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Treated sewage sludge, or biosolids, are used worldwide to improve soil quality
and fertility due to their high organic matter content and micro- and
macronutrients. However, biosolids also introduce contaminants into the
environment. This review assessed recent publications on the occurrence,
environmental fate, and transportation mechanisms of 419 contaminants of
emerging concern (CEC) across four matrices: sewage sludge, biosolids, soils,
and dust. Among these, 229 CECs were positively detected at least once. The
review focuses on various CECs, including 18 therapeutical classes of
pharmaceutical products, personal care products (parabens and
chlorophenolic antimicrobials), hormones, plastic-related compounds
(bisphenols and phthalates), rubber antioxidants (substituted diphenylamines
and para-phenylenediamines), and neonicotinoid insecticides. Phthalates
dominate biosolid composition, accounting for over 97% of the total weight
of CECs investigated, followed by pharmaceuticals (1.87%), personal care
products (0.57%), hormones (0.09%), antioxidants (0.07%), and bisphenols
(0.05%). The 50 most prevalent contaminants include phthalates [e.g., di (2-
ethylhexyl) phthalate-DEHP, butyl benzyl phthalate-BBzP], antifungals (e.g.,
miconazole-MCZ, ketoconazole-KTZ), chlorophenolic antimicrobials (e.g.,
triclocarban-TCC, triclosan-TCS), fluoroquinolone antibiotics (e.g., ofloxacin-
OFL, ciprofloxacin-CPF), cardiovascular medications (e.g., telmisartan-TMS,
propafenone-PPF), analgesics (e.g., salicylic acid-SA, naproxen-NPX),
hormones (e.g., mestranol-EEME, progesterone-P), antidepressants (e.g.,
sertraline-SRT, amitriptyline-AMT), and lipid regulators (e.g., fenofibrate-FNF).
Analytical techniques like matrix-assisted laser desorption/ionization mass
spectrometry imaging (MALDI-MSI) have emerged as a valuable tool for
qualitative analysis, allowing for identifying CECs in biosolids. The
environmental fate and transport dynamics of studied CECs are influenced by
their physicochemical properties (water solubility, volatility, degradation time,
sorption capacity, and bioaccumulation potential) and environmental conditions
(temperature, pH, and moisture content). Furthermore, soil characteristics, such
as composition, organic matter, and microbial activity, play key roles in their
adsorption, degradation, and persistence in soil environments. Additionally,
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wastewater treatment processes impact the transformation and removal of CECs,
affecting their degradation and partitioning between treated effluents and sewage
sludge.

KEYWORDS

sewage sludge, biosolids, soil, emerging contaminants, physicochemical properties,
occurrence, fate and transport

1 Introduction

In recent years, a group of contaminants referred to as emerging
contaminants (ECs) or contaminants of emerging concern (CECs) has
generated extensive research interest because of their toxic potential for
humans and the ecosystem, especially since they are usually not regulated
(Sauvé and Desrosiers, 2014). These CECs are ubiquitous because they
have been detected in several environmental compartments, starting
from simple matrices like air (Cao et al., 2022), drinking water
(Teymoorian et al., 2023; Wu et al., 2023), surface water (Goeury
et al., 2019; Zhong et al., 2022), moderately dense media exemplified
by road dusts (Chae et al., 2024) and suspended sediments (Fenni et al.,
2022; Shang et al., 2023), but also including more complex substrates
such asmanure (Solliec et al., 2016; Zahedi et al., 2022), composts (Huang
et al., 2023; Tran et al., 2023), municipal wastewaters (Rabii et al., 2014;
Vaudreuil et al., 2022), agricultural and urban soils (Cao et al., 2022;
Rødland et al., 2023; Zhang et al., 2023), sewage sludge (Boix et al., 2016)
and biosolids (Larivière et al., 2017; Pérez-Lemus et al., 2019; Kumar et al.,
2022; Munoz et al., 2022; Saliu and Sauvé, 2024).

The sources of CECs encompass various nonpoint and point
sources of pollution (Stefanakis and Becker, 2015), including air
deposition (Barroso et al., 2019), sweeping runoff (Sidhu et al.,
2013), agricultural enrichment, and pesticide application (He et al.,
2015), plastic mulching (Hofmann et al., 2023), sediments, soils
(vadose and phreatic zones), surface water bodies (rivers, lakes, seas,
oceans), groundwater, drinking water, wetlands, humans, and biota
(Ashraf et al., 2023). Additional documented sources are landfill
sites, septic tanks (Ashraf et al., 2023), domestic and industrial
discharges (Smith, 2009), hospital outflows (Vaudreuil et al., 2022),
wastewater treatment plants (WWTP) influents and effluents (Rout
et al., 2021; Vaudreuil et al., 2022; Ashraf et al., 2023), as well as soil
manure and biosolids applications (Hanselman et al., 2003; He et al.,
2015; Larivière et al., 2017; Pérez-Lemus et al., 2019).

Biosolids represent nutrient-rich final product of sewage sludge
stabilization, achieved through various wastewater techniques including
composting, aerobic or anaerobic digestion, lime treatment, or
dewatering techniques such as air drying, vacuum filtering, and
centrifugation. This process yields an organic solid product that is
deemed safe for agricultural applications (Zorpas and Inglezakis, 2012).
The United States Environmental Protection Agency (USEPA)
categorizes biosolids into two distinct classes based on their
pathogen content: Class A, which comprises biosolids that are
virtually free of pathogens and can be applied without any site-
specific restrictions, and Class B, which may harbor pathogens and
thus mandates the implementation of management practices and site
limitations to safeguard public health (USEPA, 1994). In Europe, the
regulations pertaining to soil protection advocate for the treatment of
sewage sludge prior to its application in agricultural practices, without
designating it as biosolids (European Communities, 1986).

While the meticulous application of biosolids for soil quality and
fertility improvement has been documented in California since
1920 and in Japan since 1950 (Kalavrouziotis et al., 2023), their
regulation and control have garnered substantial government
attention in the not-so-distant past (USEPA, 1994) given the
risks to the ecological and public health that they pose (Girovich,
1996; McBride, 1995; Mannina et al., 2023). From an agricultural
stance, amending soils with biosolids supplements organic matter
(Zhang, 2017; Kumar et al., 2022; EPA, 2023), macro- (e.g., N, P, S,
Ca, Mg) and micro-nutrients (e.g., Mn, Cu, Zn, Mo, K) to cultivable
lands (Kim and Owens, 2010; Wijesekara et al., 2016). In contrast,
these substances harbor a concentrated presence of contaminants
that have adsorbed onto the soil post-wastewater treatment (Ashraf
et al., 2023). The chemical composition and characteristics of
biosolids (processed sewage) are widely variable and largely
influenced by various factors such as their origin, treatment
techniques, age, moisture levels, and temperature (Wijesekara
et al., 2016; Wang et al., 2009; Zhang, 2017).

Latest literature reviews on the occurrence of CECs in sewage
sludge, biosolids, and soils have mainly concentrated on the assessment
of particular classes, namely, pharmaceutical products (PPs) (Larivière
et al., 2017), pharmaceutical products and personal care products
(PPCPs) (Pérez-Lemus et al., 2019; Riva et al., 2021; Ashraf et al.,
2023), phthalates (He et al., 2015; Gao et al., 2018), per-and poly-
fluoroalkyl substances (PFAS) (Riva et al., 2021; Kumar et al., 2022;
Saliu and Sauvé, 2024), endocrine disrupting chemicals (EDCs),
surfactants and flame retardants (Kumar et al., 2022), and plastic
leachates and particles (Kumar et al., 2022; Hofmann et al., 2023).
Others focused on analytical techniques for characterizing them into
those complex matrices (Larivière et al., 2017; Martín-Pozo et al., 2021;
Kumar et al., 2022), while others aimed at their occurrence, fate, or
removal during drinking water and wastewater treatment (Kumar et al.,
2022; Yang et al., 2017). This literature review’s original contribution is
to annotate the occurrence of twenty-seven classes of CECs:
18 therapeutic classes of PPs, two classes of PCPs, natural and
synthetic hormones, two classes of plastic-related compounds
(bisphenols and phthalates), two classes of rubber and polymer
antioxidants (aromatic secondary amines), and neonicotinoid
insecticides in complex matrices, namely, sewage sludge, biosolids,
soils, and dusts. The review will also present the physicochemical
properties of studied CECs, discuss factors determining their
behaviors during the wastewater treatment (WWT) process, and
debate their environmental fate and transportationmechanisms in soils.

2 Materials and methods

To examine the occurrence of specified CECs in aforesaid
environmental compartments, a thorough examination of
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scientific literature published between January 2018 and July
2023 was conducted across four reputable academic databases
(Web of Science, PubMed, Reaxys, and SciFinder). However, a
thorough analysis of articles and reports from before and after
this timeframe was also conducted to provide a comprehensive
elucidation of the characteristics of CECs, their means of mobility,
and their eventual destiny in the environment. The review was
carried out through cross-referencing search terms organized into
three distinct clusters: the types of matrices under investigation
(sewage, biosolids, soil), the main groups of targeted CECs, and
thematic research areas (occurrence, transport, fate). The search
query was tailored to exclude references related specifically to
wastewater influents and effluents to enhance precision and
clarity in the retrieved citations. After deduplicating the retrieved
articles, a thorough examination of their titles and abstracts was
conducted, followed by a classification based on thematic relevance.
Finally, we surveyed the references within the acquired publications
and performed a targeted search on Google Scholar to obtain any
missing information. A total of 151 articles were retained for a
thorough and detailed review of the occurrence, environmental
transport, and transformation processes of target groups of
CECs. Figure 1 summarizes the approach for this literature review.

3 Pharmaceutical products

3.1 Overview

PPs, also known as medicines, medications, or drugs, are
preparations administered in conventional and traditional
medicine to diagnose, protect (public health), prevent
(prophylactic), treat (therapeutic) humans or animals against
disease or health conditions, or to restore, correct, and alter

organ functions (Daughton and Ternes, 1999; WHO, 2024;
Larousse, 2024). PPs are often categorized based on their
mechanisms of action or therapeutic applications, and this review
examines the presence of PPs across 18 therapeutic classes within
sewage sludge and biosolids. These classes are analgesics (narcotic
and non-narcotic analgesics, non-steroidal anti-inflammatory
drugs-NSAIDs, antipyretics, stimulants, and their metabolites),
antibiotics (sulfonamides, quinolones and fluoroquinolones, β-
lactams, macrolides, tetracyclines, nitroimidazoles, lincosamides,
nitrofurans, oxazolidinones, and ionophores), anticonvulsants and
antiepileptics, antidepressants (comprising antipsychotics and
anxiolytics), cardiac care medications (antiarrhythmics,
antiplatelets, antihypertensives, β-blockers, diuretics, calcium
channel blockers), antifungals, lipid regulators (statins and
fibrates), antihistamines and bronchodilators, antineoplastics
(listing alkylating agents, antimetabolites, and
immunosuppressants), erectile dysfunction agents, x-ray contrast
media, antidiabetics, antivirals, muscles relaxants, anesthetics,
cholinergic drugs, antihelminthics, and antiemetics). A complete
enumeration of the covered PPs and their respective therapeutic
classifications is available in the Supplementary Appendix B: Sheet
2-Analytes.

