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Coordinated optimization
scheduling of wind, solar, hydro
and methane power generation
with adjustable methane

Wengang Chen*, Xinrui Wang, RuiMin Tian, Yuze Ji, Helong Liu
and Yafei Yuan

State Grid Jincheng Power Supply Co., Ltd., Jincheng, China

To enhance methane utilization in coal-rich regions and integrate methane
power generation with distributed renewable energy systems, this study
proposes a coordinated optimization dispatch model with adjustable methane-
fired generation. The methodology first establishes a methane transmission
model incorporating virtual storage characteristics based on coal mine power
supply topology and extraction processes, then develops a multi-resource
optimization framework integrating wind, solar, hydropower, and methane
under distribution network constraints, equipment operation limits, and coal
mine safety requirements. Through case studies in a Shanxi coal mine under
multiple scenarios, the results validate the model's effectiveness in improving
methane utilization and coordinating hybrid energy resources, with the
proposed fuzzy-enhanced IGDT (F-EIGDT) method demonstrating enhanced
robustness against source-load uncertainties compared to conventional
approaches. The study confirms methane's dual role as fuel and virtual
storage medium in mining-area power systems, providing a safety-constrained
coordination paradigm for fossil-renewable integration, while suggesting the
need for further optimization of long-term storage strategies.
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1 Introduction

Methane is a flammable gas, typically referring to coal mine methane or natural gas. In
this paper, the methane discussed is coal mine methane, primarily composed of methane
(CH4), which is a high-energy, clean fuel. Its production is generally associated with coal
mining (Bai et al., 2024). The total amount of coal mine methane resources in China can
reach 30.05 × 1012 m3, with 41% of this being recoverable, making it an important source
of natural gas in the country (Chen et al., 2024a). With the development of clean energy
technologies, methane, as an essential low-carbon energy source, has gradually gainedmore
attention for its development and utilization (Kang et al., 2024). The utilization methods
of methane vary depending on its concentration, with CH4 volume fractions greater than
6% being suitable for power generation (Akbari et al., 2024). Methane power generation
typically uses gas turbines, internal combustion engines, or fuel cells. Gas turbines are
suitable for medium to high-concentration methane and offer rapid startup and response
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capabilities. Internal combustion engines are highly adaptable
and can adjust output based on methane supply, making them
suitable for lower-concentration methane. Fuel cells, on the other
hand, generate electricity through electrochemical reactions using
the hydrogen in methane, making them ideal for small-scale
or distributed energy systems (Wang et al., 2024). As a crucial
component of China’s energy structure adjustment, methane power
generation plays an essential role in improving the utilization of
coal-associated resources, reducing greenhouse gas emissions, and
promoting clean energy development. However, in the context of
the rapid development of new energy sources, fully leveraging
the regulatory role of methane power generation to accommodate
fluctuations in wind and solar energy, while coordinating various
renewable energy sources to achieve power balance in the grid and
enhance grid stability, has become a hot topic in the energy sector.

With the increasing share of renewable energy, methane power
generation, with its flexible regulatory capabilities, has become an
important means of balancing grid load and ensuring the stability
of electricity supply, especially in integrated energy systems and
microgrids. Nadaraju et al. (2019) utilizes ventilation air methane
emission reduction heat recovery to provide flexible regulation
and self-sustaining operation, supporting grid stability and energy
system integration. The vam oxidation device was used to convert
low concentration coal mine methane into thermal energy for use
in coal mines (Hu et al., 2022), which to some extent improved the
utilization rate ofmethane. Similarly, a regenerative thermal oxidizer
device is used to convert low concentration coal mine methane
into thermal energy through catalytic oxidation for recovery and
utilization (Wang et al., 2022). Huang et al. (2021) integrates various
renewable energy sources such as coal mine methane, and utilizes
abandonedmines inmining areas to transform into pumped storage
power stations to participate in system coordination and operation,
improving the utilization level of coal mine methane. These studies
have made significant theoretical contributions to methane power
generation andmulti-energy collaborative operation, improving the
efficiency of coal mine methane participation in the power system’s
operation. However, most of the studies have rough methane power
generation modeling processes, insufficient consideration of safety
constraints, and little research on optimizing scheduling in the
context of coal mine production and the actual operation of coal
mine distribution networks.

