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Introduction: In Ghana and comparable developing countries, advancing

farm investments and adopting innovative rice farming techniques encounters

obstacles because of climate change. Smallholder farming households, a�ected

by climate events, confront substantial risks that a�ect both agricultural returns

and investment decisions.

Methods: This research evaluates the enduring impact of fluctuating weather

patterns in a single-cropping agroecological region on rice yields, examining the

consequent influence on the utilization of inorganic fertilizers and agricultural

input investment among rain-fed households, investigating disparities, reasons,

and underlyingmechanisms. The research used panel data from60 communities,

employing regression analysis and probability models. It integrated monthly

cropping season weather data across the study zone’s grid cells for community-

level time series analysis.

Results and discussion: The results suggest that while weather shocks have

a minimal impact on farmers abandoning inorganic fertilizers altogether, they

do significantly decrease the overall amount of fertilizer used, agricultural

investments, and rice crop yields. Floods and severe shocks exert a more

pronounced influence compared to droughts and moderate shocks. O�-farm

employment aids households in recovering from these shocks and maintaining

agricultural investments. Climate shocks impact agricultural investment by

reducing farm household income via altering crop yield and revenue.

Consequently, this disrupts their ability to save, resulting in financial constraints.

Encouraging and sustaining farm investments in vulnerable agrosystems involves

diversifying income sources through combined crop and livestock farming,

supplemented by o�-farm activities. This strategy is fortified by climate-resilient

farming practices, including resilient crop varieties supported by irrigation,

weather insurance, and risk-oriented credit.

KEYWORDS

impact, weather shocks, fertilizer usage, farm input investment, rice yield, northern

Ghana

1 Introduction

Increasing worries regarding climate change and weather-related disruptions are major

risks to worldwide agriculture and staple food output. In Sub-Saharan Africa (SSA),

achieving Sustainable Development Goals (SDGs) in the face of climate change relies

heavily on improving production. Understanding climate change impact on agriculture
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is crucial for creating resilient farming systems that can feed regions

sustainably and contribute to global development goals. Climate

change ongoing effects on African farming, especially in SSA,

hinder the sustainable cultivation and production of essential crops

like rice, posing a threat to achieving critical SDGs.

In recent years, the vulnerability of African agricultural

systems to the adverse effects of climate change has become

more evident. Smallholder farmers, who form the backbone of

agricultural production in many African countries, often face

heightened risks due to their reliance on rain-fed agriculture

and limited access to resources and technology. This is partly

because of the regions reliance on agricultural sector, the lack of

accessible weather-contingent insurance securities and inadequate

risk-mitigation strategies, such as limited credit and insurance

markets, contribute to significant uninsurable risks in rainfed-

dependent crop production (Hill and Viceisza, 2012; Newman and

Tarp, 2020).

Rice, a staple crop providing vital nourishment and

energy globally, holds immense significance for food security,

sustainability, and livelihoods (He et al., 2021; do Nascimento

et al., 2022; Xinkang et al., 2023). Rice cultivation supports global

food systems significantly (Arouna et al., 2017; Sun et al., 2022).

In Sub-Saharan Africa (SSA), where rice plays a crucial role in

feeding impoverished communities, its demand is expected to rise

by 3% to 4% annually (Adjao and Staatz, 2015; Arouna et al., 2021;

OECD/FAO, 2021). However, SSA struggles to meet this growing

demand due to lagging production and yields that do not align

with global standards (Figure 1).

1.1 The Ghanaian context

In Ghana, rice stands as the second most important grain,

witnessing significant consumption growth over the last 20 years.

It plays a pivotal role in sustaining both livelihoods and income for

Ghanaian farmers.

However, local production struggles to keep up with the

increasing demand for rice in the country (Figure 2). In the

last 30 years, Ghana has experienced a fourfold surge in rice

consumption, reaching 51.63 kg per capita annually, posing a

threat to food security (MoFA, 2019; Ouédraogo et al., 2021).

Reliance on imports due to inadequate local production leaves

Ghana only 50 percent self-sufficient in rice (FAO, 2015, 2022;

MoFA, 2021; OECD/FAO, 2021). Despite efforts to introduce better

growing methods, Ghana struggles to adopt these advancements,

resulting in low rice yields (3 t/ha) compared to its potential (6.5+

t/ha), largely due to dependence on rainfall, low farm investments

and underutilization of improved production techniques by

farmers (Abel et al., 2014; Ragasa and Chapoto, 2017; MoFA,

2021).

Rice production in Ghana comprises three ecosystems:

irrigated, rain-fed lowland, and rain-fed upland. Approximately

90% of production occurs in rain-fed areas, contributing

77% of domestic production and significantly impacted by

weather conditions (Abel et al., 2014; Ragasa and Chapoto,

2017; MoFA, 2019, 2021). Rain-fed regions yield about <3

tons per hectare, whereas irrigated areas produce twice

that amount (6 t/ha), (MoFA, 2021). The system heavily

depends on rainfall and is susceptible to climate change,

causing yield variations. Small-scale farmers, averaging <2

hectares, primarily manage this system (Issahaku and Abdulai,

2020).

Agricultural weather conditions in Ghana have undergone

significant changes per decade due to climate change.1 Forecasts

indicate a potential increase in temperatures by up to +3◦C,

with more prolonged dry periods and heightened heat

exceeding 35 degrees Celsius. Both minimum and maximum

daily temperatures have been on the rise, consistent with the

anticipated trends (Fahad et al., 2019; World Bank Group,

2023). This may result in a situation where farmers either

reduce or divert their intended farm investments due to

the uncertainties and challenges posed by these climate

shifts strategies (Sesmero et al., 2018; Bharwani et al., 2020).

The weather data2 from the study zone aligns with the

predicted trends. The prevailing situation in the savanna

agroecological zone in Northern Ghana requires specific

attention due to its unique environmental conditions3 and

vital role as a major food provider, raising considerable

economic concerns.

1.2 Literature and contribution

Prior research (Alem et al., 2010; Arslan et al., 2017;

Marenya et al., 2020; Zakaria et al., 2020; McCarthy et al.,

2021; Bora, 2022; Gelo, 2022) has primarily focused on adopting

technology, specifically within System of Rice Intensification (SRI)

and Climate Smart Agricultural Technologies (CSAT), to handle

production risks in agricultural production. In rice farming, there

is limited study on how climate impacts the move away from

1 Refer to World Bank Group (2023): Moreover, there has been a 13

percent increase in the average number of hot days, and the wet season is

expected to bring more erratic and intense rainfall in the coming decades,

accompanied by reduced overall precipitation levels (Fahad et al., 2019;

World Bank Group, 2023), for details on “climate change in Ghana (1950–

2020)”. Changes in distribution of precipitation, mean temperature, annual

precipitation and mean temperature trend per decade, maximum number of

consecutive dry days and days with heat index above 35 degrees Celsius per

decade, minimum and maximum temperature trends per decade. Climate

risk country profile, Ghana, https://climateknowledgeportal.worldbank.org/

country/ghana/trends-variability-historical (accessed May 2023).