3.2 Physical and chemical characteristics:
indices of fate and transport

From a chemical standpoint, PPs are engineered to be
moderately water-soluble to facilitate physiological distribution,
and to be lipophilic to ensure their bioavailability and biological
activity (Ikehata et al., 2006). The physicochemical properties of PPs
exhibit considerable variability, with aspects such as structural
simplicity seen, for instance, in fluorouracil and metformin

FIGURE 1
Literature review approach.
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(MTF), versus structural complexity, as perceived in aclarubicin and
roxithromycin. Additionally, these characteristics include molecular
weight variations, exemplified by MTF having a molecular weight of
129.16 g/mol and tylosin at 916.10 g/mol. Furthermore, the acid
dissociation constant (pKa) of PPs fluctuates remarkably, as in the
case of oxazepam with a pKa of 1.63 (Shayesteh et al., 2015),
oxycodone presenting a pKa of 8.5 (Kinnunen et al., 2019), and
simvastatin with a pKa of 14.91 (Shaheen et al., 2022). The
n-octanol-water partitioning coefficient (log Kow) values also
demonstrate notable differences; for example, tetracycline exhibits
a log Kow of −1.37 (Chabilan et al., 2022), gemfibrozil (GMF) with a
log Kow of 4.39 (Pérez et al., 2023), while mefenamic acid displays a
log Kow of 5.12 (Feng et al., 2013). The presence of more than one
functional group in a drug’s chemical architecture normally causes it
to have more than one pKa value. Gao et al. (2019) proposed a
hydrophilicity-hydrophobicity scale for organic contaminants,
predicated on the log Kow value. They categorized organic
contaminants into hydrophilic (log Kow < 3), moderately

hydrophobic (3 < log Kow < 5), and strongly hydrophobic (log
Kow > 5). In parallel, the Stockholm Convention on Persistent
Organic Pollutants (POPs) designates a log Kow value greater
than five to indicate a pollutant’s potential for bioaccumulation
in aquatic organisms (UNEP, 2019). Table 1 presents important
physicochemical properties (solubility, volatility, degradation time,
sorption, and bioaccumulation) of organic contaminants, predictors
of their environmental destiny, and behaviors.

3.3 Occurrence in sewage sludge
and biosolids

In June 2019, the German Environment Agency (UBA)
conducted a comprehensive review of the presence of PPs in
various environmental matrices to facilitate an update of the
Measured Environmental Concentration Database (MEC DB).
That review reported a total of 54 environmental matrices

TABLE 1 Physicochemical properties indicative of the transport mechanism and environmental fate of organic contaminants.

Water solubility (Sw)
FAO (2000)

Solubility (mg/L at 20°C) Classification

<0.1 Not soluble

0.1–1 Slightly soluble

1–10 Moderately soluble

10–100 Readily soluble

>100 Highly soluble

Henry’s Law Volatility Constant (Volatility-Hv)
Howard (2017)

Sander et al. (2022)

Volatility (atm-m3/mol) Classificationa

<10–3 Highly volatile

10−3–10–7 Moderately volatile

>10–7 Slightly volatile

Biological and physicochemical degradation (Half-life degradation time-DT50)
FAO (2000)

DT50 (days) Classification

<20 Readily degradable

20–60 Fairly degradable

60–180 Slightly degradable

>180 Very slightly degradable

Sorption (Organic carbon-water partitioning coefficient-log Koc)
FAO (2000)

Log Koc Classification

<1 Highly mobile

1–2 Mobile

2–3 Moderately mobile

3–4 Slightly mobile

4–5 Hardly mobile

>5 Immobile

Bioaccumulation (n-Octanol-water partitioning coefficient-log Kow)
Gao et al. (2019) and UNEP (2019)

Log Kow Classification

<3 Moderately bioaccumulative

3–5 Bioaccumulative

>5 Highly bioaccumulative

aScale adjusted in three levels
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clustered into liquid emissions (e.g., reclaimed water, hospital
sewage), liquid immissions (e.g., drinking water, groundwater),
solid emissions (mainly sewage sludge and biosolids), and solid
immissions (e.g., soil, lake sediments). The analysis positively
(>LOD) determined from seven solid emissions 145 PPs and
metabolites across 75 countries (Eike et al., 2019). A subsequent
update released in December 2021 broadened this assessment in
89 countries and incorporated an additional category of composts in
solid emissions, leading to the identification of 337 PPs from eight
solid matrices (Graumnitz and Jungmann, 2021). A comparative
analysis between the initial report, which reviewed scientific
literature from 2010 to 2016, and the most recent one, which
focused on publications from 2017 to 2020, reveals that an
additional 192 PPs have been newly and positively identified as
originating from solid emissions.

This review encompasses an analysis of academic articles
discussing PPs in sewage sludge or biosolids. Moreover,
publications about the fate and transport of PPs were examined
to clarify their ecological destiny and migration routes duringWWT
processes and within soil matrices. From a total of 301 PPs and
degradation products analyzed, 112 compounds were positively
detected at least once in one of the two matrices under
consideration. The most concentrated pharmaceuticals are
dominated by over-the-counter medicines (antifungals and
analgesics), followed by antibiotics and antidepressants. Firstly,
miconazole (MCZ: 10,382 ng/g) (Li et al., 2021), followed by
naproxen (NPX: 9,355 ng/g) (Pérez-Lemus et al., 2020),
ciprofloxacin (CPF: 4,889 ng/g) and ofloxacin (OFL: 4,673 ng/g)
(Riva et al., 2021), norfloxacin (NRF: 3,359 ng/g) (Camotti Bastos
et al., 2020), ketoconazole (KTZ: 3,009 ng/g) (Svahn and Björklund,
2019), salicylic acid (SA: 2,695 ng/g) (Pérez-Lemus et al., 2020),
amitriptyline (AMT: 1,980 ng/g) (Costa Junior et al., 2020),
diclofenac (DCF: 1,620 ng/g) (Camotti Bastos et al., 2020), and
caffeine (CAF: 1,620 ng/g) (Costa Junior et al., 2020). Figure 2

reveals the mean concentration of the 30 most prevalent PPs in
sewage sludge and biosolids. The cumulative mean concentration of
various classes of PPs in sewage sludge is primarily dominated by
antibiotics (7,689 ng/g), analgesics (4,989 ng/g), antidepressants
(2,607 ng/g), cardiovascular medications (1,723 ng/g), and
antifungals (1,598 ng/g). Antifungals (8,633 ng/g) are the main
class of PPs found in biosolids, followed by cardiovascular agents
(3,501 ng/g), antibiotics (1,824 ng/g), antidepressants (1,073 ng/g),
and lipid regulators (622 ng/g). The cumulative mean concentration
of PPs in sewage sludge (18,949 ng/g) does not substantially differ
from that in biosolids (16,324 ng/g). For the summary statistics of
various therapeutic classes, refer to Table S1 in Supplementary
Appendices A, B-Sheet 3-PPs.

3.4 Environmental fate and transportation
mechanisms

In the context of WWT, the characteristics of PPs, the
concentration of dissolved organic matter (DOM) that
enhances their leaching into effluent, and pH levels emerged
as critical factors influencing the environmental fate and
transport mechanisms of PPs (Zhang et al., 2014; Silva et al.,
2021). Despite the limited availability of treatment technologies
specifically addressing PPs and the inadequacy of standardWWT
processes in effectively eliminating them, various advanced
treatment methods have significantly improved the removal of
pharmaceutical compounds during WWT. They include
conventional activated sludge, moving bed biofilm reactors
(MBBR) (Tisler et al., 2021), ultraviolet C (UV-C) radiation
(Grgić et al., 2021), advanced oxidation such as
electrochemical oxidation, the use of microalgae and fungal
strains, anaerobic membrane bioreactors, as well as membrane
separation techniques including nanofiltration (NF) and reverse

FIGURE 2
Thirty most prevalent PPs in sewage sludge and biosolids.
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osmosis (RO), alongside Fenton and photo-Fenton processes
(Shahid et al., 2021).

Interactions of pharmaceuticals with soil matrices depend on
their properties such as molecular structure and spatial
arrangement, hydrophobicity, polarity, polarizability (Zhi et al.,
2019), polar surface area (PSA), as well as soil characteristics like
soil type and pH, soil organic matter (SOM), and coexisting ions
(Silva et al., 2021). Polar pharmaceutical sorbates mostly interact
with SOM through H-bonds and van der Waals forces, while
hydrophobic PPs do so through hydrophobic interactions, such
as π–π bonds and aromatic ring alignment (Ahmed et al., 2015).
Applying the experimental log Kow values for three sulfonamides at
pH 5 (for sulfadiazine: 0.14, sulfamethazine: 0.27, and
sulfachloropyridazine: 0.69) reported by Carda-Broch and
Berthod (2004), Conde-Cid et al. (2020) illustrated that
hydrophobicity can better predict the transportation behavior of
sulfonamide antibiotics compared to pKa/ionic species. Movement
and transportation pathways within a more homogeneous group of
PPs may not be applicable across different classes of PPs, and other
characteristics like functional groups of the compounds can
significantly influence their environmental persistence and
mobility. The pronounced polarity and presence of multi-ionic
groups are primarily responsible for the significant soil
adsorption capacities exhibited by fluoroquinolones and
tetracyclines (Zhi et al., 2019). On the other hand, the PSA can
serve as a critical metric for evaluating the capacity of PPs to
permeate cellular membranes. Silva et al. (2021) state that
compounds exhibiting a PSA greater than 140 square angstroms
(Å2) demonstrate diminished permeability across cellular barriers.
Erythromycin, which has a PSA of 194 Å2, exemplifies this reduced
permeability.

Cationic pharmaceutical species exhibit greater retardation
compared to their acidic and neutral counterparts due to the
predominantly negatively charged nature of soil surfaces
(Schaffer et al., 2012). Various soil parameters significantly
influence the adsorption capacities of PPs within soil
environments; these include soil texture, clay content, cation
exchange capacity (CEC), and anion exchange capacity (AEC).
Several soil parameters influence the adsorption capacities of PPs
to the soil, including soil texture, clay content and composition, and
CEC or AEC. For example, due to greater surface area and CEC,
enrofloxacin showed stronger adsorption to montmorillonite
(expanded 2:1 clay minerals) than to kaolinite (1:1 clay
minerals). The observed reduction in pharmaceuticals sorption
with increasing pH can be elucidated through two mechanisms:
alterations in charge dynamics (Srinivasan et al., 2013), and
modifications in the sorption mechanism (Klement et al., 2018).
In the former, as pH rises, sulfamethoxazole (SMX) loses some of its
positive charges, and electrostatic repulsion reduces the sorption
action; in the latter, in acidic soils, cation bridging and surface
complexation of irbesartan (IRB) take the place of the CEC-driven
mechanism. As a result, the repulsion of negative charges on the
compounds and the soil surface greatly decreased sorption (Xu
et al., 2021b).

