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Isotope analysis is now an ever-present methodology applied to the study of past

human diets, mobility and environments. At a time where ancient DNA (Orlando et al.,

2021) and palaeoproteomics (Hendy et al., 2018; Hendy, 2021) seem to provide ground-

breaking insights into human history on a near-monthly basis, isotope analysis was

already considered to have reached a certain level of “maturity” in archaeological science

over a decade ago (Lee-Thorp, 2008; p. 925). Indeed, thanks to a proliferation in the

number of isotope laboratories, reductions in preparation and analytical costs, and a

growing familiarization with isotope approaches across the archaeological community

(Roberts et al., 2018), it is now rare to see a multidisciplinary archaeological study that

does not include some form of isotope proxy approach. With this in mind, perhaps the

greatest challenge facing the “isotope community” in archaeology is to ensure that this

“maturity” does not equate to stasis. Indeed, with the novel applications of tested isotopic

approaches to well-designed archaeological questions, continued exploration of isotopic

variation in modern ecosystems, and the pushing of isotopic methodologies to the level

of individual molecules, I would argue that the potential of this approach to reconstruct

what we know about the past is greater than ever.

While the majority of review and perspectives papers will tend to focus on

the latest state-of-the-art developments in a given field or methodology, I want to

begin by looking back towards the beginning of isotope analysis applications in

archaeology. In 1977, John C. Vogel and Nikolaas J. van der Merwe published a

paper entitled “Isotopic Evidence for Early Maize Cultivation in New York State” in

American Antiquity (Vogel and van der Merwe, 1977). They argued that observed

differences in the measurable ratios of 13C to 12C between plants photosynthesizing

using the “C3” pathway (the majority of temperate grasses, shrubs, and trees) and

those using the “C4” pathway (many tropical grasses including the crop staple

maize) (Craig, 1953; Smith and Epstein, 1971) enabled the stable isotope analysis

of preserved human tissues to elucidate past dietary change in temperate northern

America, particularly with regards to the arrival of maize. This landmark study started

isotope analysis on its pathway to prominence in an archaeological context, being

swiftly followed by the joint application of stable carbon and nitrogen isotope analysis

to bone collagen to look at changes in food sources and trophic level (Sealy and

van der Merwe, 1985; Sealy et al., 1987), and the stable carbon isotope analysis of

tooth enamel bioapatite to explore hominin diets and environments in deep time

(Lee-Thorp et al., 1989).
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What I want to center in on here, however, is the

thoughtful way in which Vogel and van der Merwe formulated

their pioneering idea in this paper. Their premise read as

follows (bullet-points inserted between sentences by myself for

emphasis) (Vogel and van der Merwe, 1977; p. 239):

• “Since both animals and humans ultimately derive their

carbon from plants, the carbon isotope ratio [of their tissues]

can be used to determine the relative intake of C-3 and C-4

plants at the beginning of their food chain.

• Where humans living in a predominantly C-3 plant

environment have access to a C-4 cultigen which forms an

important dietary staple, the relative importance of such a

cultigen in the diet should be measurable through an isotopic

study of skeletal remains.

• More specifically, it should be possible to detect the presence

of maize in the diet of prehistoric peoples in many regions

of North America, thus distinguishing peoples of the same

regions who subsistence on hunting and the gathering of

indigenous C-3 plants.”

While Vogel and van der Merwe’s (1977) paper is

now nearly half a century old, these three points clearly

express the wonderful potential of isotopic analyses (and

indeed archaeological science approaches more generally) in

archaeological contexts. In essence, they revolve around the

observation of a biological, chemical, or physical phenomenon

in the present, that can be applied into the past to explore

the worlds and experiences of our ancestors. Yet, what Vogel

and van der Merwe also beautifully elucidate, is the necessary

inferential pathway researchers have to tread to come up with

a successful study that will ultimately advance our knowledge

of the past. With the increasingly eager, and perhaps what one

might call “stock,” application of isotope analysis to a variety of

time periods and geographical contexts (Vaiglova et al., 2022),

one of the main challenges for isotope analysis in archaeology

is to make sure that researchers continue to revisit these three

points and think about their implications for their own study in

each and every case.

