverted

U-shaped relationship. It means that due to the lower level of

the digital economy in western regions compared to eastern and

central regions, during the rapid development process of the

digital economy in western regions, infrastructure increase will

increase industrial wastewater. Meanwhile, due to lower levels of

green innovation in Western regions compared to Eastern regions,

existing green technologies in Western regions are insufficient to

support industrial wastewater reduction. For the impact of the

digital economy on the relationship between green innovation level

and municipal sewage processing capabilities, green technology

innovation hastened the U-shaped inflection point (from 1.92 to
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TABLE 8 Mechanisms—digital economy.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Main Spatial proximity matrix Spatial distance matrix

Grinvit −0.079∗∗ −0.021∗∗∗ −0.078∗∗ −0.023∗∗∗

(0.026) (0.006) (0.026) (0.006)

Grinv2it 0.015∗∗ 0.004∗∗∗ 0.013∗∗ 0.005∗∗∗

(0.005) (0.001) (0.005) (0.001)

digital∗itGrinvit 0.021∗∗∗ −0.001 0.022∗∗∗ −0.001

(0.006) (0.001) (0.006) (0.001)

digitalit −0.103∗∗ 0.008 −0.112∗∗∗ 0.005

(0.032) (0.008) (0.032) (0.008)

W×

Grinvit −0.090∗ −0.020 −0.823∗∗ −0.400∗∗∗

(0.053) (0.013) (0.403) (0.098)

Grinv2it 0.004 0.002 0.025 0.047∗∗

(0.009) (0.002) (0.060) (0.015)

digital∗itGrinvit 0.007 0.006∗∗ 0.224∗∗ 0.017

(0.012) (0.003) (0.085) (0.020)

digitalit −0.041 −0.047∗∗ −1.414∗∗ −0.186

(0.065) (0.015) (0.482) (0.114)

Spatial

rho 0.092∗∗∗ 0.072∗∗ 0.141 0.066

(0.028) (0.029) (0.190) (0.186)

LR_Direct

Grinvit −0.080∗∗ −0.021∗∗∗ −0.078∗∗ −0.023∗∗∗

(0.027) (0.006) (0.027) (0.006)

Grinv2it 0.015∗∗ 0.004∗∗∗ 0.013∗∗ 0.005∗∗∗

(0.005) (0.001) (0.005) (0.001)

digital∗itGrinvit 0.021∗∗∗ −0.001 0.023∗∗∗ −0.001

(0.006) (0.001) (0.006) (0.001)

digitalit −0.107∗∗∗ 0.006 −0.118∗∗∗ 0.004

(0.031) (0.007) (0.031) (0.007)

LR_Indirect

Grinvit −0.102∗ −0.022∗ −0.992∗ −0.438∗∗∗

(0.057) (0.013) (0.549) (0.129)

Grinv2it 0.006 0.003 0.027 0.051∗∗

(0.010) (0.002) (0.075) (0.017)

digital∗itGrinvit 0.010 0.007∗∗ 0.288∗∗ 0.021

(0.014) (0.003) (0.135) (0.025)

digitalit −0.062 −0.051∗∗ −1.814∗∗ −0.221

(0.072) (0.017) (0.782) (0.144)

LR_Total

Grinvit −0.183∗∗ −0.044∗∗ −1.070∗ −0.461∗∗∗

(Continued)
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TABLE 8 (Continued)

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Main Spatial proximity matrix Spatial distance matrix

(0.063) (0.015) (0.550) (0.129)

Grinv2it 0.021∗∗ 0.007∗∗ 0.040 0.056∗∗

(0.011) (0.002) (0.074) (0.017)

digital∗it Grinvit 0.032∗∗ 0.006∗ 0.312∗∗ 0.021

(0.015) (0.004) (0.135) (0.025)

digitalit −0.169∗∗ −0.045∗∗ −1.932∗∗ −0.217

(0.080) (0.019) (0.784) (0.144)

N 2264 2264 2264 2264

R-sq 0.002 0.056 0.001 0.017

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

TABLE 9 Heterogeneity analysis—eastern.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Grinvit −0.237∗∗∗ −0.010 −0.182∗∗∗ −0.009

(0.042) (0.010) (0.049) (0.011)

Grinv2it 0.025∗∗∗ 0.003∗∗ 0.016∗∗ 0.003

(0.006) (0.001) (0.007) (0.002)

digital∗itGrinvit 0.016∗∗ −0.000

(0.007) (0.002)

digitalit −0.092∗∗ 0.004

(0.042) (0.010)