Numerous investigations demonstrated the toxicity and
bioaccumulation potential of certain PPs (Carter et al., 2016;
Pullagurala et al., 2018; Almeida and Nunes, 2019). Antibiotics
can harm cells, the circulatory system, the metabolism, and the

development of fish, they have shown the ability to bioaccumulate in
fish liver, lungs, and fillet and they have been detected in dairy
products and milk samples and crops can absorb them (Bansal,
2022). Different fish species across various trophic levels selectively
absorbed antidepressants. The most significant bioaccumulation
occurred in the brain and was directly correlated with WWT
effluent exposure. Following the brain, bioaccumulation was
observed in the gonads, liver, and muscle tissues (Arnnok et al.,
2017). Pérez et al. (2023) upheld pharmaceutical load as a useful
bioaccumulation metric in the tissues of bulrushes (Typha latifolia).
They showed that fluoxetine (FLX) accumulated more in the stem,
carbamazepine (CBZ) and FLX in the leaf, and GMF in the root. The
pharmaceutical mass load was related to log Kow in the root and
rhizome, while in the leaf, it was correlated with pKa and plant
transpiration.

4 Personal care products

Two categories of PCPs and their degradation byproducts were
reviewed: parabens and chlorophenolic antimicrobials.

4.1 Overview

4.1.1 Parabens
Parabens, or para-hydroxybenzoic acid esters, are synthetic

compounds used as preservatives in cosmetics, pharmaceuticals,
and food items since the 1920s. These substances effectively inhibit
microbial proliferation and prolong shelf life (Ma et al., 2018; Chen
et al., 2021; Stoiber, 2019). Their antimicrobial efficacy is particularly
pronounced against molds, yeasts (Ye et al., 2006), and Gram-
positive bacteria (Stoiber, 2019). Parabens are EDCs with
steroidogenesis disturbance and estrogenic effects (Liang et al.,
2023) that can permeate the human body through dermal
exposure when employing various products such as moisturizers,
facial and body cleansers, UV sunscreens, deodorants, shaving
creams, toothpaste, makeup, and other items that contain these
substances (Stoiber, 2019), although environmental exposure has
also been documented (Chen et al., 2021).

4.1.2 Chlorophenolic antimicrobials
Like parabens, chlorophenolic antimicrobials triclosan (TCS),

also known as irgasan, and triclocarban (TCC) have garnered
significant attention from regulatory authorities due to their
potential as EDCs (Chen et al., 2008) and for their contribution
to the spread of multidrug resistance, including antibiotic (Carey
and McNamara, 2014; Carey et al., 2016). For this reason, a phase-
out notice of TCS and TCC from consumer antiseptic washes in the
United States, and the ban on product-type 1 items (human hygiene
biocidal products for skin or scalps) in Europe were issued in
2016 by the United States Food and Drug Administration, and
the European Commission, respectively (USFDA, 2016; EC, 2016).
The Food and Drugs Act in Canada authorizes TCS use in PPs at
concentrations ranging from 0.1% to 1.0%. To safeguard human
health, TCS is permitted at a concentration not exceeding 0.03% in
mouthwashes, and at or below 0.3% in topical formulations and
dentifrices (Health Canada, 2024). In October 2020, the Canadian
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federal government issued a directive mandating that entities
utilizing or importing 100 kg or more of TCS annually must
develop a pollution prevention plan specifically for TCS.
Individuals subject to the Final Notice in 2020 and 2021 are
required to achieve 30% and 95% reductions, respectively, in the
total mass of TCS utilized compared to levels established in the base
year (Environment Canada, 2020). Regarding TCC, in light of the
assessment that the risk it poses to human health is low, the
government is contemplating the establishment of a monitoring
plan for surface water and sediment, as part of the chemical
management plan (CMP) (Environment Canada and Health
Canada, 2023).

4.2 Physical and chemical characteristics:
indices of fate and transport

4.2.1 Parabens
Parabens are characterized by a benzoic acid backbone featuring a

hydroxyl group positioned at the para-position. This structural
configuration arises from the esterification of the carboxylic acid
function with diverse alcohols (Soni et al., 2005; Ma et al., 2018),
thereby contributing to their hydrophobic properties, which in turn
influence their solubility (Ma et al., 2018; Chen et al., 2021; Li et al.,
2020). The presence of hydroxyl group facilitates H-bonding, thereby
enhancing their interactions with biological molecules and potentially
contributing to their endocrine-disrupting effects. The significance of
parabens as CECs lies in their ability to act as EDCs (Ma et al., 2018).
Their ester bonds are attributed to their chemical stability as they can
withstand hydrolysis in some situations, although they may break
down in extremely acidic or alkaline conditions (Chen et al., 2021).
Each paraben exhibits variability in the length and branching of its
alkyl chains, which significantly affects its physical and chemical
behavior (Chen et al., 2021). Generally, parabens display moderate
solubility in water, a property that is contingent upon the length of the
alkyl chain; short-chain parabens tend to exhibit greater solubility
compared to their long-chain counterparts. This solubility
characteristic has implications for their distribution and persistence
within aquatic ecosystems and wastewater treatment systems.
Additionally, these compounds possess relatively low molecular
weights, which can influence their volatility and environmental
mobility (Ma et al., 2018). The melting and boiling points of
parabens are determined by their molecular structure and chain
length, typically increasing with longer alkyl chains. While parabens
are subject to degradation in environment, their persistence and
behavior can be affected by various factors including temperature,
pH levels, and microbial activity (Li et al., 2020).

4.2.2 Chlorophenolic antimicrobials
TCS and TCC are chlorinated aromatic compounds

characterized by monochlorophenyl and dichlorophenyl moieties.
Both compounds exhibit low solubility in aqueous environments
and possess high log Kow values, with TCS at 4.8 and TCC at 4.9
(Coogan et al., 2007; Kwon and Xia, 2012). These properties
contribute to their pronounced lipophilicity while reducing their
hydrophilicity, indicating a pronounced inclination for partitioning
into organic fractions rather than remaining in the aqueous phase
(Carey and McNamara, 2014; Armstrong et al., 2019).

4.3 Occurrence in sewage sludge and soils

The occurrence of twenty PCPs grouped into preservatives
(eight parabens and four degradation products) and
antimicrobials (TCS, TCC, and six metabolites) was evaluated in
sewage sludge and soils.

4.3.1 Parabens
The presence of six widely used parabens and 4 byproducts in

WWT process and sewage sludge was examined by Ma et al. (2018).
The analyzed paraben compounds are methylparaben (MeP),
ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP),
benzyl paraben (BzP), and heptyl paraben (HepP), and the four
metabolites are 4-hydroxybenzoic acid (4-HB), 3,4-
dihydroxybenzoic acid (3,4-DHB), methyl protocatechuate (OH-
MeP) and ethyl protocatechuate (OH-EtP). Parabens have been
detected in wastewater and sludge, indicating frequent
contamination. Chen et al. (2021) investigated eight
parabens −MeP, EtP, PrP, BuP, BzP, HpP, isopropyl paraben
(isoPrP), and isobutyl paraben (isoBuP), and identified their
presence in various outdoor environmental media, including soil
samples. The prevalence of parabens is predominantly characterized
by isobutyl-paraben (iso-BuP), succeeded by 4-hydroxybenzoic acid
(4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB), with respective
concentrations measured at 131 ng/g, 100 ng/g, and 86 ng/g d. w.

4.3.2 Chlorophenolic antimicrobials
TCS and TCC were investigated by numerous authors in sewage

sludge (Moško et al., 2021; Li et al., 2021; Chen et al., 2019; Malvar et al.,
2020b; Malvar et al., 2020a) and soil (Mercl et al., 2021; Malvar et al.,
2020b; Chen et al., 2021; Abril et al., 2018). TCC and TCS are the most
prevalent PCPs in sewage sludge, with a median concentration of
1,710 and 1,165 ng/g, respectively. Additionally, degradation
byproducts such as monocarbanilide (MCC), 2′-hydroxy-
triclocarban (2-OH-TCC), carbanilide (CBN), and 3,3′,4,4′-
tetrachlorocarbanilide (TCCC) exhibited median concentrations of
520 ng/g, 180 ng/g, 102 ng/g, and 91 ng/g, respectively. These
concentrations are within the quantifiable range of their parent
compounds, emphasizing the necessity to investigate both the parent
substances and their metabolites, as highlighted by Chen et al. (2019).
The concentration ranges for examined parabens and antimicrobials in
sewage are observed to be between 380 and 81,750 ng/g; notably,
antimicrobials predominate over parabens, with the concentration
range for the former extending from 132 to 79,985 ng/g. TCS and
TCC in soil were below the quantitation limits in the researched studies.
Statistics on the individual and cumulative occurrence of PCPs in
sewage sludge and soil can be found in Table S2 of Supplementary
Appendices A, B- Sheet 4-PCPs.

4.4 Environmental fate and transport
mechanisms

4.4.1 Parabens
The main ways that parabens enter the environment are through

wastewater and runoff from homes where these compounds are
utilized in various domestic items. In the WWT process, parabens
can be successfully eliminated by the cyclic-activated sludge
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technology and anaerobic-oxic (A/O) treatment methods (Ma et al.,
2018). It has also been demonstrated that temperature and
pH impact the biodegradation of parabens using aerobic-
activated sludge. Indeed, parabens maintain stability in neutral to
slightly acidic pH ranges; however, they are susceptible to
degradation under extreme pH conditions, which is relevant in
WWT processes. Increased residual quantities of parabens were
reported at pH 10.0 compared to neutral or slightly acidic
conditions, indicating decreased degradation efficiency (Ma et al.,
2018). Higher temperatures cause the aqueous phase’s residual
concentrations to drop. Possibility of aerobic-activated sludge
biodegrading parabens, emphasizing the role of this process in
WWT (Lu et al., 2018). Parabens are readily biodegradable in
soil and unlikely to threaten earthworms’ survival and
reproduction (Arachchige Chamila Samarasinghe et al., 2021).
Nonetheless, due to their widespread use and pseudo-persistence,
they are present in the environment and may be more dangerous for
other species or toxicological endpoints. Parabens exhibit varied
environmental fate as influenced by biodegradation,
photodegradation, and sorption to particulate matter (Chen et al.,
2021), and organic matter (Mercl et al., 2021). Their transport
mechanisms primarily involve water pathways, volatilization into
the atmosphere (Chen et al., 2021; Li et al., 2020) with potential
contributions from atmospheric and soil movement. Some parabens
may bioaccumulate, leading to higher concentrations in the tissues
of biological organisms.

4.4.2 Chlorophenolic antimicrobials
The characteristics of TCS and TCC significantly influence their

removal efficiency during WWT processes. Kwon and Xia (2012)
indicate that, owing to their high log Kow, up to 90% of TCS and
TCC entering WWTPs are adsorbed onto the sludge during the
treatment processes. In a simulation study, it was shown that
variations in hydraulic retention time, sludge retention time
(SRT), and temperature influence the removal and
transformation of TCS and TCC throughout WWT (Armstrong
et al., 2018). Apparently, both antimicrobials tend to adsorb onto
sludge, resulting in minimal concentrations remaining in the
effluent. Furthermore, their degradation rates increased with
elevated temperatures, with TCS exhibiting a more rapid
degradation than TCC. To learn more about the destiny of these
two antimicrobials, a second WWT simulation was performed
under nitrifying conditions. The findings indicated a rapid
degradation of TCS into methyl triclosan (MeTCS), which is
becoming increasingly pronounced in alkaline environments
(Armstrong et al., 2019). Conversely, TCC exhibited significant
resistance to this treatment. The emergence of MeTCS, a
degradation product of TCS with a log Kow value of 5.2 (Coogan
et al., 2007), suggests heightened concern due to its greater potential
for bioaccumulation compared to the parent compound. Alongside
WWT transformation products like carbanilides, MeTCS is thought
to retain endocrine disruption capabilities (Ahn et al., 2008), raising
additional ecological concerns.

