AUTHOR=Medjoubi K. , Benzerara K. , Debrie J. , Tang E. , Bazin D. , Letavernier E. , Desjardins K. , Somogyi A. TITLE=State-of-the-art multimodal scanning hard X-ray imaging and tomography sheds light at multiple length-scales on biomineralization related processes JOURNAL=Frontiers in Environmental Chemistry VOLUME=5 YEAR=2024 URL=https://www.frontiersin.org/journals/environmental-chemistry/articles/10.3389/fenvc.2024.1339829 DOI=10.3389/fenvc.2024.1339829 ISSN=2673-4486 ABSTRACT=
Biomineralization is a widespread process among living organisms, playing a significant role in the formation and preservation of geological structures, biogeochemical cycles, regulation of ocean chemistry, and carbon sequestration. Moreover pathological biomineralization has a huge impact on human health. The growth of biominerals provides a rich area for research at multiple length-scales since they have controlled hierarchical structures from nano-to macroscopic scales. Here, we provide an overview on the potentials of the state-of-the-art scanning hard X-ray imaging and tomography methods developed at the NANOSCOPIUM beamline at Synchrotron Soleil in such studies. Multimodal scanning imaging provides simultaneous information on the elemental composition by X-ray fluorescence (XRF) spectrometry, on the sample morphology by absorption contrast imaging, on the crystalline structure by X-ray diffraction, and on the luminescence characteristics by X-ray Excited Optical Luminescence. As illustrated through diverse research cases about biomineralization in stromatolites and pathological calcification, such a versatile portfolio of X-ray imaging techniques provides unique complementary information to conventional laboratory techniques on biominerals and the underlying mineral precipitation processes.