2 Rainfall during the rice cropping season has decreased and become

more uneven and temperatures are increasing in trend in the recent decade

compared to the last 30 and 40 years. Refer to Figures 5, 6 for details on

climate change in study area (1982–2021): Total annual cropping season

rainfall (Figure 5) and cropping season rainfall and temperature distribution

(Figure 6).

3 The Savanna agroecological zone of Ghana is part of the food basket

hub of Ghana and known to be highly vulnerable to climate and ecological

changes due to their semi-arid climate and physical characteristics. The

limited availability of water and nutrients makes the zone highly fragile and

prone to poverty (Aniah et al., 2019).
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FIGURE 1

Production, consumption, import of rice (milled bases), paddy yield and area harvested of rice in SSA and the rest of the world. SSA captures data

(annual rice consumption, production, importation, area harvested and yield from 1960 to 2021) on 37 SSA countries and Worldwide captures data

from 138 countries. Source: Authors construct based on data from USDA: PSD Online November 2023 (https://apps.fas.usda.gov/psdonline/app/

index.html#/app/downloads). Over the last three decades (1990–2020), rice consumption in Sub-Saharan Africa (SSA) has surged compared to

global trends (A, B). Although rice production initially rose in response to meet the growing demand, particularly after 2000, this increase could not

match thewidening gap between production and consumption (A). The growth in production, as shown in the figure, mainly arose from expanded

harvested areas rather than improvements in paddy yield (C). However, the current paddy yield levels in SSA remain notably lower compared to

global averages in the 1980s. SSA’s average paddy yield ranged from around 1 to 2 t/ha (with maximum yields ranging 3–6.5 t/ha), while the rest of

the world’s yield surpassed 2 to 3.5 t/ha (with maximum yields ranging 5.5–10 t/ha) from 1970 to 2020 (C, D), (USDA, 2023). This persistent low yield,

combined with escalating demand leading to increased rice imports between 1995 through 2010 to 2020 has contributed to the widening gap

between consumption and production (A).

advanced techniques and investment in farming inputs in at-risk

agricultural environments.

In relation to the use of fertilizers and agricultural investments,

variations in weather patterns have led to a decline in the

application of chemical fertilizers because of their discouraging

impact (Alem et al., 2010; Anik et al., 2022; Gelo, 2022). Climate-

related disruptions have affected farmers’ investment choices,

resulting in decreased expenditures on machinery, seeds, and

pesticides (Zhou et al., 2022). Similarly, fluctuations in weather

conditions influence agricultural assets such as land, livestock,

and farming equipment (Newman and Tarp, 2020). Weather-

related disturbances also have adverse effects on rice yield (Mall

and Aggarwal, 2002; Lobell et al., 2008; Stuecker et al., 2018;

van Oort and Zwart, 2018). Specifically, variations in rainfall

patterns influence the uptake of climate-smart technologies, with

excessive rainfall leading to diminished rice yields (Tossou and

Arouna, 2023). Similarly, rising monthly and annual temperatures,

as indicated by Lachaud et al. (2022) notably diminish agricultural

output, dampening enthusiasm for investing in farm resources.

Recent and prior research (Lobell et al., 2008; Alem et al., 2010;

Stuecker et al., 2018; Anik et al., 2022; Gelo, 2022; Tossou and

Arouna, 2023) uses various statistical measures such as means,

standard deviations, and coefficients of variation to gauge weather

variability elements from temperature and rainfall. Many of these

studies overlook comprehensive methodologies that combine key

weather elements to define the desired weather target parameter.

They collect data over variable periods, from short-term to <2

decades, with only a few researchers extensively examining longer

periods, particularly focusing on rainfall vulnerability and its

standard deviations (Anik et al., 2022; Tossou and Arouna, 2023).

Single-time surveys heavily depend on memory, while limited

use of panel data with a 2 to 3-year gap between initial and final

surveys is commonly used for tracking. Additionally, there’s a

lack of research on how weather shocks impact continued disuse,
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FIGURE 2

Production, consumption, import of rice (milled bases) and paddy yield, area harvested of rice in Ghana, 1960–2020. Data Source: USDA: PSD Online

November 2023 (https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads). Over the past 30 years (1990–2020), rice consumption in

Ghana has been growing at a faster annual rate of 31.1% compared to maize (first most important staple cereal), which increased at a rate of 13.3%

(USDA, 2023). In response to rising demand, rice production in initially increased by 12.1% annually from 1990 to 2006 and later by 23.6% from 2006

to 2020, but the gap between production and consumption widened over time (A). The growth in production, as depicted in (B), is primarily driven by

an expansion of the harvested area (at 9, 10, and 18% annually) rather than improvements in paddy yield (at 1.3, 3.6, and 3%), over the specified time

periods (1990–2006, 2006–2020, and 1990–2020 respectively) (USDA, 2023). Yield in Ghana has consistently fallen short of its potential (6 t/ha),

ranging from 1.6 to 3.1 t/ha. The persistent low paddy yield has led to a significant annual increase of 28% in rice imports from 1990 to 2020,

resulting in a widening consumption-production gap (A).

especially regarding vital components like inorganic fertilizers in

rice green revolution technology (deGraft-Johnson et al., 2014).

Research on how weather shocks affect rice production lacks

examination of the mutual impact on fertilizer usage, including

both the choice to completely cease the use of inorganic fertilizers

(fertilizer disadoption) and the decrease in the quantity of fertilizers

applied (fertilizer application amounts), and examining how these

changes impact investments in farm input expenses.

This study investigates the short-term and long-term impact

of weather shocks on agricultural outcomes, analyzing their

influence on fertilizer utilization, input expenses and yield at

the household and village scales. The study categorizes weather

shocks by type and severity and analyzes variations in off-

farm employment. Provides qualitative insights into the reasons

for non-adoption and disadoption, highlighting the mechanisms

and the importance of off-farm income for farm households

to invest in farming inputs, embrace better technologies, and

recover from unexpected setbacks. It underscores how off-farm

income enables agricultural households to enhance their farming

practices despite challenges. This study enhances the existing

literature on climate change and agriculture in SSA by utilizing

a robust method to evaluate long-term weather disturbances on

small-scale rice farming households in a rainfed single season

cropping agroecosystem.

The rest of the paper is structured as follows: study area

and data, empirical approach, estimation strategy, results and

discussion, and conclusion.

2 Study area and data

This research focuses on the northern region in Ghana’s

savanna agroecological zone to address the research question.

2.1 Study area

The Guinea savanna in northern Ghana, covering 60% of

suitable rice land, used to contribute 65% to domestic rice

production, but now it has dropped to under 40% (AGRA, 2020;

MoFA, 2021). Output in northern Ghana has witnessed a decline

since 2011, attributed to adverse weather conditions (Ragasa and

Chapoto, 2017). This area, marked by rainfed ecosystems and

impoverished smallholder households, relies on rainfed agriculture

for survival rather than economic growth, especially in the

more impoverished Northern part compared to the South (GSS,

2019) and characterized by low input use (AGRA, 2020). The

zone is characterized with one rainy season and higher daily
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FIGURE 3

Map of Ghana showing study zone and sampled districts. Source: Authors construct.

temperatures but less annual rainfall, interventions have not led any

administrative district in northern Ghana to rank among the top 10

for rice crop yield. Only two districts slightly exceed the national

average of about 3 t/ha, despite development efforts (MoFA, 2019,

2021). Small-scale farming mainly sustains livelihoods, focusing on

growing cereals, legumes, and vegetables, while livestock ownership

varies based on available resources (Michalscheck et al., 2018).