Li et al. (2020) discussed the stability of TCS under typical
environmental conditions but highlighted the possibility of
photodegradation when exposed to ultraviolet light. In contrast,
TCC is acknowledged for its lasting presence in the environment; it
demonstrates resistance to degradation processes and has the

capacity to accumulate in aquatic and terrestrial ecosystems
following release via WWT operations (Carey and McNamara,
2014; Armstrong et al., 2019; Abril et al., 2018). As specified
above, the presence of TCS and TCC was below the quantitation
limits. This phenomenon may be attributed to their degradation
potential, as postulated by Lozano et al. (2010), who observed a
substantial reduction in TCS levels in agricultural soils 16 months
following the application of biosolids. In a similar context, Anand
et al. (2022) highlighted the biotransformation of parent CECs, as
opposed to their elimination or biodegradation, as a plausible
mechanism for elevating the concentration of total contaminants
in effluent relative to the influent. Degradation byproducts of
antimicrobials were not measured in the consulted studies. Lastly,
the presence of parabens, TCS, and TCC has been determined in
urine (Shin et al., 2019), human serum (Li et al., 2020; Assens et al.,
2019), and in adipose tissue (Artacho-Cordón et al., 2018),
highlighting their bioaccumulation potential. Pérez et al. (2023)
demonstrated an elevated bioaccumulation of TCS in bulrush (T.
latifolia) roots. In a separate study by Cavanagh et al. (2018), TCS
demonstrated considerable potential for endocrine disruption,
notably through its binding affinity to the transthyretin (TTR)
receptor. It was also highlighted for its anti-androgenic
properties, suggesting a capacity to interfere with normal
developmental processes and male reproductive health.

5 Hormones

5.1 Overview

Natural and synthetic hormones are increasingly recognized as
CECs due to their potential impacts on environmental and human
health. Natural hormones, such as estrogens and androgens, are
excreted by humans and animals and can enter water systems
through wastewater (Adeel et al., 2017; Naldi et al., 2016).
Additionally, synthetic hormones, such as those utilized in
contraceptives, hormone replacement therapies (HRT) (Viglino
et al., 2008; Koubovec et al., 2005), anabolic agents for muscle
growth and strength enhancement (Liu and Wu, 2019; Bond et al.,
2022), cancer therapy (Johnston and Cheung, 2018; Sartor and
Gillessen, 2014), and various agricultural applications (Xuan
et al., 2008), further contribute to environmental contamination.
Hormones are biologically active at very low concentrations and can
disrupt endocrine systems in wildlife, leading to reproductive and
developmental abnormalities (Diamanti-Kandarakis et al., 2009).
For example, exposure to estrogen hormones in aquatic
environments has been linked to feminization of male fish
(Jobling et al., 2006). Thus, hormones are a growing focus of
environmental monitoring and regulatory efforts to mitigate their
ecological and health impacts.

5.2 Physical and chemical characteristics:
indices of fate and transport

Based on their chemical structure, hormones are threefold: lipid-
derived hormones (or lipid-soluble hormones), amino acid-derived
hormones, and peptide hormones. Most lipid-soluble hormones are
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derived from cholesterol and exhibit structural similarities. Steroid
hormones are the main class of lipid hormones in humans. Steroid
hormones estradiol (estrogen) and testosterone (androgen), which
are associated with female and male sexual traits, respectively, are in
this class. Chemically, they are categorized as ketones or alcohols.
The amino acid-derived hormones are made of tryptophan and
tyrosine amino acids, which are comparatively small molecules.
Hormones in this group include thyroxine, which is produced by the
thyroid gland, and adrenal gland medulla-made norepinephrine and
epinephrine. In contrast, peptide hormones are characterized by
their polypeptide chain structure, which consists of amino acids.
They include oxytocin and antidiuretic hormones, which are
synthesized in the brain and released into the bloodstream by the
posterior pituitary gland. This category also encompasses smaller
proteins, such as growth hormones produced by the pituitary gland,
as well as larger glycoproteins like follicle-stimulating hormones
(Fowler et al., 2018).

5.3 Occurrence in sewage sludge, biosolids,
and soils

Research has demonstrated the occurrence of hormones in
various environmental matrices, including soil (Kumirska et al.,
2019), wastewater (Gewurtz et al., 2022) and biosolids (Lorenzen
et al., 2004). Here, we analyzed studies focusing on hormonal
compounds present in sewage sludge (Silva et al., 2021; Riva
et al., 2021; Moško et al., 2021; Svahn and Björklund, 2019),
biosolids (Gewurtz et al., 2022), and soil (Kumirska et al., 2019).
The hormones under investigation include eleven naturally
occurring hormones: androstenedione (A4), androsterone (AN),
cortisone (E), estrone (E1), 17 β-estradiol (E2), 17 α-estradiol (17
α-E2), estriol (E3), progesterone (P), testosterone (T), equilin (EQL),
and equilenin (EQN); as well as ten synthetic hormones: 17 α-
ethinylestradiol (EE2), allyl trenbolone or altrenogest (ALT),
desogestrel (DSG), diethylstilbestrol (DES), gestodene (GST),
melengestrol acetate (MGA), mestranol (EEME), norethindrone
(NRT), norgestrel (NRG), 17 α-dihydroequilin (2H-EQL). The
quantification of four hormones in sewage sludge reveals a
predominance of GST, with a concentration of 41 ng/g, followed
by E1 at 17 ng/g, and E2 at 16 ng/g. In biosolids, the hormonal
composition is primarily characterized by synthetic hormones,
specifically DSG at 252 ng/g and EEME at 176 ng/g, while
natural hormones are represented by E3 at 95 ng/g, AN at
54 ng/g, and P at 28.5 ng/g. Out of five hormones investigated in
soils by Kumirska et al. (2019), E2, EE2, and DES appeared below the
quantitation limits, while E1 and E3 showed respective median
concentrations of 6.3 ng/g and 1.9 ng/g. Supplementary Table S3
gives detailed information on the occurrence of hormonal
compounds in examined matrices.

5.4 Environmental fate and transport
mechanisms

According to Limpiyakorn et al. (2009), peptide and steroid
hormones represent significant environmental concerns.
Hanselman et al. (2003) assert that endogenous hormones may

exhibit extraordinary potency in disrupting the endocrine systems of
organisms, potentially exceeding the effects of exogenous hormones
by a factor ranging from 10,000 to 100,000. Various factors,
including soil characteristics, organic matter content, pH levels,
and microbial activity, can influence the sorption capacity of
hormones to solid particles within WWT systems, thereby
affecting their transport dynamics and potential removal (Ying
and Kookana, 2005). The fate of these hormones is additionally
modulated by residence time and temperature withinWWT systems
(Viglino et al., 2008). Numerous hormones, including both naturally
occurring and synthetic variants, are not entirely eliminated during
conventional WWT processes (Bai and Acharya, 2019), permitting
their entry into adjacent water bodies and groundwater sources
(Zhou et al., 2012). To cite an example, Huang et al. (2014) evaluated
the removal efficacy of one progestogen (P), three androgens (A4, T,
and dihydrotestosterone (DHT)), and four estrogens (E1, E2, E3,
and EE2) throughout the WWT process. Their findings indicated a
remarkable removal efficiency for androgens and progestogens,
ranging from 86% to 100%. In contrast, the removal efficiency
observed for estrogens was comparatively lower, falling within
the 75%–92% range.

It is established that natural hormones are excreted by living
organisms in conjugated forms that remain undetectable by
analytical methods designed for unbound hormones. Given that
conjugation can be reversed by naturally occurring enzymes present
in WWTPs and the environment, the ecological fate and migration
mechanisms of these hormones are notably affected by both
conjugation/deconjugation processes as well as the specific
wastewater treatment methodologies employed (Gewurtz et al.,
2022). Deconjugation of some of the hormones excreted in urine
seems to occur within a time frame of hours to days, within the
period when the WWT process may have a significant impact on
deconjugation (Naldi et al., 2016). Hormones demonstrate
persistence against various treatment approaches (e.g.,
sedimentation, biological processing, and disinfection), leading to
their detection in effluents released into ecosystems. This situation
raises concerns over EDCs like E2, which can pose substantial
ecological risks, including fish feminization and disruption of
aquatic ecosystems, even at concentrations as minimal as 2 ng/L
(Bai and Acharya, 2019). However, when wastewater undergoes
treatment through techniques such as ultrafiltration (UF) or
ozonation, research has indicated varying degrees of efficacy
regarding hormone removal. For instance, the algae-mediated
degradation exhibited a notable removal efficiency of
approximately 60% for certain hormones like E2 and EE2.
Gewurtz’s study (2022) explained that WWT techniques such as
lagoon systems alongside secondary and advanced treatment
facilities could initiate hormonal deconjugation processes
impacting concentrations of hormones like EEME and T.
Furthermore, this investigation highlights that upon discharge
into aquatic environments or application of treated biosolids on
agricultural lands, these conjugated hormonal forms may
subsequently undergo deconjugation in the natural environment.
Such processes could enhance hormonal bioavailability, allowing for
increased interactions with aquatic ecosystems and soils, which
might affect terrestrial flora and fauna uptake.

The transport dynamics of hormones within soil matrices are
contingent upon their solubility profiles, adsorption affinities to soil

Frontiers in Environmental Chemistry frontiersin.org09

Habimana and Sauvé 10.3389/fenvc.2025.1547596

https://www.frontiersin.org/journals/environmental-chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fenvc.2025.1547596


particles, as well as uptake mechanisms involving plants or
microorganisms (Bai and Acharya, 2019). The deconjugated form
of these hormones exhibits lipophilicity, whereas their conjugated
counterparts are hydrophilic (Gewurtz et al., 2022); this distinction
illustrates how hormonal compounds may leach into groundwater
or adhere to soil particles. Hormones may be either adsorbed onto
particulate matter or dissolved within soil solution. Extended
retention times in soils can allow for the degradation of certain
compounds. Still, retention on soil surfaces would reduce the
solution concentration of hormones and slow down their
degradation. Furthermore, hormones may also migrate through
leaching or surface runoff pathways, leading to potential
groundwater contamination or infiltration into surface water
bodies. In environmental contexts, plant systems can absorb
hormones, potentially influencing physiological functions such as
root development, shoot growth patterns, flowering events, and
germination processes (Shi et al., 2010). Moreover, hormonal
compounds have been documented to bioaccumulate in species
such as quagga mussels (Dreissena bugensis), indicating their
propensity to infiltrate food webs (Bai and Acharya, 2019), a
phenomenon posing considerable risks to ecological health.
Microbial transformations also play a crucial role in facilitating
hormone degradation or transformation, including analogous
deconjugation phenomena observed within WWTPs (Gewurtz
et al., 2022; Olsen et al., 2007). Czajka and Londry (2006)
highlighted the susceptibility of hormones to microbial
degradation within soil environments depending on specific
bacterial populations and other variables such as moisture levels
and soil composition types; they further documented hormones’
anaerobic transformation capabilities under certain conditions
within soil matrices. Bartelt-Hunt et al. (2012) emphasized
concerns associated with runoff occurrences in regions
characterized by intensive animal husbandry practices where
manure applications could directly introduce hormones into local
ecosystems.