W×

Grinvit −0.260∗∗ −0.001 −0.220∗∗ 0.005

(0.084) (0.019) (0.099) (0.022)

Grinv2it 0.048∗∗∗ 0.001 0.042∗∗∗ 0.000

(0.010) (0.002) (0.013) (0.003)

digital∗itGrinvit 0.009 0.002

(0.015) (0.003)

digitalit −0.076 −0.028

(0.083) (0.019)

spatial rho 0.031 −0.070 0.023 −0.070

(0.051) (0.054) (0.052) (0.054)

N 696 696 696 696

R-sq 0.002 0.003 0.004 0.001

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05.
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TABLE 10 Heterogeneity analysis–central.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Grinvit −0.120∗∗∗ −0.019∗∗ −0.043 0.005

(0.035) (0.009) (0.046) (0.012)

Grinv2it 0.039∗∗∗ 0.003∗ 0.025∗∗ −0.002

(0.008) (0.002) (0.010) (0.003)

digital∗itGrinvit 0.033∗∗ 0.011∗∗

(0.014) (0.004)

digitalit −0.100∗ −0.025

(0.060) (0.016)

W×

Grinvi 0.113 −0.009 0.345∗∗∗ 0.017

(0.076) (0.020) (0.102) (0.026)

Grinv2it −0.027∗ 0.003 −0.066∗∗∗ −0.002

(0.015) (0.004) (0.020) (0.005)

digital∗itGrinvit 0.114∗∗∗ 0.012

(0.034) (0.009)

digitalit −0.404∗∗ −0.037

(0.147) (0.038)

spatial rho 0.102∗∗ 0.102∗∗ 0.072 0.087∗

(0.048) (0.046) (0.049) (0.046)

N 904 904 904 904

R-sq 0.128 0.188 0.149 0.189

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

1.80). This reflects that in the western region, the adverse effects of

increased wastewater resulting from the development of the digital

economy may outweigh the positive spillover effects. Therefore, in

the western region, there is still a need to expedite the integration

of digital technology into green technology innovation and improve

municipal sewage collection capabilities and supporting facilities.

6 Conclusion

Since the reform and opening up, the traditional economic
development model of high energy consumption, high pollution,

and high emissions has led to excessive consumption of resources

and intensified environmental pollution in China. Technological
progress has always been regarded as an important means to

alleviate environmental pollution, especially the technological
progress in clean energy, pre-treatment or/and final treatment

of sewage, which is commonly adapted to achieving the goal of
reducing environmental pollution. Among them, for wastewater

treatment, technological progress has a certain promoting effect

on wastewater and municipal wastewater collection and treatment
capabilities. However, green technology innovation is more difficult

to get and may cost more research funding than traditional

innovation. Based on the ECK theory, this paper aims to explore

the non-linear relationship between green technology innovation

and water pollution reduction. Employing the city-level data from

2011 to 2018 in China and the spatial Durbin model with time and

space fixed effects, we first estimate the impact of the level of green

innovation development on industrial wastewater and municipal

wastewater treatment capabilities and their spatial spillover effects.

Then, we analyze whether the development of the digital economy

can have a positive effect on the relationship between green

technology progress and environmental pollutant emissions and

municipal wastewater treatment capabilities. Finally, it analyzes

whether there is spatial heterogeneity in the effect of improving the

level of green technology innovation on pollutant emissions and

municipal wastewater treatment.

The contribution of this paper lies in focusing on a pollutant

with regional characteristics–industrial wastewater. Although the

effect of green technology innovation on air pollutants and carbon

emissions is widely confirmed by recent research, few studies

have addressed water pollution and wastewater management,

particularly in China. Unlike air pollution, which is clustered in

all major regions, industrial wastewater is highly concentrated

in China’s coastal areas. However, there is a trend of shifting

from the east to the central and western parts of the country

as the economy develops. In this paper, we concentrate on the

discharge and treatment of sewage, examining the impact of

the overall level of green innovation in cities on sewage and
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TABLE 11 Heterogeneity analysis—western.