Family-operated farms, managed by different household members,

consist of multiple semi-independent production units known as

“own fields” is common. Residents often live in family compounds,

which is more common in rural than urban areas.

2.2 Data

The study utilized spatial weather information in combination

with panel data from rice-producing households.

2.2.1 Household panel data
The research draws upon panel data sourced from a survey

involving 481 households engaged in rice farming across 60

villages situated within eight administrative districts known for

rice cultivation in Ghana’s Guinea savanna agroecological zone.

This data was collected by a collaborative effort between the Japan

International Cooperation Agency Research Institute (JICA-RI),

the University of Tokyo, Ghana’s University for Development

Studies (UDS), and the Savanna Agricultural Research Institute

(SARI) during the period from 2010 to 2022. This study utilized (i)

the baseline survey conducted in year 2010 and covered 60 villages,

20 of which were randomly selected from 58 where Lowland

Rice Development Project (LRDP4) was implemented, while the

remaining 40 villages were chosen around these LRDP sites from

topographic sheets at a 1/50,000 scale. The sampling process was

proportional to the size with 5–8 villages selected per district

leading to a total of 60 villages. In total, a maximum of 10 rice

producing farm households were randomly sampled per village.

The survey gathered data on a broad range of socioeconomic

4 LRDP was implemented in Northern Ghana. The project, spanned from

1998 to 2003, was funded by the Agence Francaise de Development (AFD)

of France in collaboration with the Ministry of Food and Agriculture (MOFA)

of Ghana. The objective of the project was to enhance rice production

through the adoption of improved rice production innovations. Promoted

the adoption of modern seed varieties and chemical fertilizer application,

water, and soil management practices such as bunding and leveling, sowing

by planting in line and dibbling for e�cient use of seeds and also facilitates

easy weed control.
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TABLE 1 Details of weather parameters.

Weather variables Units Model type Temporal
resolution

Spatial
resolution

Rainfall flux (FLDAS NOAHO1C GL Mv001) Kg/m2/s FLDAS Monthly 0.1◦

Soil temperature (10 cm underground) (FLDAS NOAH 1C GL Mv001) ◦K FLDAS Monthly 0.1◦

Soil temperature (10–40 cm) (FLDAS NOAHO1C GL Mv001) ◦K FLDAS Monthly 0.1◦

Count when at least 6 consecutive days of maximum temperature > 90th percentile

(M2SMNXEDI_V1)

Days MERRA-2 Monthly 0.5 ∗ 0.625◦

Percentage of time when daily maximum 2-m temperature > 90th percentile

(M2SMNXEDI_1_TX90p)

Percent (%) MERRA-2 Monthly 0.5 ∗ 0.625◦

Air temperature–daily maximummonthly (M2SMNXSLV_5_12_4_T2MMAX) ◦C MERRA-2 Monthly 0.5 ∗ 0.625◦

Air temperature–daily mean monthly (M2SMNXSLV_5_12_4_T2MMEAN) ◦C MERRA-2 Monthly 0.5 ∗ 0.625◦

Air temperature–daily minimummonthly (M2SMNXSLV_5_12_4_T2MMIN) ◦C MERRA-2 Monthly 0.5 ∗ 0.625◦

Source: Authors’ construction based on downloaded data from NASA Giovanni, https://giovanni.gsfc.nasa.gov/giovanni.

Begin date: 1982-01-01, End date: 2021-12-31 for each variable. Kilograms meters squared per second (Kg/m2/s), Degrees Kelvin (◦K), Degrees Celsius (◦C), Famine Early Warning Systems

Network Land Data Assimilation System (FLDAS), Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2).

FIGURE 4

SPEI methodological procedure. Source: Authors construct.

variables, farming practices, institutional factors, input use and rice

production, and the history of technology adoption regarding the

periods when the farmers first adopted an improved technology,

whether they discontinued its use and if so whether they readopted

after disadoption given their exposure and potential technology

diffusion path. (ii) A follow up survey on farm households in these

60 communities was conducted in May 2022 which also captured

detail information on their adoption history. Refer to Figure 3 for

map of study area and Appendix5 for detailed description.

2.2.2 Spatial weather data
To evaluate how fluctuating weather patterns impact the

utilization of inorganic fertilizers and investments in farm inputs

over the long run, we integrated survey data with localized

weather information for rice cropping seasons using village-

based geo-referencing. This research employed NASA Giovanni’s

5 Appendix C: 2. Description of household panel data.

monthly satellite gridded weather data across various spatial

resolutions (0.1◦, and 0.5◦ × 0.625◦) spanning from 1982 to 2021,

encompassing 60 study communities (see details in Table 1).

2.2.3 SPEI computation and categorization
The study employed the Standardized Precipitation

Evapotranspiration Index (SPEI), (Vicente-Serrano and Beguería,

2016; Beguería and Vicente-Serrano, 2024) in conjunction

with specific indicators to identify weather disturbances.

This process involved five key steps (Figure 4): (i) assessing

satellite data for weather insights, (ii) computing Potential

Evapotranspiration (PET), (iii) determining the Climatic Water

Balance, (iv) calculating the SPEI, and (v) categorizing weather

disturbances/shocks using SPEI indices. Figure 4 illustrates the

flowchart depicting the SPEI methodology, while Table 2 presents

classifications based on SPEI values, where negative values

signify dry conditions and positive values indicate wet conditions

(Vicente-Serrano et al., 2010; Vicente-Serrano and Beguería, 2016;
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TABLE 2 SPEI index classification.

Class SPEI

Extremely wet >2

Very wet 1.5 to 1.99

Moderately wet 1.0 to 1.49

Near normal −0.99 to 0.99

Moderately dry −1 to−1.49

Very dry −1.5 to−1.99

Extremely dry <-2

Source: Vicente-Serrano et al. (2010), Vicente-Serrano and Beguería (2016), and Beguería and

Vicente-Serrano (2024).

Beguería and Vicente-Serrano, 2024). For a more comprehensive

understanding of the methodology, please refer to Appendix.6

2.2.4 Outcome variables
This study focuses on the following outcome indicators:

Disadoption of inorganic fertilizer. Disadoption in this study refers

to if a farmer ever adopted inorganic fertilizer (chemical fertilizer)

and discontinued the use of it (abandoned it or stopped using).

Fertilizer application quantity, the average quantity of fertilizer in

kilogram per hectare, farm input investments measured as the total

cost (in Ghana cedis “GHC”) of farm input per hectare and rice

yield, measured as tons per hectare (t/ha).