6 Plastic-related compounds

Bisphenols (BPs) and phthalic acid esters (PAEs) are two classes
of plastic-related compounds under scrutiny. The literature
examined documented the presence of twenty BP analogs and
fifteen PAEs within the soil and sewage sludge matrices.

6.1 Overview

6.1.1 Bisphenols
Phenolic plastic-related compounds, such as bisphenol A (BPA),

are synthetic compounds employed to enhance the flexibility and
durability of plastics (Kubwabo et al., 2009; NIEHS, 2023). These
substances are common in polycarbonate plastics and epoxy resins,
utilized across various consumer products, including water bottles,
food packaging, and medical devices (EFSA, 2023; Park et al., 2018).
Research has raised concerns about the potential health
repercussions of bisphenols, particularly BPA. This compound
has been implicated in endocrine disruption, reproductive
disorders, and an elevated risk of certain cancers (vom Saal et al.,

2007; Lang et al., 2008). Furthermore, studies have demonstrated
that BPA can leach from plastic materials into consumables, thereby
facilitating human exposure (FDA, 2023). In light of these
apprehensions, several states have instituted bans on using BPA
in specific products such as baby bottles and sippy cups (EC, 2011a;
EC, 2011b). Concurrently, various manufacturers have proactively
substituted BPA with alternative bisphenols like bisphenol S (BPS)
or bisphenol F (BPF). Nevertheless, research has also raised alarms
about the potential health implications associated with these
alternative bisphenols. A recent study correlated obesity in young
people to exposure to BPS and BPF (Jacobson et al., 2019). Another
study examined the endocrine disruption potential of six
commercially available BPA alternatives: BPS, BPF, bisphenol AP
(BPAP), bisphenol AF (BPAF), bisphenol Z (BPZ), and bisphenol B
(BPB). All 6 BPA substitutes were found to be no less estrogenic than
BPA in human breast cancer cells, with BPAF, BPB, and BPZ being
even more estrogenic (Mesnage et al., 2017). As a consequence,
experts are advocating for minimizing exposure to all bisphenols
while promoting safer alternatives (Rochester and Bolden, 2015;
Viñas and Watson, 2013).

6.1.2 Phthalic acid esters
PAEs, called phthalates, are synthetic compounds widely

employed as plasticizers across various consumer products. These
include flexible polyvinyl chloride (PVC) items such as vinyl
flooring, wallpaper, and apparel; personal care items
encompassing cosmetics, fragrances, and lotions; medical
apparatus including tubing, catheters, and gloves; as well as food
packaging and processing equipment (Wang and Qian, 2021; Lee
et al., 2019; Net et al., 2015; Li et al., 2017). The mechanism by which
phthalates function involves enhancing the flexibility and durability
of plastics, thereby rendering them more malleable and resistant to
fracturing. Nonetheless, these substances are not chemically
integrated within the plastic, which renders them susceptible to
leaching into the environment and potentially into foodstuffs and
human organisms via ingestion, inhalation, or dermal contact
matrix (Wang et al., 2022). Such leaching may result in human
exposure that raises significant health concerns attributed to their
potential endocrine-disrupting characteristics, which can interfere
with human hormonal systems (Zhang et al., 2021a; Zhou et al.,
2019). Empirical studies have established associations between
phthalate exposure and adverse reproductive outcomes,
congenital anomalies, as well as developmental disorders (Swan
Shanna et al., 2005). For this reason, regulatory entities such as the
European Chemicals Agency (ECHA) and the USEPA have
prohibited or subjected PAEs to restrictions (ECHA, 2022;
USEPA, 2023a).

6.2 Physical and chemical characteristics:
indices of fate and transport

6.2.1 Bisphenols
The chemical structure of BPs consists of two phenolic groups

connected by a bridging group (such as carbon or sulfur) (Sánchez-
Piñero et al., 2020; Xu et al., 2021a). This structure contributes to
their chemical reactivity and ability to form polymers, which
accounts for their extensive application as plastic-related
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compounds (Xu et al., 2021a). BPs tend to be soluble in organic
solvents but exhibit limited solubility in water (Zhu et al., 2019; Sun
et al., 2018; Huang et al., 2020). This hydrophobic behavior affects
their distribution in sludge and increases their potential for
adsorption onto particulate matter (Zhu et al., 2019).

6.2.2 Phthalic acid esters
PAEs constitute a group of industrial compounds distinguished by

their chemical composition comprising two alkyl or aryl groups bonded
to a phthalate group. Their unique physicochemical characteristics
render them suitable for diverse applications. Predominantly
employed as plasticizers or additives in consumer goods, PAEs can
be classified based on their molecular weight. Higher molecular weight
phthalates are typically utilized as plastic additives to enhance the
pliability and durability of polyvinyl chloride (PVC) products,
exemplified by DEHP. Lower molecular weight phthalates fulfill
various functions (e.g., solvents, emulsifiers, stabilizers) in consumer
items like cosmetics, personal care products (PCPs), insecticides,
adhesives, pharmaceuticals, and solvents - examples being diethyl
phthalate (DEP), di-n-butyl phthalate (DnBP), and dimethyl
phthalate (DMP) (Koniecki et al., 2011; Tao et al., 2023).

6.3 Occurrence in sewage sludge, and soils

6.3.1 Bisphenols
Publications on twenty BPs in sewage sludge and the soil were

examined. BPA and BPF are the most dominant sewage sludge
among BP analogs, with 179 ng/g and 165 ng/g median
concentrations, respectively. BPF (3.4 ng/g) and BPA (2.3 ng/g)
dominate again in the soil. The median total concentration of twenty
bisphenol analogs in sewage is 388 ng/g, and 9.6 ng/g in the soil.
Detailed data are found in Supplementary Table S4.

6.3.2 Phthalic acid esters
Fifteen PAEs were analyzed in sewage sludge or soil by several

authors. PAEs represent the most dominant class of CECs occurring
in sewage sludge and soil compared to all other classes reviewed in
this paper. In fact, the median cumulative concentration of 15 PAEs
in sewage sludge is 734 μg/g, with minimum and maximum values
ranging from 107 μg/g to 2,618 μg/g. The concentrations of PAEs are
consistently elevated in sewage sludge when compared to those
found in soils. The median concentration of PAEs measured in the
soil is 2.99 μg/g, with the lower and upper optima of 0.28 μg/g and
634 μg/g, respectively. DEHP registered the highest median
concentration in sewage (224 μg/g), followed by BBzP (202 μg/g),
and dibutyl phthalate (DBP) (182 μg/g). In the soil, DEHP
dominates (1.73 μg/g), followed by DiBP (0.53 μg/g), and DBP
(0.29 μg/g). Additional information is in Table S6 and
Supplementary Appendix B-Sheet 7-Phthalates.

6.4 Environmental fate and transport
mechanisms

6.4.1 Bisphenols
Understanding the environmental behaviors and mobility of

BPs is essential for assessing their environmental impact and

developing strategies to mitigate their adverse effects. The fate of
BPs in the WWT process, sewage sludge, and soil is influenced by a
complex interplay of factors, and it varies depending on various
factors such as their physicochemical properties, environmental
conditions, and treatment methods. Studies have shown that BPs
are not completely removed during conventional WWT, leading to
their presence in both sewage sludge and liquid effluents (Huang
et al., 2020). BPs may partition into the water phase, sorb onto solid
fractions during WWT, and accumulate in sewage sludge (Xu et al.,
2021a; Peng et al., 2020). During WWT and in soil, BPs undergo
various transformations, influencing their environmental fate and
transportation mechanisms (Sun et al., 2018; Zhu et al., 2019;
Sánchez-Piñero et al., 2020). Xue and Kannan (2019) have noted
that BPs are not completely removed during the activated sludge
treatment process; a substantial portion becomes bound to solids
within the sewage sludge during treatment, which subsequently
facilitates their transportation to land when this sludge is utilized
as fertilizer in agricultural practices (Zhu et al., 2019).

Considerable disparities exist in the removal efficiencies of BPs,
especially BPA, across different WWT technologies. Wang et al. (2019)
illustrate that primary treatment exhibits the lowest BPA removal rate,
averaging approximately 25.4%, followed by lagoon treatment with a
moderate removal efficiency averaging 58.3%. Biologically aerated filters
demonstrate enhanced removal efficiency with an average rate of
around 66.0%. Finally, the activated sludge process yields superior
performance with an average removal rate of 74.7%. Additionally, the
Oxidation Ditch (OD) process marginally outperforms modified
activated sludge processes, such as Anaerobic-Anoxic-Oxic (AAO)
and Anoxic-Oxic (AO) methods), which exhibit slightly lower
removal efficiencies compared to standard activated sludge.

Upon application of sewage sludge as fertilizer or soil
amendment, BPs can be released into the soil environment.
Studies have identified BPs in sewage sludge (Peng et al., 2020;
Sun et al., 2018; Zhu et al., 2019) and agricultural soils (Xu et al.,
2021a; Sánchez-Piñero et al., 2020). The accumulation of BPs in soil
from biosolids raises concerns about their persistence, estrogenic
potency, and potential risks associated with land application. Several
factors influence the fate of BPs in biosolids following their
introduction into soil environments. Weaker binding may
facilitate leaching into groundwater systems; conversely, strong
adsorption can inhibit such occurrences. Exposure to
environmental factors within soils can prompt further
degradation of BPs through microbial action or photodegradation
processes. Factors such as temperature, moisture content, and soil
type can all influence degradation rates (Zhu et al., 2019; Sánchez-
Piñero et al., 2020). Generally, BPs are chemically stable under
certain conditions but may undergo hydrolysis or degradation under
extreme pH, temperature, or oxidative conditions, impacting their
persistence in the environment and potential biological effects (Zhu
et al., 2019; Xu et al., 2021a). A study conducted in Scotland and the
United Kingdom showed that 4% by mass of BPA in the soil was
predicted to enter soil pore water, resulting in significant uptake by
crops, primarily leafy vegetables, but also root crops, and much
lower uptake into cereal grains (Zhang et al., 2015).

6.4.2 Phthalic acid esters
U.S. EPA’s list of priority pollutants outlines six PAEs

including the two widely used ones, DBP and DEHP (Wang
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et al., 2022; USEPA, 2023b). The primary sources of PAEs in soils
comprise the application of biosolids, sewage irrigation, and
chemical fertilizers and additives (Wei et al., 2020; Becky
Miriyam et al., 2022). The transport pathways and
environmental destiny of PAEs within soil and air matrices
are influenced by a confluence of factors, including the origins
of pollution, their respective properties, the inherent properties
of the soil, and its associated microbiological characteristics
(Tuan Tran et al., 2022; Koniecki et al., 2011; Wang et al.,
2022). Certain PAEs, particularly those of lower molecular
weight, possess heightened volatility (e.g., DEHP Henry’s law
volatility constant value of 4.37 × 10−5 atm-m3/mol) potentially
resulting in their release into the atmosphere and subsequent
exposure via inhalation or dermal contact (Koniecki et al., 2011;
Howard, 2017).