To take the statements/bullet points in turn, firstly, does

the tissue I am analyzing actually record the parameter I am

interested in, whether it is an aspect of diet, environment,

or geographical area of formation? This question necessitates

constant evaluation of the connection between the sample and

its chemical composition and a given ecological or biological

observation of isotopic variability. It is this question which

continues to drive assessments of appropriate sample size to

study a given population (Roberts et al., 2018), of the possibility

of diagenetic alteration of samples to influence measured

isotopic values (Beasley et al., 2014), the effectiveness and

standardization of pretreatment and analytical protocols to yield

values representative of the in vivo situation (Pellegrini and

Snoeck, 2016; Szpak et al., 2017), and of which material should

be sampled. For example, following Vogel and van der Merwe’s

study it was subsequently shown that low protein dietary

components, such as maize, would actually be underestimated

in bone collagen δ
13C as a result of metabolic routing (Ambrose

and Norr, 1993), meaning that δ
13C analysis of human

bioapatite would be needed to more effectively track more subtle

appearance of maize in northern American diets (Ambrose et al.,

2003).

Secondly, does the dietary or environmental phenomenon

I am interested in exploring actually have a clear isotopic

signature that can be used to formulate a testable null

hypothesis? For example, had Vogel and van der Merwe (1977)

sought to track the arrival of maize into an environment

with natural C4 vegetation, their results and interpretations

would have been far more complex. Similarly, it was recognized

early on in the applications of isotope analyses that where C4

environments and marine ecosystems overlapped in potential

importance to human diets, then stable carbon isotope analysis

of bulk tissues would face interpretive issues. This issue is

also behind concerns over baseline variability across space and

time. In a palaeoenvironmental context, for example, in the

tropics, δ
13C variability in sediments and animal tissues has

commonly been used to study the dominance of C3 (primarily

forest, woodland and shrubland) and C4 (tropical grassland)

environments. Such shifts could be linked to climatic changes

in temperature and aridity, but they can also be influenced

by CO2 concentration and pCO2 has also been found to

influence δ
13C values (Hare et al., 2018). This question also

underlies the need for further ecological baseline studies [e.g.,

bioavailable strontium (Montgomery, 2010; Snoeck et al., 2020),

environmental transects (Vogel et al., 1978; Smith et al., 2002)]

and feeding studies to characterize habitat- or species-specific

isotopic responses (Webb et al., 2017).

Thirdly, and finally, if I am able to detect the phenomenon

of interest in my selected sample, be it an environmental

factor or a change in diet, is it, in fact, of archaeological

interest? While this is the last point in the progression,

it should arguably also be the first. For an isotopic study

to be successful it depends, inherently, on knowledge of

the archaeological context. Whether this is achieved by a

researcher balancing knowledge of chemistry and archaeology

and anthropology, or through the ongoing communication

between specialists within a given team, it is essential, from

the beginning, to ask if isotope analysis can actually add

something meaningful to study of a particular archaeological

site or research topic. These questions and contexts may even

change over time. For example, since Vogel and van der

Merwe (1977) were writing it has been acknowledged that

Indigenous populations may have been cultivating wild C3

plants long before the arrival of maize (Smith, 1989, 2006). As

a result, the arrival of maize would be linked to a different

type of cultivation and food source, rather than the onset of

cultivation entirely.
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These three questions not only pose challenges to the

effective application of isotope analysis in archaeology, they

also continue to push the boundaries of the field, leading to

novel methodological approaches and interpretive possibilities.