3 Empirical and estimation approach

3.1 Empirical approach

3.1.1 Farm household model assumption
This section utilizes a small farm household model to

offer microeconomic insights, which serve as a framework for

contextualizing and structuring our analysis. The foundation of

the farm household model is built upon the assumption that rice

production follows the subsequent function (Equation 1).

Qv
(

Tv
)

= θ
(

λv + ηvTv
)

, ∀T < T0 (1)

where, Q= Rice quantity produced, v= Rice seed variety indicator

superscript (l = non-improved, local rice variety, m = improved,

modern rice variety), T = Complementary input or technology

use and the intensity of technology use, T0 = Agronomically

optimal input use rate (e.g., Optimal fertilizer application rate),

θ = Multiplicative shock term, where E(θ) = 1, and λv and ηv

= Returns to rice seed variety and returns to complementary

inputs respectively.

3.1.2 Net returns (less input cost)
When a farmer dedicates H hectares of land to rice cultivation,

the selection of a particular rice variety (v) for planting and the

6 Appendix C: SPEI computation and categorization.

subsequent supplementation of the seeds with additional inputs,

management practices, or technologies (T) can allow for the

calculation of the resulting net income (Y) in the following manner

(Equation 2).

Yv
= Hv[θ(λv + ηvTv)p− kv − gT] (2)

Where, Y = Net income from rice, p = Price of rice (selling

price), kv = Per hectare cost of seed for variety (v), either non-

improved or improved seed, gT = Per hectare cost of adopting

complementary inputs, farm practices, labor, technologies, etc.

Please be aware that the benefits gained from selecting specific

seed varieties and complementary technologies can fluctuate based

on factors such as seasonal weather during crop cultivation, the

proficiency of farmers, and the characteristics of the soil, etc.

(Tjernström, 2017; Laajaj and Macours, 2023). Note, for simplicity,

emphasis is placed on fertilizer as a complementary input or

technology in characterizing returns and cost implication in the

subsequent section.

3.1.3 Characterization of chemical fertilizer use
in rice production (returns and cost implications)

Assuming fertilizer is the complementary technology denoted

as T in Equation 2 where T = 1 is fertilizer adoption and usage

and T = 0 otherwise. Failure to use fertilizer (non-adoption or

disadoption), (kv and gT=0) verses fertilizer use (kv and gT=1):

Utilizing or sowing rice seed variety (v) without chemical fertilizer

application (T = 0) results in lower per-hectare cost compared

to using fertilizer
(

gT=0
1

)

<
(

gT=1
2

)

. The immediate returns

from investments (yield) from planting rice seeds without chemical

fertilizer (T = 0) tends to be lower when compared to using a

seed variety combined with chemical fertilizer application (T =

1), assuming all other factors remain constant. Moreover, resource

poor agricultural households might use significantly less fertilizer

than the recommended optimal rate T0 (Agronomically optimal

fertilizer application rate) per area, or they may decrease the rate

of fertilizer application compared to their usual practices.

3.1.4 Fertilizer adoption and disadoption
In aligning the concept to the design, decision to adopt

inorganic (chemical) fertilizer is modeled using the general

framework of utility maximization (Hassen, 2015). A farm

household decides to adopt fertilizer (Equation 3) only when the

utility gained from adopting is significantly greater than the utility

gained without using it, which can be formulated as follows. A

farm household will switch from not using (non-adoption) to using

(adoption) fertilizer (f) if,

B
∗

f
= U

a

f
− U

n

f
> 0 (3)

The farmer will not adopt (Equation 4) f if,

B
∗

f
= U

a

f
− U

n

f
< 0 (4)

where,

Un
f = represents the benefit attained in the non-adoption state

(n) of fertilizer (f ), while
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FIGURE 5

Total annual cropping season rainfall. Source: Authors’ construction based on data from NASA Giovanni.

Ua
f = signifies the benefit achieved upon adopting (a)

fertilizer (f ).

B∗f = denotes underlying net benefit of choosing to adopt or not

adopt fertilizer (f ).

Stage 1: Involves deciding to adopt fertilizer. Stage 2: Involves

deciding whether to stop or keep using it after adoption.

The process of adopting and abandoning fertilizer can be

described through two hidden Equations (5 and 6) involving

latent variables B∗f 1 and B∗f 2, representing (1) the likelihood

of transitioning from non-adoption to adoption and (2) from

adoption to disadoption, respectively, thereby influencing the

decision-making process for fertilizer adoption and abandonment

(disadoption). Therefore, the concealed choices to adopt or

abandon are influenced by,

B∗f 1 = Xf 1δf 1 + µ =











1 if B∗f 1 > 0

0 if B∗f 1 ≤ 0

(5)

B∗f 2 = Xf 2δf 2 + ε =











1 if B∗f 1 > 0, B∗f 2 ≤ 0

0 if B∗f 1 > 0, B∗f 2 > 0

(6)

Where the latent variables B∗f 1 and B∗f 2 depend on vector of

the household’s observed characteristics Xf 1 and Xf 2 respectively.

B∗f 2 (fertilizer disadoption decision) is not observed if B∗f 1 ≤ 0 or

B∗f 2 > 0. It is only possible to observe B∗f 2 if a household ever

adopted fertilizer (B∗f 1 > 0) and later discontinue its use (B∗f 2 ≤ 0).

Since only a subset of original sample adopts fertilizer (Equation 6),

disadoption (abandonment) is observed only for those who ever

adopt fertilizer in rice farming.

3.2 Estimation strategy

To assess the influence of random weather exposure, we can

estimate the impact (average treatment effect [ATT]) by comparing

control and treated groups at follow-up using analysis of covariance

regression. The study mainly utilizes ANCOVA regression as a

method to enhance the accuracy and precision of its estimates,

McKenzie (2012) and linear probability model (LPM). The variable

of interest, D, is an indicator for weather shocks, equal to 1 for

households in affected villages and 0 for others. The outcome for

farm input investments (chemical fertilizer application quantity

and farm input cost) (Equation 7), using ANCOVA. To address

variations (heterogeneity) in impact caused by different weather

shock types, Equation 8 modifies the ANCOVA estimation to

incorporate both flood and drought.

Zij,1 = ρ0 + ρ1D
PY
j + ρ2D

NB
j + ρ3Zij,0 + Xij,0δ + ωij (7)

Zij,1 = ρ0 + ρ1Df
PY
j + ρ2Dd

PY
j + ρ3Zij,0 + Xij,0δ + ωij (8)

The study enhances the analysis by assessing the influence of

weather shocks in the current year on rice yield (Equation 9),

contributing to the understanding of the mechanisms of dis-

adoption. Additionally, sub-sample analysis was estimated for the

outcome variables as part of robustness analysis. In the yield and

cost outcome specification for the main analysis, we winsorize the

data (i.e., replace values above the 95th percentile with the 95th

percentile) and replicate the regression analysis.

Yij,1 = ρ0 + ρ1Df
CY
j + ρ2Dd

CY
j + ρ3Yij,0 + Xij,0δ + ωij (9)
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FIGURE 6

Cropping season rainfall and temperature distribution. Source: Authors’ construction based on downloaded data from NASA Giovanni (1982–2021).