Wang et al. (2022) studied the impact of soil-particle size on
the migration of PAEs in soil medium. They found that total PAE
concentrations in bulk soil decreased as samples were collected
farther from point-source pollution, in this example, the landfill.
Clay-sorbed PAEs (clay particle size < 2 μm) were found to be
consistent with the Gaussian air pollution model, suggesting
atmospheric transportation. Silt-sorbed (2 μm < particle size <
63 μm) PAEs showed a leveled-off concentration, suggesting
shorter transport distance due to gravitational deposition,
explained by the Boltzmann equation. Sand-sorbed PAEs
(particle size > 63 μm) showed an unexpected increasing trend
in surrounding soils, emphasizing the apparent accumulation of
PAEs at downhill sites. When PAEs interact with trace elements
in soils, their level of toxicity is raised (Zhang et al., 2021b).
Berenstein et al. (2022) found that phthalic acid and monobutyl
phthalate (MBP) are generated by the photodegradation of DBP
in polyethylene mulches. The same research report that the
migration of DBP and MBP from these plastic covers into the
surrounding environment constitutes a notable concern. Another
research by Zeng et al. (2008) pointed out that the PAEs’
metabolites can exhibit toxicity levels similar to those of their
parent compounds. It has been observed that there exists a
positive correlation between the lipid content of vegetables
and the bioconcentration factor (BCF) of PAEs (Wei et al.,
2020). Furthermore, it is unlikely that complete mineralization
of PAEs will occur under in situ conditions within biosolids-
amended soils (Madsen et al., 1999). The airborne migration of
PAEs significantly elevates human exposure levels. The dermal
absorption rates are contingent upon the specific types of
phthalates, with DEP demonstrating particularly high
absorption potential. This underscores its likelihood of
contributing to cutaneous exposure through cosmetic and
personal care products. Extensive research has established a
correlation between PAEs and various health concerns,
especially regarding their capacity to disrupt endocrine
functions as well as adversely affecting reproductive and
developmental processes, and potentially pose carcinogenic
risk (Wei et al., 2020; Koniecki et al., 2011; Kaewlaoyoong
et al., 2018; Yoshida et al., 2020). Given their ubiquitous
presence in the environment, PAEs raise critical concerns
about chronic exposure within the general population,
particularly among vulnerable demographics such as infants
and toddlers (Koniecki et al., 2011).

7 Rubber and polymer antioxidants
[Aromatic secondary amines (Ar-SAs)]

7.1 Overview

Twomain categories of aromatic secondary amines (Ar-SAs) are
commonly utilized as antioxidants in rubber and polymers:
substituted diphenylamines (S-DPAs) and substituted
p-phenylenediamines (S-PPDs) (Kassler et al., 2014; Lu et al.,
2016; Liu et al., 2019).

7.1.1 Substituted diphenylamines
S-DPAs form a group of secondary amine antioxidants that are

widely employed in petroleum-based products (fuels, lubricants),
rubber materials, plastics, and other polymeric substances to prevent
oxidative deterioration (Kassler et al., 2014). The diphenylamine
(DPA) central structure is the basis and the lone functional group all
S-DPAs share. The DPA’s phenyl rings can have one to four side
substitutions that are either phenyl or saturated alkyl, with the alkyl
side chains containing four to nine carbons (OECD, 2016). In
addition to the PREPOD (2-Propanone, reaction products with
diphenylamine, CAS RN 68412-48-6) group investigated by
Zhang et al. (2020c), three other remarkable classes of S-DPA
antioxidants can be recognized as alkylated (mono-, di-, or poly-)
DPAs [e.g., BNT (Benzenamine, N-phenyl-, reaction product with
2,4,4-trimethylpentene), CAS RN 68411-46-1], S-DPAs of variable
numbers of phenyl/benzyl replacements on DPA rings [e.g., BNS
(Benzenamine, N-phenyl-, styrenated), CAS RN 68442-68-2], and
S-DPAs with changing numbers of alkyl/benzyl and phenyl
substitutions [e.g., BNST (Benzenamine, N-phenyl-, reaction
products with styrene and 2,4,4 trimethylpentene), CAS RN
68921-45-9] (Health Canada, 2010). These classes are mainly
UVCB (Unknown or Variable Composition, Complex Reaction
Products, and Biological Materials) chemical substances.

7.1.2 Substituted p-phenylenediamines
S-PPDs, on the other hand, are added to the rubber as

antioxidants, anti-ozonolysis, and bending crack inhibitors
(Huntink et al., 2004). Huang et al. (2021) mentions three forms
of PPDs utilized in the rubber processing industry, which are the
dialkylated PPD (N,N′-dialkyl-p-phenylenediamine), the mono-
alkylated-mono-arylated PPD (N-alkyl-N′-aryl-p-
phenylenediamine), and the diarylated PPD (N,N′-diaryl-p-
phenylenediamine). The UVCB class of BENPAT (1,4-
Benzenediamine, N,N′-mixed phenyl and tolyl derivatives, CAS
RN 68953-84-4) studied by Zhang et al. (2020c) and captured on
Canada’s List of all Challenge chemical substances (Health Canada,
2010), alongside BENTAX (1,4-Benzenediamine, N,N′-mixed tolyl
and xylyl derivatives, CAS RN 68478-45-5) exemplify S-PPDs.

7.2 Physical and chemical characteristics

7.2.1 Substituted diphenylamines
According to an evaluation report of S-DPAs released by the

Canadian federal government in 2017, empirical and modeled
determinations of the S-DPAs’ physicochemical characteristics
displayed high log Kow values and poor water solubility (ECCC,
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2017). For different S-DPAs, the anticipated log Kow values range
from 4.45 to 13.58; however, the experimental measurement of log
Kow values beyond 8.2 was uncertain because it is difficult to
accurately determine the partitioning properties of
superhydrophobic substances. The conjugate acid’s acid
dissociation constant (pKaH) of S-DPAs that are of 0.8 ±
0.4 indicates that, in an aqueous environment, the neutral form
will predominate (ECCC, 2017). Overall, the physicochemical
attributes and kinetics of S-DPAs are reported to be influenced
by the degree of substitution and the number of carbon atoms in the
side chains (OECD, 2016). S-DPAs typically have higher molecular
weights than S-PPDs, affecting their volatility and solubility (Liu
et al., 2019).

7.2.2 Substituted p-phenylenediamines
The characteristics of S-PPDs, particularly in their roles as

antioxidants and antiozonants, exhibit considerable variability
based on the substitutions present on the nitrogen atoms. These
diverse substitutions significantly impact their solubility, volatility,
and reactivity profiles. S-PPDs demonstrate a range of solubility
levels in aqueous environments. They are relatively stable under
normal conditions but can undergo oxidation, especially when
subjected to ozone or UV radiation, leading to the formation of
secondary products like N-(1.3-dimethylbutyl)-N′-phenyl-p-
phenylenediamine (6PPD) (Huang et al., 2021). The polarity of
these compounds is influenced by the presence of functional groups
such as hydroxyl and amine moieties or other polar substituents that
enhance their polarity, thereby affecting their behaviors in the
environment (Moschet et al., 2018; Huang et al., 2021). The
chemical structure of S-DPPs determines their stability. Bulky
substituents on the aromatic ring can increase stability and
decrease volatility. The essential component of these antioxidants’
activity is their reactivity with oxidizing agents like peroxy radicals,
produced when rubber ages. They can scavenge radicals, thus
effectively terminating oxidative chain reactions (Huntink et al.,
2004). The widespread use of these antioxidants in tire formulations
and their resultant environmental discharge highlight their
persistence and potential accumulation (Tian et al., 2021; Zhang
et al., 2021c).

7.3 Occurrence in sewage sludge, biosolids,
and soils

7.3.1 Substituted diphenylamines
Fourteen S-DPAs, including six PREPODs and eight BNSTs,

have been characterized in biosolids by Zhang et al. (2020c), Zhang
et al. (2021c). The central tendency of the most occurring S-DPAs in
biosolids is 86 and 66 ng/g for TO-DPA and DTOS DPA,
respectively, while the central tendency for the least prevalent is
3.8 and 4.9 ng/g for IPDM-AD and IP-DPA, respectively. Overall,
BNST compounds are the most recurring compared with the
PREPODs, with a median concentration of 408 ng/g for the
former and 43 ng/g for the latter. The maximum concentration
of S-DPAs can achieve 3,133 ng/g of dry biosolids. Supplementary
Table S8 gives information about the concentrations of S-DPAs
quantified in indoor and playground dust. The most common
among measured S-DPAs are di-n-octyl-DPA and 4,4′-bis(1,1-

dimethylbenzyl)diphenylamine (diAMS), with median
concentrations of 74 and 46 ng/g in dust. The cumulative
median concentration of the six measured S-DPAs was 215 ng/g,
while the maximum concentration reached 13,619 ng/g.
Supplementary Tables S6, S7 present data on the occurrence of
S-DPAs in biosolids and dusts.

7.3.2 Substituted p-phenylenediamines
This review investigates thirteen S-PPDs in biosolids or dust

matrices, and respective occurrences are reported in Supplementary
Tables S8, S9, respectively. N,N′-diphenyl-p-phenylenediamine
(DPPD), N-phenyl-N′-(o-tolyl)-p-phenylenediamine (PTPD), and
N,N′-di (o-tolyl)-p-phenylenediamine (DTPD) are three S-PPDs
analyzed in biosolids totaling median concentration of 45 ng/g.
Their concentration range varies from 4.5 to 366 ng/g. Twelve
S-PPDs analyzed in dust showed a median concentration of
233 ng/g, with min-max spanning from 85 to 1,735 ng/g. The
occurrence of S-PPDs in dust is dominated by N,N′-di (o-tolyl)-
p-phenylenediamine-quinone (DTPD-Q), N-(1,3-dimethylbutyl)-
N′-phenyl-p-phenylenediamine-quinone (6PPD-Q), and 6PPD,
with respective concentrations of 60 ng/g, 42 ng/g, and 42 ng/g.
The occurrence of DPPD in biosolids is to a certain extent similar as
that found in dusts (15 ng/g in biosolids vs. 12 ng/g) and points out
that there are several ways of exposure to this class of contaminants.
Detailed statistical calculus is given in Supplementary Appendix
B-Sheet 9-S-PPDs.

Research indicates that average concentrations of S-PPDs are
significantly elevated in rubber playground dust in comparison to
indoor dust, suggesting a heightened level of exposure in outdoor
environments (Liu et al., 2019). Furthermore, another investigation
revealed that S-PPDs, including 6PPD and its transformation
product 6PPD-Q, are commonly found in dust samples collected
from diverse settings, with the highest concentrations identified in
road and vehicle dust (Huang et al., 2021). A study conducted in
Tokyo, Japan, illustrated that the levels of 6PPD-Q were more
pronounced in dust samples obtained from high-traffic areas
than those from low-traffic regions, thereby demonstrating a
significant influence of traffic patterns. Additionally, another
study noted that concentrations of 6PPD-Q reached their zenith
during months characterized by elevated atmospheric ozone levels
(Hiki and Yamamoto, 2022).

