![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
PERSPECTIVE article
Front. Energy Res.
Sec. Fuel Cells, Electrolyzers and Membrane Reactors
Volume 13 - 2025 | doi: 10.3389/fenrg.2025.1565315
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Proton-conducting ceramic electrochemical devices (PCCs) show promise for sustainable energy conversion, yet key challenges remain. This perspective highlights critical areas for advancing PCC research. The field requires standardized protocols for fabrication, testing, and results reporting. Improved electrolyte sintering techniques and minimized nickel-induced defects are imperative for stable, high-performing cells. Addressing materials criticality is essential for commercialization. A deeper understanding of electrolyte grain boundary properties, positrode-electrolyte interface characteristics, and distribution of relaxation times analysis has great potential to accelerate progress. The promising application of PCCs in electrolysis mode remains understudied and merits increased research attention.
Keywords: Fuel cell, Electrolysis, Proton-conducting ceramic, Benchmarking, critical materials, sintering, Distribution of relaxation time (DRT), fabrication
Received: 23 Jan 2025; Accepted: 14 Feb 2025.
Copyright: © 2025 Meisel, Kim, Diercks, O'Hayre and Sullivan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Charlie Meisel, Metallurgical and Materials Engineering, Colorado School of Mines, Golden, United States
Neal Sullivan, Mechanical Engineering, Colorado School of Mines, Golden, 80401, Colorado, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.