(A) Total rainfall (mm). (B) Mean temperature (degrees celsius). (C) Maximum temperature (degrees celsius). (D) Minimum temperature (degrees

celsius).

Where, i = household, j = village. Zij,0 and Zij,1 = Baseline and

endline outcomes for fertilizer Disadoption (Yes/No), fertilizer

application quantity (kg/ha) and farm input cost (GHC/ha).

Yij,0 and Yij,1 = Baseline and endline outcomes for rice

yield (t/ha). DPY
j and DNB

j = Dummy for previous year (PY)

shock and number of shocks (NB) after baseline. Df PYj and

DdPYj = Dummy for previous year’s flood shock and drought

shock respectively. Df CYj and DdCYj = Dummy for current

year flood shock and drought shock respectively. Xij,0 and

Xij,1 = Vector of baseline and endline covariates respectively.

ωij,1 = error term.

4 Results and discussion

The study begins with descriptive statistics (Section 4.1) and

presents findings (Section 4.2) using ANCOVA and LPM regression

methods to estimate treatment effects, considering outcomes with

or without covariate adjustments. It explores variations with

different SPEI weather shock thresholds (moderate “cut 1.25” and

severe “cut 1.50”). Additionally, it delves into diverse impacts based

on flood and drought shocks (Section 4.2.4) and examines impact

mechanisms (Section 4.2.6).

4.1 Descriptive results

4.1.1 Annual and monthly rice cropping season
rainfall

Figure 5 depict irregular rainfall patterns during the rice

cropping season (May to October), notably more erratic from 2010

to 2021. There was a substantial decline in rainfall between 2010

and 2013, dropping to below 800mm. Afterward, annual rainfall

consistently fell below the long-term average. The rainy season

spans about 6 months, starting in May and ending in October, with

rice planting occurring from late May to early July. For detailed

monthly rainfall and temperature distributions in 2020 and 2021,

refer to Figures A1–A3.

4.1.2 Cropping season rainfall and temperature
distribution over time

Figure 6 illustrates shifts in rice cropping season rainfall

patterns. Over the past four decades, the distribution has shown

a shift from a normal distribution with two peaks pre-2010 to a

more skewed, bimodal distribution post-2010. Rainfall frequencies

have shifted, with more occurrences of lower rainfall amounts

(800mm−950mm) and higher amounts (1,000mm to 1,250mm)
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FIGURE 7

Cropping season SPEI index by community. Source: Authors’ construction based on data from NASA Giovanni.

during the cropping season. This indicates a recent trend of

non-uniform and leftward-skewed rainfall patterns. Concurrently,

temperature trends have displayed a consistent warming trend,

with increased minimum and maximum temperatures especially

evident after 2010 and in the last 30 years.

4.1.3 SPEI index by community (2020 and 2021)
Figure 7 displays the SPEI weather shock index, where negative

values signify below-average rainfall and positive values indicate

above-average rainfall compared to the long-term average. The

index categorizes weather shocks as moderate (1.0–1.49), severe

(1.5–1.99), and extreme (2.0 and higher). Positive values represent

floods, while negative values signify droughts. Using thresholds

of ±1.25 and ±1.5 for analysis, the study noted floods impacting

about 6 and 4 communities in 2020 and 2021, respectively.

Additionally, drought affected 12 and 10 communities during

the same period. The research emphasizes more frequent severe

droughts compared to floods, reflecting erratic rainfall patterns

with increased occurrences of both lower and higher rainfall events

in recent years.

4.1.4 Summary statistics (fertilizer use over time,
outcomes, and weather indicators)

Farm households who adopt chemical fertilizer on their

rice farms were low (25 percent) at baseline compared with

TABLE 3 Use of chemical fertilizer over time.

Ever adopt Adoption Disadoption

Yes No Yes No Yes No

Year 2010

Frequency 122 359 120 361 19 462

Percent 25.36 74.64 24.95 75.05 4.00 96.00

Year 2021

Frequency 345 136 329 152 16 465

Percent 71.73 28.27 68.40 31.60 3.33 96.67

Observations 481

Source: Authors’ calculations based on survey data.

high adoption rates (68 percent) at endline (Table 3). However,

fertilizer disadoption rates were generally low at both baseline and

endline. Farmers’ decisions to not adopt or abandon technologies

were mainly due to financial, economic, and environmental

factors, with input-intensive methods like chemical fertilizers

being discontinued due to environmental concerns stemming

from adverse weather conditions and soil infertility (Refer to

Appendix A7). Table 4 displays the descriptive statistics of the

dependent variables and SPEI weather shock indicators for 2020,

7 Table A1 reasons for non-adoption and disadoption of technologies.
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TABLE 4 Summary statistics of outcome variables, weather shock indicators and controls.

Variables Mean Min Max Mean Min Max

Outcome variables 2010 2021

Fertilizer dis-adoption (Dummy) 0.04 0 1 0.03 0 1

Fertilizer quantity (kg/ha) 66.48 0 494 99.59 0 512

Input cost (GHC/ha) 609 67 3,993 718 61 4,345

Rice yield (t/ha) 2.14 0.07 6.97 1.65 0 5.93

Weather shock indicators (at community level) 2020 2021

SPEI index May–October (Index) −0.33 −1.65 1.71 −0.29 −1.69 1.62

Moderate weather shock, SPEI cut at 1.25 (Dummy) 0.23 0 1 0.22 0 1

Severe weather shock, SPEI cut at 1.50 (Dummy) 0.07 0 1 0.14 0 1

Flood weather shock, SPEI cut 1.25 (Dummy) 0.1 0 1 0.07 0 1

Drought weather shock, SPEI cut 1.25 (Dummy) 0.16 0 1 0.15 0 1

Number of weather shocks, SPEI cut 1.25 (2010–2020) 2.03 0 6

Weather controls (at community level) 2010 2021

Rainfall (rice cropping season May–October), (mm) 902 771 1,017 990 915 1,043

Count 6 consecutive days of max Temp >90th percentile 4.87 3 8 5.35 3 9

Average soil temp 10 cm below ground (degrees Celsius) 26.52 26.23 26.92 26.67 26.41 27.04

Average soil temp 40 cm below ground (degrees Celsius) 26.96 26.69 27.36 27.13 26.88 27.51

Average maximum temperature (degrees Celsius) 15.89 11.34 34.59 17 9.78 34.65

Average mean temperature (degrees Celsius) 26.99 26.81 27.09 27.34 27.07 27.44

Number of observations 481

Source: Authors’ estimates based on survey and weather data from NASA Giovanni. Min, Minimum; Max, maximum.

2021 and between 2010 to 2021 as well as weather controls at

community level. Over time, fertilizer use per hectare rose by 34%,

reaching 100 kg/ha by the end of the survey, up from an average

of 66 kg/ha in 2010. Despite this increase, the application rate

remains well below the recommended level for the Guinea savanna

agroecological zone, which is 350 kg/ha or more (MoFA, 2021).