(1) (2) (3) (4)

lnew Sewage ratio lnew Sewage ratio

Grinvit −0.101∗∗ −0.023∗∗ 0.007 −0.050∗∗∗

(0.045) (0.010) (0.058) (0.013)

Grinv2it 0.017 0.006∗∗ −0.009 0.013∗∗∗

(0.010) (0.002) (0.013) (0.003)

digital∗it

Grinvit 0.051∗∗ −0.013∗∗∗

(0.017) (0.004)

digitalit −0.141∗∗ 0.028∗

(0.066) (0.015)

W×

Grinvit −0.144∗ −0.040∗∗ −0.102 −0.015

(0.083) (0.018) (0.107) (0.024)

Grinv2it 0.009 0.007 0.001 0.001

(0.019) (0.004) (0.024) (0.005)

digital∗it

Grinvit 0.011 0.013∗

(0.031) (0.007)

digitalit −0.004 −0.076∗∗

(0.113) (0.025)

spatial rho 0.030 −0.034 0.021 −0.036

(0.045) (0.050) (0.045) (0.051)

N 664 664 664 664

R-sq 0.052 0.101 0.080 0.066

Standard error in parentheses: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

the resulting spatial spillover effects. The main conclusions are

as follows: First, the effect of green technology innovation on

industrial wastewater discharge volume shows a decrease first

and then an increase. This effect is most pronounced in the

eastern region, which is closely related to the concentration of

industrial wastewater discharge in developed coastal areas in the

east. This effect not only affects local cities but also has a spatial

spillover effect on neighboring cities. Second, for central regions,

with the development of the digital economy bringing large-scale

infrastructure construction, accelerated industrialization process,

deepened urbanization degree, and some industries that produce

a large amount of wastewater pollution transferred from eastern

regions to central regions, the development of the digital economy

may bring negative regulation to the emission reduction effect

of green technology progress. Thirdly, in eastern regions where

the digital economy is highly developed, the development of

the digital economy has a positive effect on the relationship

between green technology progress and industrial wastewater

discharge. Finally, in the western region, where the digital

economy and the level of green technology innovation are most

underdeveloped, it is crucial to further strengthen the influence

of green innovations on urban wastewater treatment capacity and

supporting facilities. Despite the fact that the increase in water

pollution has not been as pronounced as in the central region,

the relatively low levels of digital and green technology innovation

necessitate ongoing efforts to enhance their impact on wastewater

treatment infrastructure.

From the conclusions of this paper, we can get the following

policy tips: First, in economically developed coastal areas,

more digital technologies could be organically combined with

existing green technologies and applied to more scenarios.

For instance, digital technologies may be employed more

to expand markets, narrow technological gaps with non-

green technology innovation, reduce costs for research and

development and industrialization of green technologies

and motivate enterprises in eastern cities to develop green

technologies actively, thereby accelerating improvement in

green technology innovation levels and achieving goals for

reducing industrial wastewater emissions. Second, central

and western cities should actively use green technology

innovations to improve municipal wastewater collection and

treatment capabilities. Thirdly, during accelerating economic
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construction in central and western regions, we should pay

more attention to optimizing industrial structure, formulating

relevant environmental regulations and improving efficiency in

environmental governance. Especially when introducing industries

from eastern regions, more effort should be paid to green

technologies and attract more enterprises focusing on high-quality

development to avoid increasing pollution and technological

gaps, leading to worsening environmental pollution in central and

western regions.

This study is constrained by the availability of data, and

several areas could be further explored in future research. Firstly,

the primary independent variable, the level of green technology

innovation, is represented by the natural logarithm of the quantity

of a city’s green invention patents. However, the lack of a

specific International Patent Classification (IPC) for each patent

hinders the identification of the precise mechanism through

which green technology innovation impacts water pollution

reduction. Secondly, the SDGs and the Paris Agreement have

been increasingly addressed in recent years, and numerous

countries, including China, have implemented more stringent

environmental protection regulations. These regulations and

policies also contribute to the reduction of industrial pollution,

in conjunction with green technology innovations. However, this

study, which only encompasses city-level data from 2011 to 2018

in China, does not fully consider the intensive effect of policies

implemented after 2018. Furthermore, while this study attempts

to incorporate more regional distribution characteristics, it pays

less attention to the natural endowment of water resources. Unlike

atmospheric pollutants, which are dispersed by air circulation,

wastewater spillover is dependent on rivers and lakes. Regrettably,

data on geographical and climate characteristics are not available

in this study. Although the heterogeneity analysis aims to address

this issue to a certain extent, future research on the spatial

distribution of water pollution should pay more attention to

these factors.
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