7.4 Environmental fate and transport
mechanisms

7.4.1 Substituted diphenylamines
S-DPAs have been found in biosolids at amounts ranging from

hundreds to over 1,000 ng/g dw in biosolid samples (Zhang et al.,
2020c). In their studies, Zhang et al. (2020c), Zhang et al. (2021)
successfully reported seventeen S-DPA in various compartments,
including biosolids. The prevalence of S-DPAs in WWTP influent
was positively correlated with the sizes of the served populations,
indicating that the amount of waste produced significantly
influences the concentration of S-DPAs in the treatment system
(Lu et al., 2017). Sorption to sludge was identified as the primary
mechanism for S-DPAs removal within WWTPs, with longer
retention times in treatment units facilitating more efficient
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partitioning of S-DPAs to solid sludge. Despite relatively high
removal efficiencies, notable concentrations of S-DPAs were still
detected in effluents (Zhang et al., 2020b; Lu et al., 2017). The
biological treatment phases within the anoxic/oxic (A/O) process
and cyclic activated sludge technology (CAST) have exhibited a
higher efficiency in removing most S-DPAs than the hydrolysis
acidification tank. This initial chemical-assisted treatment showed
lower efficacy, likely due to biological processes enabling longer
retention times, enhanced interaction between bacteria and
pollutants, and the superior ability of microorganisms to degrade
S-DPAs compared to purely chemical approaches (Zhang et al.,
2020b). The research has also determined that meteorological
elements, such as temperature and sun radiation, can influence
the microbial populations’ behavior and biodegradation
mechanisms, consequently impacting the adsorption of S-DPAs
on the sludge fraction.

Higher loads in benthic invertebrates (crayfish, Orcoescties spp.)
than in pelagic fish (hornyhead chub, Nocomis biguttatus) and
common shiners (Luxilus cornutus) indicate that the partitioning
of S-DPAs in sediments was higher than in water (Lu et al., 2016).
Likewise, concentrations of S-DPAs in biosolids surpassed those
found in effluents, confirming that these compounds potentially
accumulate and persist in the solid wastes generated during WWT
(Zhang et al., 2016; Lu et al., 2017). This raises concerns about their
long-term environmental impacts if these solids are used for land
application or disposal. Given the substantial levels of S-DPAs
persisting in biosolids, there are apprehensions regarding their
beneficial reuse, particularly concerning practices like composting
or land application. The presence of S-DPAs may result in their
integration into terrestrial ecosystems and subsequent amplification
throughout the food chain. This was evidenced by the detection of
S-DPAs in the livers and eggs of seabirds, as well as in the livers of
seals, indicating pollution within the Arctic ecosystem by this
particular group of organic contaminants (Lu et al., 2019). Lastly,
compared to seal livers, seabird livers, more particularly, the livers of
the northern fulmar and black-legged kittiwakes, showed noticeably
higher levels of S-DPAs, suggesting that these seabirds may be more
vulnerable to exposure due to their migratory nature. Also,
compared to seabirds, which have established migratory patterns,
ringed seals showed greater individual variability in their migration
patterns, which may affect the quantities and compositions of
contaminants in their tissues (Lu et al., 2019).

7.4.2 Substituted p-phenylenediamines
There is documented evidence that dust is an important sink for

S-DPAs and S-PPDs in both indoor and outdoor settings (Hwang
et al., 2016; Moschet et al., 2018), highlighting grime as a human
exposure pathway through oral ingestion, skin exposure, and
breathing (Mercier et al., 2011). S-PPD antioxidants are
acknowledged as the most commonly encountered allergens
among various rubber chemicals (Mahler, 2021). The recent
revelation of the aquatic toxicity of 6PPD has been substantiated
by its demonstrated harmful effects on fathead minnows
(Pimephales promelas) (Prosser et al., 2017), along with the
confirmed lethality of its oxidation byproducts, 6PPD-Q, towards
coho salmon (Oncorhynchus kisutch) (Tian et al., 2021). Having said
that, their environmental fate and transport mechanism are still
unclear (Huang et al., 2021).

8 Pesticides

8.1 Overview

Here, literature pertaining to the presence of neonicotinoid
insecticides (NEONICs) was reviewed. NEONICs are neuro-
active and systemic insecticides that bear a structural
resemblance to nicotine. Their widespread application in
agriculture dates back to the early 1990s (Kollmeyer et al., 1999;
Akter et al., 2023). NEONICs specifically target the sodium/
potassium ionophore within an insect’s brain-spinal cord axis,
disrupting cholinergic neural signaling by acting as agonists on
nicotinic acetylcholine receptors (nAChRs). Upon binding tightly to
these receptors in insects’ central nervous apparatus, NEONICs can
result in receptor blockage, paralysis, or fatality at higher
concentrations while inducing neurological activation at lower
levels. Notably, NEONICs exhibit a higher affinity for binding
with insects’ nAChRs than mammalians, rendering them
preferentially more toxic to insect populations (Tomizawa and
Casida, 2005). Agricultural practitioners and horticulturists highly
favor NEONICs for several key reasons. They exhibit a wide-ranging
efficacy against various insect pests, can be conveniently
administered through various methods (seed treatments, soil
drenches, or foliar applications), possess minimal acute toxicity
towards mammals, and demonstrate systemic properties that
enable plant uptake and distribution throughout plant tissues.
This systemic nature provides safeguarding capabilities against
pests that target different components of plants (Akter et al., 2023).

8.2 Physicochemical and biological
characteristics

NEONICs exhibit a low n-octanol-water partition coefficient
(log Kow < 1), an acid dissociation constant that lies considerably
below or above the environmental pH (pKa ≤ 2.2 and pKa ≥ 11), and
a half-life (DT50) that spans from days to years (1–1,155 days).
Supplementary Table S11 gives the log Kow, pKa, and half-life (DT50)
values of NEONICs and the associated phenyl-pyrazole fipronil.
Several authors have employed these physicochemical properties to
explain the environmental fate and transportation mechanisms of
NEONICs in soil and water media (Simon-Delso et al., 2015; Hladik
and Kolpin, 2015). The N-nitroguanidines (clothianidin,
dinotefuran, imidacloprid, and thiamethoxam), nitromethylenes
(nitenpyram), and N-cyanoamidines (acetamiprid and
thiacloprid) are the three chemical categories into which they can
be placed (Jeschke et al., 2011).

8.3 Occurrence in sewage sludge, biosolids,
and soils

Using a business espresso maker and a pressurized hot water
extraction (PHWE) inox steel column, Svahn and Björklund (2019)
examined the extraction of imidacloprid (IMI) alongside various
pharmaceutical products (PPs) from biosolids. The findings
indicated that the two extraction methods resulted in
concentrations of 1.4 ng/g d. w. and 3.3 ng/g d. w. for IMI,
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respectively. The presence of NEONICs was documented in various
soil types and uses in China by Zhang et al. (2020a), Ying et al.
(2022), Zhou et al. (2018), Zhou et al. (2021), and in Belize and the
Philippines by Bonmatin et al. (2019), Bonmatin et al. (2021).
Supplementary Table S12 summarizes statistics on quantified
NOEs in the soil. A comprehensive review of eight NOEs in the
soil compartment reveals key statistical measures. IMI demonstrates
a higher median concentration of 2.6 ng/g, followed by acetamiprid
(ACE) and nitenpyram (NIT) with 2.6 ng/g and 2.5 ng/g,
respectively. Imidaclothiz (IMT) was found to be below the LOD.
Summing up all NEONICs, the total (Σ8 NEONICs) exhibits a min-
max interval of 0.372–273 ng/g, a median of 13 ng/g, and an average
concentration measured at 25 ± 44 ng/g. Detailed statistics on
quantified are found in Supplementary Appendix B-Sheet 10-
Neonicotinoids.

8.4 Environmental fate and transport
mechanisms

Because NEONICs dissolve in water, runoff and leaching are the
usual ways through which they are transported. Plants may readily
absorb them through their leaves or roots and then disperse them
throughout their tissues (Borsuah et al., 2020; Pietrzak et al., 2020).
Much of the applied NEONICs is lost to the surrounding soil, water,
and air, with just about 5% being absorbed by the target plant (Wood
and Goulson, 2017). In a leaching soil column study by Aseperi et al.
(2020), the sorption potential of various NOEs in soil has been seen
to differ. Specifically, thiacloprid (THA) exhibited soil adsorption up
to 186 times higher than thiamethoxam (THI). Furthermore, it has
been shown that the more organic matter in the soil, the more deeply
NEONICs seep into the soil. It, therefore, seems obvious that
NEONICs can accumulate in the soil after several applications
and become persistent (Briceño et al., 2024).

9 Discussion

This review paper evaluated the presence, fate, and
transportation mechanisms of various CECs grouped into
pharmaceutical products (PPs), personal care products (PCPs),
hormones, plastic-related compounds, rubber and polymer
antioxidants, and neonicotinoid insecticides. A thorough
methodology involving cross-referencing and thematic
classification of existing literature provided a nuanced
understanding of CECs in different environmental contexts.
Figure 3 outlines the 50 most abundant CECs in biosolids, which
are dominated by PAEs, followed by antifungals, chlorophenolic
antimicrobials, fluoroquinolone antibiotics, and analgesics. Figure 4
provides a comprehensive overview of the occurrence of leading
groups of CECs in sewage sludge or biosolids, with a predominant
presence of PAEs, followed by PPs, PCPs, hormones, antioxidants,
and bisphenols. Environmental transport and transformation
processes are predominantly governed by factors such as
solubility in water, volatility, biological and physicochemical
degradation, sorption, and the potential for bioaccumulation, as
described in Table 1. The findings aim to inform regulatory
frameworks, illustrating how the cumulative presence of various

groups of CECs in sewage sludge and soil could influence
environmental health decisions. This review also underscores
current knowledge gaps and identifies future research trends
essential for addressing emerging environmental issues associated
with CECs. By highlighting areas that require further investigation,
this work lays the groundwork for enhanced monitoring and
management strategies to mitigate the ecological and health
impacts of CECs, thus contributing to more effective
environmental governance.

In the context of CECs emanating from biosolids and similarly
contaminated matrices like sewage sludge and soil, our review falls
within salient research themes about CECs detected in complex
media. In addition to the thematic of CECs classification,
occurrence, and fate and transport mechanisms covered in this
review, additional research thematic areas that have been recently
investigated comprise analytical techniques, toxicity, uptake by
living organisms, treatment technologies, and risk assessment.
This review looked at the occurrence of various classes of CECs
in biosolids, sewage sludge, and contaminated soils, providing
insight into each class’s cumulative occurrence. This work should
help provide a framework for data needed to regulate the presence of
such CECs for using biosolids for soil enhancement.