Input costs for rice farming increased from GHC 609 to GHC

718 per hectare between baseline and endline. The farmers studied

showed significant variation in input costs per hectare, ranging

from GHC 60 to GHC 4,000. Smaller farms generally incurred

higher input costs compared to larger ones. Despite the anticipation

of improvement over time in farm performance due to experience

and exposure, rice yields declined from 2.14 t/ha to 1.65 t/ha at

endline, potentially influenced by changing weather conditions,

disadoption of some practices, and high input expenses. Detailed

descriptive statistics for additional control variables, including

household, plot, and adoption controls, presented in Table A2.

4.2 Econometric results

4.2.1 Impact on fertilizer application
Worth noting from Table 5 (panel A) is that the impact of

weather shocks on disadoption of fertilizer records a very low

percent effect (below 3 percent) on fertilizer disadoption. Also,

while the severe weather shock at the upper limit (1.50) was not

vastly different from themoderate shock, it was fairly significance at

10 percent. The LPMfindings indicate ameaningful positive impact

of weather shocks (at cut 1.25) on disadopting fertilizer for over 2

years, albeit with a diminished effect. The immediate findings called

for questions. Are farm households who are exposed to weather

shocks not necessarily discontinuing the use of chemical fertilizers

but probably reducing the intensity (quantity) of their application?

We delve further from the extensive to the intensive margin

by estimating the impact of weather shock on application quantity

(intensity) of chemical fertilizer used per hectare. The ANCOVA

regression findings (detailed in Table 5, panel B) reveal a statistically

significant impact of weather shocks on fertilizer application.

These shocks have a notable negative effect, reducing fertilizer

application intensity. Specifically, moderate, and severe weather

shocks lead to a decrease in fertilizer use by 34 and 51 kilograms

per hectare, respectively. Considering the typical average fertilizer

application rate per hectare in the study area stands at 100

kilograms, these weather shocks result in a reduction of fertilizer

application by 34 to 51 percent. This exacerbates the existing

disparity between the already low average fertilizer application rate

in the study zone and the recommended8 rate (ranging from 350

8 Fertilizer recommendation and new fertilizer blends for agroecological

zones in Ghana by the Ministry of Food and Agriculture, Ghana (for details:

https://mofa.gov.gh/site/media-centre/agricultural-articles/324-new-

fertilizer-blends-the-way-for-ghana-2) and by Ragasa et al. (2013).
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TABLE 5 Impact of weather shocks on chemical fertilizer disadoption and application quantity.

Panel A: extensive (fertilizer disadoption) B: (ANCOVA): intensive margin

ANCOVA LPM Fertilizer application (Kg/Ha)

(1) (2) (3) (4) (5) (6)

Dis-adopt Dis-adopt

ATT ATT 2 years+ 2 years+ ATT ATT

Shock Shock Nb Shocks Nb Shocks Shock Shock

(Dummy) (Dummy) (count) (count) (Dummy) (Dummy)

Variables Cut 1.25 Cut 1.50 Cut 1.25 Cut 1.25 Cut 1.25 Cut 1.50

Weather shock −0.061∗∗∗ 0.055∗ 0.008∗ 0.008∗∗ −33.830∗∗∗ −51.410∗∗∗

(−0.019) (−0.032) (0.004) (0.004) (10.513) (17.277)

{0.060} {0.220} {0.000} {0.000}

[0.060] [0.270] [0.000] [0.000]

Fertilizer, (Baseline) 0.094∗∗ 0.112∗∗∗ 0.126∗∗∗ 0.122∗∗∗ 0.093∗∗∗ 0.072∗∗

(−0.041) (−0.041) (0.042) (0.040) (0.035) (0.035)

Controls Yes Yes No Yes Yes Yes

Control mean 0.019 0.030 107.327 103.01

Treatment mean 0.080 0.085 73.497 51.6

Percent effect (Shock) 1.951 2.999

F-Stat 7.734 6.759 6.776 6.906 2.449 2.258

Prob > F 0.000 0.000 0.001 0.000 0.013 0.022

Observations 481

Source: Robust standard errors in parentheses, ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10.

Authors’ estimates based on JICA Ghana survey and data from NASA Giovanni.

Table above shows findings from the ANCOVA regressions with covariate adjustment [Panel A (1), (2), and panel B (5), (6)] and LPM regression [Panel A (3), (4)]. ATT represents average

treatment effect of weather shock (Dummy or count) on chemical fertilizer disadoption and application quantity. Fertilizer, (Baseline) is the baseline value of the outcomes (Fertilizer disadoption,

years of disadoption and application quantity), PDS lasso was employed to guide in choosing baseline controls for the estimation of the regression. Nb_Shocks=Number of weather shocks (at

SPEI cut 1.25).

Multiple Hypothesis testing: The p-values in asterisk (∗∗∗ , ∗∗ , ∗) are unadjusted for multiple testing; the adjusted p-value in curly and square brackets are family-wise p-values that adjust

for multiple testing, and are based on; (i) Romano and Wolf ’s (2016) and Clarke et al. (2020) step-down adjusted p-values robust to multiple hypothesis testing with bootstrap replicates {in

curly brackets}. (ii) Adjusted p-values using the free step-down resampling methodology of Westfall and Young (1993), Westfall et al. (1993), and Jones et al. (2019) which also computes

the Bonferroni-Holm and Sidak-Holm adjusted p-values with bootstrap replicates indicated [in square brackets]. Refer to Figure A4 for graphed results. Baseline controls: Household

characteristics, Farmer Association, Number of farm labor (Family, Exchange, Hired), Soil type (sand, clay), Number of people household know who have adopted chemical fertilizer.

to 450 kilograms per hectare) for rice cultivation in the Guinea

savanna zone.

4.2.2 Impact on rice input cost
In the ANCOVA findings presented in Table 6 (column 1 &

2), it is evident that weather shocks exert a statistically significant

and adverse influence on investments in rice production inputs,

affecting both household and village levels. Specifically, moderate,

and severe weather shocks were observed to reduce farm input

expenditure by approximately 156 and 173, and 153 and 184 Ghana

cedis correspondingly, showcasing a notably greater impact of

severe weather shocks on diminishing investments in farm inputs.

Furthermore, there exists a wider disparity in the average farm

input costs between different treatment groups compared to within

treatment groups, underscoring the significance of external weather

factors in influencing these investments at both household and

village levels. Notably, while the impact of moderate weather shocks

(at a 1.25 threshold) is more pronounced at the household level

than at the village level, the opposite holds true for the impact

of severe weather shocks (at a 1.50 threshold) on farm input

costs. The prevailing weather uncertainty and shifts in climate

patterns are seen to act as deterrents, discouraging farmers from

making substantial investments in farm inputs, a stance supported

by existing studies (Newman and Tarp, 2020; Zhou et al., 2022).

These findings shed light on how farmers respond to the costs

associated with farm inputs amidst weather-related uncertainties

and changing climatic conditions.

The regression outcomes in columns 3, 4, 5, and 6 of

Table 6 display the impact of weather shocks on farm input costs

using a combination of household and village-level data. The

data underwent winsorization at the bottom 1% (first percentile)

and both the bottom 1% and top 5% (ninety-fifth percentile)

of observations within treatment and survey year, respectively.