The power output of methane power generation is mainly
determined by the methane gas source and the characteristics
of the equipment. During coal mine production, factors such
as methane content, geological conditions, and extraction
techniques can all impact the methane gas source, introducing
a certain level of uncertainty into methane power generation.
How to address this uncertainty is an important issue in system
optimization scheduling. Existing studies often use methods
such as scenario generation, robust optimization, stochastic
optimization, and interval optimization to handle uncertainty.
Zhang et al. (2024) proposed a novel scenario generation method
based on filtering scenarios with environmental wind conditions,
enhancing scenario deployment while using minimal resources to
meet the required risk levels. This method provides an accurate
and effective solution for opportunity-constrained economic
scheduling problems. Lin et al. (2023) transformed a fuzzy set-based
distributed robust optimization model into a scenario-oriented

model with probabilistic uncertainty, effectively avoiding complex
mathematical transformations. Cao et al. (2024) considered source-
load uncertainty and established an uncertain islandingmodel using
correlated random variables, generating islanding scenarios with
scenario trees to enhance energy supply reliability under islanding
conditions. Kou and Li (2020) used interval optimization to
decompose the potential transmission capacity uncertainty of wind
power into lower and upper boundary models, transforming the
problem into a single-level maximization problem, thus achieving
efficient solutions. While the above studies improve the system’s
adaptability to uncertainty, these methods are computationally
complex, and the models often rely on historical information or
probability functions of uncertainty variables. In practice, however,
methane power plants have limited access to detailed information
about the methane gas source, as they typically only record partial
information about the gas injected into the power generation
units (i.e., the modulated methane gas information), making the
information on the methane power source constrained.

Information Gap Decision Theory (IGDT) is a method for
handling uncertainty and information insufficiency in decision-
making processes. It aims to make robust decisions by assessing
and addressing information gaps, especially in situations where
decisions must be made under incomplete information or in
response to uncertainty challenges (Ben-Haim, 2006). IGDT has
beenwidely applied in the field of power systems. Zhang et al. (2023)
combined IGDT with opportunity constraints to handle forecast
deviations in load demand and distributed generation, as well as
associated power fluctuations in distribution networks, to obtain
proactive management strategies for operators. Yazdaninejad et al.
(2020) specifically modeled uncertainty sources and used multi-
level IGDT to establish a framework for non-deterministic and
non-probabilistic uncertainty, where each uncertainty parameter is
targeted at a specific range around its expected value. Chen et al.
(2024b) applied the IGDT method to provide optimal bidding
strategies for load aggregators, considering time-shifted loads and
distributed renewable energy under uncertainty. Khaloie et al.
(2022) used IGDT to address the uncertainty of photovoltaic output
by combining conditional risk values to handle both stochastic
uncertainty and the information gap in IGDT. However, there has
been little research applying IGDT to quantify the uncertainty in
methane power generation, and the methods in the aforementioned
studies lack probabilistic information, which limits the decision-
making process. Most of these studies focus on maximizing the
region or range of uncertainty variables under the condition
of meeting pre-set objectives, rather than incorporating a more
comprehensive uncertainty analysis.

Therefore, to address the issues of rough methane power
generation modeling, insufficient exploration of its regulatory
potential, and the uncertainty arising from limited source-side
information, this paper proposes a coordinated optimization
scheduling method for wind, solar, and hydropower systems with
adjustable methane power generation. The main contributions of
this paper are as follows:

1) Developing a detailed model for methane power generation
and virtual storage based on coal mine production realities.
In this paper, a detailed modeling approach is applied to
methane extraction and power generation within the actual
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coal mine energy supply network. Key factors influencing
methane extraction are extracted based on current coal
mining production standards. Considering the energy storage
characteristics of methane gas, the model integrates methane
storage and utilization closely, establishing a virtual storage
model for methane that focuses on dynamic regulation.
Through detailed modeling, the flexibility and rapid response
capability of the methane power generation units are
quantitatively assessed, providing a theoretical foundation
for fully exploiting the regulatory potential of methane power
generation.

2) Promoting coordinated optimization scheduling ofwind, solar,
hydropower, and methane generation using the dynamic
regulation characteristics of methane storage tanks. By
introducing coal mine safety constraints and the operating
mechanism of methane storage tanks, while accounting
for network flow and equipment operating constraints, an
optimization scheduling model for wind, solar, hydropower,
and adjustable methane power generation is developed, with a
focus on economic and environmental objectives.Thedynamic
regulation of methane injection and extraction processes
enables the time-shifting and flexible utilization of methane
resources. This effectively addresses the randomness and
intermittency of wind and solar generation, enhances the
overall regulation capability of the system, and achieves the
efficient integration of methane power generation with wind,
solar, and hydropower.

3) Enhancing the uncertainty handling capability of IGDT with
fuzzy logic.This paper considers the uncertainty in wind, solar,
and hydropower output, load forecasting, and the time-varying
characteristics of coalminemethane supply. Using IGDT, these
uncertainties are integrated into the optimization decision-
making process. On this basis, fuzzy logic is introduced
to handle both uncertainty and fuzziness, leading to the
development of a F-EIGDT. By combining fuzzy logic and
fuzzy set theory, this method addresses the lack of probabilistic
information in IGDT, ensuring that the decision-making
process remains robust and feasible when facing fluctuations
in wind and solar output and methane supply.

The rest of the paper is organized as follows: Section 2 introduces
the coal mine-grid system topology with adjustable methane
power generation. Section 3 discusses the coordinated optimization
scheduling model for wind, solar, hydropower, and methane
power generation. Section 4 addresses the coordinated optimization
scheduling model for wind, solar, hydro, and methane under
source-load fluctuations based on F-EIGDT. Section 5 presents case
studies. Finally, Section 6 provides the conclusions.