9.1 CECs’ characteristics influencing their
fate and transport

Sander et al. (2022) discussed the impact of Henry’s Law
Volatility Constant (Hv) on contaminants’ environmental fate
and migration pathways. The constant plays a critical role in
quantitatively influencing the fate and transport of contaminants
by determining their distribution between gas and liquid phases
within environmental contexts. An elevated Hv value indicates that
the contaminant exhibits an increased rate of evaporation, which is
fundamentally significant for predicting the rate at which
contaminants can escape water bodies, affecting both water
quality and atmospheric pollution levels. This constant is
mathematically defined as the ratio of the abundance of the
contaminant in the gas phase (Qg) to its abundance in the liquid
phase (Ql) at equilibrium under conditions of infinite dilution:

Hv � Qg

Ql

Moreover, the constant is a pivotal metric for evaluating the
equilibrium distribution of contaminants between air and water,
commonly referred to as air-water partitioning. Defined via partial
pressure (p) of a species in the gas phase relative to its amount
fraction (x) in the liquid phase under equilibrium conditions at
infinite dilution, the Henry’s Law volatility constant (Hpx

v ) can be
expressed as follows:

Hpx
v � lim

x ���→ 0

p

x

The half-life degradation time (DT50) constitutes a significant
parameter in elucidating contaminants’ environmental destiny and
mobility. DT50 represents the time required for the concentration of
a specific contaminant to decrease by fifty percent in the
environment due to biological and physicochemical degradation
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processes. A longer DT50 indicates a persistent contaminant,
potentially resulting in extended exposure risks for aquatic
ecosystems and human health. In contrast, a shorter
DT50 indicates that a contaminant undergoes more rapid
degradation, which may mitigate exposure risk. Environmental
fate and transport models frequently incorporate DT50 as a key

input parameter to simulate the movement of contaminants through
diverse environmental matrices such as soil and water. By
integrating DT50 values, researchers can better forecast pollutant
concentrations over time in the environment, thereby aiding in
assessing their potential impact and residence duration.
Furthermore, understanding DT50 can guide remediation

FIGURE 4
Weight percentage distribution of predominant classes of CECs found in biosolids or sewage sludge.

FIGURE 3
Normalized concentrations (ng/g) of the top 50 CECs in sewage sludge and biosolids.
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strategies by revealing whether natural degradation processes are
adequate or if more proactive treatment measures are warranted (Li
et al., 2015).

The organic carbon-water partitioning coefficient (log Koc) and
the octanol-water partitioning coefficient (log Kow) are two
additional characteristics that can affect the environmental fate
and migratory mechanisms. The log Koc value aids in forecasting
the amount of a pollutant that will remain in the aqueous phase
instead of being adsorbed onto soil organic matter. More significant
adsorption to soils is correlated with higher log Koc values. The log
Kow is a crucial metric for evaluating a contaminant’s capacity for
bioaccumulation. A chemical with a greater log Kow is more
hydrophobic and more likely to partition into organic tissues
(USEPA, 1989). The Figure 5 summarizes the fate of CECs
during WWT and land application of biosolids and highlights
main characteristics that affect their migration in the environment.

9.2 Recent advances

Chemometric methodologies have been applied to optimize
various parameters within analytical procedures, decipher
complex datasets, and interpret results. Prominent examples
include the studies conducted by Malvar et al. (2020a), Malvar
et al. (2020b), who employed the Box-Behnken experimental design
(BBD) to enhance extraction and cleanup techniques. The BBD
represents a robust and efficient design that accommodates a
quadratic model without necessitating the examination of all
potential combinations; it is classified as a form of response
surface methodology (RSM) aimed at optimizing processes
involving multiple variables. This approach enables the

meticulous adjustment of experimental conditions while
minimizing the required experiments (Stalikas et al., 2009).

The grouping of contaminants is one of the key strategies
proposed by regulatory entities and researchers to control the
pollution of CECs (Chirsir et al., 2024; EC, 2006). Recently,
advances have expanded beyond BPA to include structural
analogs, providing a more holistic understanding of their
occurrence in the environment (Huang et al., 2020; Xu et al.,
2021a; Xue and Kannan, 2019). Future discussions should also
emphasize the importance of permissible thresholds of groups of
CECs. For example, bisphenol analogs exhibiting comparable or
even greater toxic effects than BPA will compel regulatory bodies to
reassess current standards. Specifically, Health Canada’s proposed
tolerable daily intake (TDI) of 25 μg/kg body weight/day applies
exclusively to BPA found in food packaging materials, such as can
coatings and lacquers (Health Canada, 2008). Although this
proposed TDI is considered conservative, evaluating the risks
associated with all bisphenol analogs across all potential exposure
pathways is essential. With regards to the permissible concentration
of parabens in cosmetics or food additives, the JECFA (Joint FAO/
WHO Expert Committee on Food Additives) instituted an ADI
(Acceptable Daily Intake) of 1–10mg/kg body weight/day applicable
to the sum ofMeP and EtP (ECCC, 2020). Information on permitted
concentrations in the environment and the possible harm they may
cause to ecosystems is non-existent, and ADI thresholds do not
consider either grouping similar substances or all possible ways of
exposure. Thus, there is a need to review permissible intake limits in
light of recently acquired information.

During sample preparation, progress was noticed in sample
pretreatment procedures, where molecularly imprinted polymers
(MIPs) were developed for the sensitive and selective extraction of

FIGURE 5
The characteristics of CECs that influence their fate and transport.
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BPs from complex matrices. Illustratively, a highly class-selective
dummy molecularly imprinted polymer for solid-phase extraction
(DMIPSPE) and clean-up enabled to achieve LOQs as low as
0.003 ng/g and 0.0004 ng/g for BPS and BPAF, respectively,
during the analysis of BP analogs in wastewater and sewage
sludge samples (Sun et al., 2018). As for sample analysis, Matrix-
Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
(MALDI-MSI) has emerged as an invaluable technique for detecting
CECs in complex matrices. Particularly, the MALDI-MSI method
facilitated multi-class analysis of 499 organic contaminants within
biosolids (Villette et al., 2023). When contrasted with conventional
GC-MS and LC-MS techniques, MALDI-MSI offers rapid and
minimal sample preparation for analyses and possesses the
capacity to identify a diverse range of substances, encompassing
CECs. Additionally, Guironnet et al. (2022) implemented a hybrid
triple quadrupole-linear ion trap (QqQ-LIT) spectrometer to
perform triple-stage mass spectrometry acquisition. Within this
QqQ-LIT framework, Multiple Reaction Monitoring cubed (MS/
MS/MS or MRM3) is executed through a series of sequential
processes during triple-stage mass spectrometry acquisition. This
methodology significantly enhances sensitivity, specificity, and
quantification capabilities for complex analyses involving
challenging environmental matrices.

9.3 Future trends

Antibiotics most frequently identified in sewage sludge or
biosolids in this review differ from Canada’s five commonly
prescribed antibiotic classes. The Canadian Antimicrobial
Resistance Surveillance System Report indicates that in 2019, the
predominant antibiotic classes utilized in veterinary applications,
quantified by weight, were tetracyclines (495,116 kg), macrolides
(115,822 kg), penicillins (91,095 kg), sulfonamides (53,226 kg), and
lincosamides (46,390 kg) (Public Health Agency of Canada, 2021).
On the other hand, the same report lists the defined daily doses
(DDD) per 1,000 inhabitants of the most prevalently administered
antimicrobials for human use: tetracyclines (1,186.2), extended-
spectrum penicillins (1,178.7), macrolides (781.9), penicillin
combinations (489.4), first-generation cephalosporins (474.3), and
fluoroquinolones (469.3) (Public Health Agency of Canada, 2021).
Future research should prioritize the characterization of these
antibiotic classes in biosolids and explore the correlation between
their usage patterns and prevalence.

This review documents the presence of E2, NRT, NRG, and P in
biosolids (Gewurtz et al., 2022). According to Costanian et al.
(2018), these hormones are among the most employed in Canada
in hormone replacement therapies (HRT). The Canadian HRT
products primarily consist of estrogen-only formulations, with
estradiol (E2) being a prevalent component (Viglino et al., 2008).
These formulations are accessible in multiple forms, including oral
tablets, transdermal patches, gels, and vaginal rings. Combined
estrogen and progestogen therapies comprise E2 in conjunction
with medroxyprogesterone Acetate (MPA), E2 combined with NRT,
and E2 paired with NRG (often administered via a patch).
Furthermore, formulations utilize combinations of E2 and P that
are chemically identical to the endogenous hormones produced by
the human body. T therapy is also available to address concerns

related to diminished libido or other hormonal imbalances. Future
research endeavors should cover this game of hormones and include
additional ones such as MPA and others.

Advanced chemometric strategies to process and extract
important information from large data sets will receive more
attention due to the complexity of modern analytical procedures
and instruments and the volume of data generated thereof (Malvar
et al., 2020a; 2020b). Multivariate data analysis techniques will be
increasingly integrated into chemometric methodologies to allow for
the simultaneous exploration of several variables (Shayesteh et al.,
2015). Developing chemometric techniques will also prioritize
facilitating instantaneous analysis to expedite decision-making.
This trend will be particularly significant for environmental
monitoring and food safety sectors. Artificial intelligence and
machine learning algorithms will play a major role in future data
analysis and pattern recognition. Although MALDI-MSI has
limitations when quantifying contaminant loads in biosolids, it
can be useful for peripheral analysis that could inform traditional
LC-MS or GC-MS quantitation assessments (Villette et al., 2023).
These methods offer improved quantification, sensitivity, and
selectivity for figuring out the quantities of particular substances
in complex matrices like biosolids.

Another advancement is the increasing interest in analyzing the
degradation byproducts of parent contaminants (Castro et al., 2018;
Ma et al., 2018; Malvar et al., 2020b; Riva et al., 2021; Zhu et al.,
2019). During the breakdown of contaminants, chemical
transformations can lead to the formation of new and
unregulated substances. These metabolites may pose equivalent
or even higher risks than the parent compounds, as in the case
of MeTCS, with a higher bioaccumulative potential than TCS
(Coogan et al., 2007), and N-desethylamiodarone more prevalent
in sewage sludge than amiodarone (Castro et al., 2018), leading to
potentially significant ecological and human health impacts.
Researchers have increasingly worked to determine the
metabolites and transformation by-products of CECs.

About hormones, it is important to consider the conjugated/
deconjugated process in developing analytical techniques to
measure hormones to avoid underestimating their concentrations
in the environment (Gewurtz et al., 2022; Naldi et al., 2016). These
should have major implications since they underscore the
importance of monitoring both conjugated and free forms of
hormones in wastewater and soil environments. Future studies
on the presence, mobility, and transformation of hormones
during WWT and in the environment should consider assessing
both conjugated and deconjugated forms of hormones.

While some researchers argue that the persistence of S-DPAs in
the environment necessitates further investigations (Lu et al., 2019),
others consider that current exposure and treatment technologies
sufficiently mitigate risks posed by S-DPAs (ECCC, 2017). Further
investigation and observation are necessary to better understand the
occurrence and behavior of S-DPAs in the environment. With the
recently documented toxicity of 6PPD-Q to coho salmon (Tian et al.,
2021; Cao et al., 2022), debates regarding the toxicity levels and
acceptable exposure limits to S-PPDs exist, raising questions about
the permissible levels of such chemicals in the environment and
whether current regulations adequately address these risks.
Moreover, the recent determination of the presence of S-DPAs in
Arctic seabirds and seals (Lu et al., 2019) highlights the urgency for
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additional research on S-DPAs migration routes and fate in the
environment, including the Arctic ecosystem. The persistent
presence of S-DPAs has raised concerns regarding
bioaccumulation and long-term ecological impacts; therefore, it is
essential to better understand how they accumulate in food webs,
including Arctic wildlife and Indigenous populations. Public
awareness concerning their environmental implications will be
indispensable to promote stronger advocacy for sustainable
regulatory practices. Regarding S-PPDs, growth in initiatives for
tracking their levels in various matrices is expected. More
collaborative approaches among environmental scientists and
toxicologists to tackle the complexities surrounding S-PPDs and
other classes of CECs and their environmental fate will also increase.
Klöckner et al. (2021) underscore the need to evaluate the
implications of organic contaminants and metal constituents on
toxicity and environmental health.
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