Even after the winsorization process (which addresses extreme

outliers in reported input costs), the analysis revealed a consistently

significant and negative relationship between weather shocks and

farm input costs. Severe weather shocks notably amplified the
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TABLE 6 Impact of weather shocks on rice farm input cost.

(Original) (Winsorized at 1%) (Winsorized at 1% & 5%)

(1) (2) (3) (4) (5) (6)

ATT ATT ATT ATT ATT ATT

Shock Shock Shock Shock Shock Shock

(Dummy) (Dummy) (Dummy) (Dummy) (Dummy) (Dummy)

Variables Cut 1.25 Cut 1.50 Cut 1.25 Cut 1.50 Cut 1.25 Cut 1.50

Panel A: Household level

Weather shock −156.46∗∗ −173.35∗∗ −155.23∗∗ −171.03∗∗ −125.09∗∗∗ −129.19∗∗∗

(62.587) (77.722) (62.521) (77.643) (37.480) (46.659)

Input cost (GHC/ha), (Baseline) −0.009 0.001 −0.013 0.000 0.021 0.031

(0.060) (0.060) (0.059) (0.060) (0.044) (0.044)

Control mean 751.490 742.528 751.805 742.778 688.436 679.921

Treatment mean 595.030 569.181 79.000 571.740 563.344 550.732

Baseline controls Yes Yes Yes Yes Yes Yes

District FE Yes Yes Yes Yes Yes Yes

F-Stat 1.831 1.760 1.829 1.756 3.301 3.098

Prob > F 0.018 0.025 0.018 0.025 0.000 0.000

Panel B: Village level (median)

Weather shock −152.81∗∗∗ −184.0∗∗∗ −152.81∗∗∗ −184.0∗∗∗ −143.00∗∗∗ −169.32∗∗∗

(25.111) (31.618) (25.111) (31.618) (21.653) (27.317)

Input cost (GHC/Ha), (Baseline) 0.322∗∗ 0.464∗∗∗ 0.322∗∗ 0.464∗∗∗ 0.380∗∗∗ 0.510∗∗∗

(0.149) (0.152) (0.149) (0.152) (0.128) (0.131)

Control mean 662.603 655.954 662.603 655.954 653.587 646.957

Treatment mean 509.796 471.986 509.796 471.986 510.583 477.633

Baseline controls Yes Yes Yes Yes Yes Yes

District FE Yes Yes Yes Yes Yes Yes

F-Stat 10.178 9.959 10.178 9.959 11.781 11.410

Prob > F 0.000 0.000 0.000 0.000 0.000 0.000

Observations 481

Standard errors in parentheses, ∗∗∗p < 0.01, ∗∗p < 0.05.

Source: Authors’ estimates based on JICA Ghana survey and data from NASA Giovanni.

Table above shows findings from the ANCOVA regressions with covariate adjustments. Authors calculated the real value (to account for inflation or depreciation) of farm input cost for baseline

year (2010) to compare with endline survey (2021) farm input cost in the analysis. This was done by multiplying the baseline values with the ratio of Consumer Price Index in reference to years

of interest (2021 CPI/2010 CPI). Column 3 and 4 winsorizes the button 1 percent (first percentile) of farm input cost; Column 5 and 6 winsorizes the button 1 percent and top 5 percent (ninety

fifth percentile) of farm input cost, to minimize the effects of outliers (report of extremely high and low input cost). Other descriptions are the same as above. Multiple Hypothesis testing: Refer

to Table 5 for description and Figure A5 for graphed results.

Baseline controls: Household characteristics, experience in rice cultivation, access to credit, Rice project participation, Farmer Association, Number of farm labor (Family, Exchange, Hired),

Soil type (sand, clay), Number of people household know who have adopted chemical fertilizer. District FE: District fixed effects (eight districts).

adverse impact on farm input costs. This adjustment did not

compromise the strength of the statistical significance, nor did it

alter the direction and magnitude of the outcome coefficient.

4.2.3 Impact on rice yield
Weather shocks’ influence on yield was predominantly

modeled on the current year’s impact, yet past shocks might

indirectly affect present yield by altering the use of improved

technologies. Table 7 displays the ANCOVA regression coefficients,

showcasing the impact of the 2021 weather shock on rice yield.

The findings demonstrate a significant impact of this year’s

unexpected environmental events on rice production. The analysis

revealed a clear statistical significance at the 1 percent level,

indicating a notable negative effect on rice yield. Specifically,

the adverse weather conditions in the current year resulted in

a reduction of rice yield by 0.54 (t/ha) and 0.66 (t/ha) at the

household level, and 0.50 (t/ha) and 0.61 (t/ha) at the village level
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TABLE 7 Impact of weather shocks on rice yield.

Yield (Mt/Ha): household level Median yield: village

(Winsorized 1% & 5%)

(1) (2) (3) (4) (5) (6)

ATT ATT ATT ATT ATT ATT

Shock Shock Shock Shock Shock Shock

(Dummy) (Dummy) (Dummy) (Dummy) (Dummy) (Dummy)

Variables Cut 1.25 Cut 1.25 Cut 1.50 Cut 1.50 Cut 1.25 Cut 1.50

Weather shock (2021) −0.522∗∗∗ −0.543∗∗∗ −0.665∗∗∗ −0.658∗∗∗ −0.503∗∗∗ −0.611∗∗∗

(0.094) (0.093) (0.110) (0.110) (0.053) (0.062)

Yield (Mt/Ha), (Baseline) 0.106∗∗∗ 0.081∗∗∗ 0.113∗∗∗ 0.088∗∗∗ 0.179∗∗∗ 0.203∗∗∗

(0.027) (0.029) (0.027) (0.029) (0.027) (0.027)

Control mean 1.759 1.764 1.742 1.741 1.639 1.618

Treatment mean 1.237 1.221 1.077 1.083 1.136 1.007

Controls No Yes No Yes Yes Yes

F-Stat 23.963 6.644 26.96 6.792 16.270 16.975

Prob > F 0.000 0.000 0.000 0.000 0.000 0.000

Observations 481

Standard errors in parentheses, ∗∗∗p < 0.01.

Authors’ estimates based on JICA Ghana survey and data from NASA Giovanni.

Table above shows findings from the ANCOVA regressions with and without covariate adjustment. Column 5 and 6 winsorizes the button 1 percent (first percentile) and top 5 percent (ninety

fifth percentile) of village level median yield, to minimize the effects of outliers. Other descriptions are the same as above. Refer to Figure A6 for graphed results of multiple hypothesis testing.

Baseline controls: Household characteristics, experience in rice cultivation, access to credit, Rice project participation, Farmer Association, Number of farm labor (Family, Exchange, Hired),

Soil type (sand, clay), Number of people household know who have adopted chemical fertilizer.

for moderate and severe shocks, respectively. These findings align

with existing research that underscores the detrimental influence of

weather-related factors on rice output (Tossou and Arouna, 2023).

When considering an average yield of approximately 1.65 (t/ha) for

the sampled households, it becomes evident that weather shocks

led to a significant decrease in rice yield by about 33% and 40% for

moderate and severe shocks, respectively.