For example, a desire to determine the degree to which

archaeological samples can be used to determine dietary or

environmental parameters has resulted in major advances in

single compound isotope analysis. Stable carbon and nitrogen

isotope analysis of amino acids is yieldingmore resolved insights

into food sources and more baseline-independent results of

trophic level and aquatic food consumption, in contexts ranging

from Neanderthal hunting strategies to dietary variation in

historical periods (Jaouen et al., 2018; Soncin et al., 2021). In

a similar manner, stable carbon and hydrogen isotope analysis

of plant waxes extracted from archaeological sediments can

provide more precise environmental insights into vegetation

communities and hydrology than was possible from “bulk” soil

organic matter measurements (Collins et al., 2017; Patalano

et al., 2021). The recent ground-breaking stable nitrogen isotope

analysis of protein in tooth enamel as a measure of trophic

level in “deep time” represents a further exciting development

(Leichliter et al., 2021).

Similarly, a desire to understand the degree to which a

particular object of study (e.g., mobility, diet or environment)

is reflected in a measured isotopic signal is seeing the diligent

applications of environmental transect studies and modern

ecological studies. In the case of strontium isotope analysis as a

tool for exploring past mobility, there are increasingly intensive

discussions about the “best” type of material to sample and

ways to best map bioavailable strontium in various contexts

and what this means for interpreting movement in the past

(Bataille et al., 2020; Holt et al., 2021). Meanwhile, although

sometimes criticized (Schulting et al., 2022), Bayesian models,

which utilize contextual insights and multi-isotope parameters

to try and “rule out” certain interpretive scenarios, are arguably

providing more precise estimates of dietary composition and

human origins than were possible in the past (Fernandes et al.,

2014; Cheung and Szpak, 2022). Modern feeding studies and

ecological monitoring of isotopic variability are also showing

how other non-traditional isotope systems may provide useful,

novel avenues for exploration, including zinc isotope analysis of

tooth enamel as a proxy for trophic level (Jaouen et al., 2016;

Bourgon et al., 2021).

Finally, there continue to be a number of isotope-based

papers released every year that seek to advance the state of

our knowledge about the human past, testing well-formulated

archaeological questions. This can take the form of applying

tried and tested methodologies to a part of the world that

has been relatively little-explored from an isotopic perspective

(Hermenegildo et al., 2017; Louys and Roberts, 2020; Peralta

et al., 2022; Skippington et al., 2022) or the use of a new isotopic

method in the reconstruction of a novel aspect of past human

lives (Bourgon et al., 2021). It can also involve the application of

isotope methodologies to new human-associated samples. For

example, the isotopic analysis of commensal and domesticated

animals can provide important insights into nutrient flows

and relationships with humans (Guiry, 2012; Swift et al.,

2018). Significantly, the anthropological context of working with

human remains is also being acutely recognized in isotope

studies, with researchers seeking to align their approach with

guidelines as to the ethical treatment of human remains (Squires

et al., 2019;) or recognition of the processes of colonialism that

have long impacted these and other approaches to archaeological

science (Nayak et al., 2021) and the necessity for collaboration

with Indigenous communities and repatriation exercises.

The “maturity” of isotope analysis in archaeology should

not then be taken as an indicator that it is not continuing

to provide novel, significant insights into the human past.

As I hope to have shown, since the beginning of isotope

analytical applications in archaeology, there have been

the seeds of a “self-consciousness” and rigor that must

continue to set the tone for novel isotope applications in

palaeoanthropological, archaeological, and historical contexts

to this day. Revisiting these principles and questions will

not only continue to drive the development of effective

hypotheses, pretreatment and sample screening approaches,

interpretations firmly grounded in chemical, ecological, and

environmental theory and observations, and close integration

with questions rooted in the social sciences. It will also offer

the foundation for the “jumping off” of state-of-the-art isotope

methodologies that continue to highlight why this area of

research remains one of the most dynamic, widely-applied,

and resilient methodologies in the toolkit of archaeological and

palaeoecological science.
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