Notably, the average rice yield in communities subjected to

these shocks (around 1.2 t/ha) was markedly lower compared

to control communities (1.7 t/ha). This disparity highlights the

substantial impact of weather shocks on rice production in

affected areas.

4.2.4 Impact based on shock heterogeneity
We report and discuss heterogeneous impacts based on shock

type (flood and drought) from the estimation of average treatment

effects analysis. We estimate the impact of flood and drought for

each of the outcome indicators of interest to ascertain the weight

and effect posed by different weather shocks.

Figure 8 (column 3) displays the outcomes concerning the

influence of flood and drought on various aspects including

chemical fertilizer disadoption, application quantity, input cost,

and rice yield. The impact of a flood event demonstrated notably

significant effects, registering strong statistical significance at both

1% and 5% levels. It resulted in considerably larger coefficient

effects in comparison to the impact of drought. Notably, the flood

shock had a statistically significant and negative effect on input cost,

while only the current year’s drought exhibited a more substantial

negative impact on rice yield, reducing it by approximately 0.63

and 0.38 tons per hectare, respectively. The findings indicate that

different weather shocks lead to varying impacts on these outcomes.

For a detailed breakdown, the ANCOVA table results are presented

in Table A3.

4.2.5 Robustness checks and heterogeneity
analysis

Robustness assessments were conducted by employing a

sub-sample analysis utilizing ANCOVA, specifically focusing on

households with SPEI cut 1.0 (below the lowest threshold of

“cut 1.25” used in the primary analysis). The results derived

from this sub-sample analysis consistently maintained strong

statistical significance across various outcomes (please refer to

Table A4). The importance of considering diversity is underscored

in studies (Makate et al., 2018; Abegunde et al., 2019) investigating

agricultural investment decisions. Heterogeneity analyses were

performed based on the engagement of farm households in off-farm

employment (refer to Table A5). The impact of adverse weather

conditions in the previous year on fertilizer disadoption and

application quantity was found to be statistically significant solely

for households not involved in off-farm employment. This outcome

is likely attributable to the greater resilience of farm households

engaged in off-farm work, as they can more readily recover from
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FIGURE 8

Impact based on shock heterogeneity. Source: Stata coe�cient plot from ANCOVA regression estimates. Standard errors in parentheses, ***p < 0.01,

**p < 0.05, *p < 0.1.

agricultural shocks due to the additional income from off-farm

employment opportunities.

4.2.6 Impact mechanism
The outcomes stemming from the impact mechanism (outlined

in Table C2) align closely with the empirical approach that

centers on input costs and returns (yield and revenue) linked to

investments. As farm investments in chemical fertilizers increase,

both input costs and returns also rise. Consequently, the effect

of a weather shock on investments and returns becomes more

pronounced for farm households that have embraced chemical

fertilizers. The disparity in yield and revenue per hectare between

households exposed to weather shocks and those unexposed widens

with the adoption of fertilizer. Moreover, the individuals who

adopted fertilizer and faced weather shock experienced significantly

lower returns. The rationale behind climate shocks diminishing

agricultural investment lies in their impact on households through

income fluctuations caused by variations in crop yield and revenue

post-investments in rice farming. For a more detailed explanation,

please refer to the Appendix.9

9 Appendix C: 3. Mechanism

5 Conclusion and implications

This research examines how external weather shocks

significantly increase risks for smallholder rainfed rice farmers,

leading to reduced farm input usage and lower investment

enthusiasm. Results highlight rising temperatures, declining

rainfall, and erratic rainfall patterns in the study region in

northern Ghana.

Weather shocks diminish fertilizer application, farm input

costs, and rice yields. Despite this, farm households tend to scale

back the intensity rather than completely cease technological

investments on their farms.

Floods and severe shocks significantly affect fertilizer use

and input costs more than droughts and moderate shocks do.

Conversely, regarding rice yield, the impact of weather is the

opposite. Also, involvement in off-farm jobs can help farm

households bounce back from agricultural shocks and sustain

their investments in farming. Qualitative insights with regards

to understanding the reasons constraining farm investments

were centered on finance, environmental and economic, with

input intensive technologies like fertilizer being driven mainly

by bad weather conditions (heavy rainfall, flood, drought). In

agriculture, though efficient farming techniques greatly enhance

output, external elements like climate and weather, beyond
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farmers’ control, can hinder their effectiveness, potentially reducing

investments and crop yields. This emphasizes the need for

agricultural stakeholders to account for these factors amidst

evolving environmental changes.

The engagement of farmers in off-farm employment

significantly impacts their ability to maintain investments in

fertilizers. Even in the face of unpredictable weather conditions,

households involved in off-farm work tend to persist in using

fertilizers. This underscores the importance of integrating

diverse income sources, such as livestock (often overlooked in

comparison to crop-focused policies in Ghana) and off-farm

activities, alongside crop production in areas with a single growing

season. This integrated approach offers a sustainable method for

preserving farm investments during times when returns from

crops alone are inadequate to support production.

Initiatives like subsidized weather insurance10 linked to specific

indices and credit plans based on risk can assist farmers in

managing and recovering from unexpected external shocks.

These interventions not only stimulate farm investments11 but

also create opportunities for sustaining the use of fertilizers.

Furthermore, strategies like early warning systems, optimizing

rice cultivation schedules and methods, and expanding public

initiatives12 such as irrigation in areas prone to weather-related

challenges can act as effective measures to moderate the impact

of weather shocks. Encouraging the adoption of innovative

technologies,13 particularly those aligned with climate-smart

agriculture, through targeted research aimed at developing resilient

crop varieties capable of withstanding climate-related stresses,

can further contribute to mitigating risks associated with adverse

weather conditions.

5.1 Limitation of this study

It is also worth noting that interpretation of the findings

is subject to certain limitations. The results focus on rainfed

smallholder rice farm households in unimodal rainfall

agroecologies in the guinea savanna region of Ghana, therefore

the findings do not provide a comprehensive picture of the

10 The challenges of implementing agricultural insurance, considering

both supply-side and demand-side constraints, should not be overlooked but

acknowledged with caution. Challenges of creating agricultural insurance

products that are both economically viable and environmentally sustainable

is emphasized in studies (Cole et al., 2013; Carter et al., 2017).

11 Insurance provision to risk averse farmers results in substantial increases

in agricultural investments (Hill and Viceisza, 2012; Karlan et al., 2014; Jensen

et al., 2017).

12 Public production investment acts as a bu�er against climate shocks for

farmer agricultural production investment bymitigating their negative e�ects

on yield and farm investment (Zhou et al., 2022).

13 The adoption of a new weather-risk-reducing technology leads to

changes in input choices among rice farmers, resulting in increased

productivity (Emerick et al., 2016).

impact on a broader region (Ghana, SSA). It is important

to recognize that the choices to stop or reduce fertilizer

application and farm investment are context-specific and

depending on the nature of technology or farm inputs and type

of climatic factors and vulnerabilities, the relationship between

climatic factors and fertilizer use and farm investments may not

be same.
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