2 Coal mine-grid system topology
with adjustable methane power
generation

The system topology with adjustable methane power generation
is shown in Figure 1, consisting of four components: the coal mine
distribution network, methane extraction system, methane power
generation system, and urban distribution network. The methane

extraction and power generation system serves as an intermediate
link, where methane extracted from the coal mine is used for
power generation, supplying the urban distribution network. This
system also forms the physical connection between the coal mine
distribution network and the urban distribution network. The
characteristics of each system component are as follows:

Coal Mine Distribution Network: Based on the actual power
supply system of a coal mine in Shanxi, this paper simplifies the
topology to a 34-node coal mine distribution system. Detailed load
information for each node can be found in (Liang et al., 2024b), with
node 9 representing the methane extraction station, where methane
is extracted from the coal mine.

Methane Extraction System: This system consists of two main
parts: methane extraction andmethane storage. Methane extraction
involves drawing methane from underground coal seams, adjacent
layers, and mined-out areas through a pipeline system, which
includes control valves, water-ring vacuum pumps, and auxiliary
equipment (Zhou et al., 2024).Methane storage involves temporarily
storing the extracted methane in surface methane storage tanks.

Methane Power Generation System: The methane power
generation system consists of methane storage tanks, a mixer, and a
methane generator set.Themixer adjusts the air intake based on the
methane concentration to ensure the optimal combustionmixture of
methane and air. The intake valve controls the flow of combustible
methane-air mixture into the generator. The mixture burns in the
generator, driving pistons in a reciprocating motion, converting the
chemical energy of the gas into electrical and thermal energy output.

Urban Distribution Network: The urban distribution network
consists of 33 nodes and 32 branches. Node 5 is connected to
a photovoltaic generation unit, node 21 to a wind turbine, node
14 to a hydropower unit, and node 4 to the methane power
generation unit.

Through the above-mentioned coal mine methane power
generation and coal mine-grid coordinated operation, the system
ensures the safety of both coal mine and grid operations while
improving methane resource utilization efficiency. Methane storage
tanks are configured based on coal mine production conditions
and the demand of the distribution network, allowing for flexible
adjustment of methane power generation. This helps to mitigate the
fluctuations of wind and solar generation while achieving efficient
power distribution.

3 Coordinated optimization
scheduling model for wind, solar,
hydropower, and methane power
generation

3.1 Constraints of methane gas extraction
system

Assuming that there are no tunneling tasks scheduled
for the day and only mining tasks are carried out, based
on the current coal mine industry standards in China
(China National Coal Mine Construction Association, 2018), the
key characteristics of coal mine production are abstracted. The
critical factors influencing methane yield in coal mines, such as coal
production and geological conditions, are identified. A methane
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FIGURE 1
Topology of coal mine-grid system with adjustable methane power generation.

extraction model considering coal mine production characteristics
is then constructed, as shown in Equations 1–4.

Gmine =
K1 ×Kc × L1 × L2 ×M× γ× (W0 −W1)

365× 24×Δt
(1)

Gadja =

K1 × L3 × L4 × γ×∑
j
mj × (W0j −Wcj) × ηj

330× 24
×Ky (2)

Ggoaf1 =
MC ×W0 × k1 × k2 × k3 × (W0 −Wc)

W0 × 365× 24
(3)

Ggoaf = Kg(Ggoaf1 −Gmine) (4)

WhereGmine,Gadja,Ggoaf represent the methane extraction rates
from themined coal seam, adjacent seam, and gob area, respectively.
Ggoaf1 is the total methane that can be extracted from the coal
mine. K1, Kc are the methane extraction imbalance coefficient
and the ratio of pre-extraction methane to extraction during the
mining process for the specific coal seam. L1, L2, L3, L4 represent
the width of the mining face, length of the mining face, width of
the mining face, and the annual advancing length of the mining
face, respectively. M is the average thickness of the pre-extracted
coal seam. γ is the apparent density of coal. W0, Wc, W1 are
the original methane content, residual methane content, and pre-
extraction qualified methane content of the coal seam, respectively.
mj, ηj represent the coal thickness and gas emission rate of the j-th
adjacent seam. Ky is the methane extraction rate from the adjacent
seam due to pressure relief. W0j, Wcj are the original methane
content and residual methane content of the j-th adjacent coal seam,
respectively.MC is the coal reserve in the mined coal seam. k1 is the
negative pressure extraction coefficient, k2 is the expected methane

extraction rate for the coal seam, and k3 is themethane emission rate
in the mine.

The relationship between the coal reserve in themined coal seam
and the coal mining amount, as shown in Equation 5.

L1 × L2 ×M× γ =MC −
t

∑
i=1

Mi
S (5)

Where Mi
S represents the coal mining amount of the mining

machine at the ith time.
In addition, sinceK1,Kc,mj, and ηj are all geological parameters

of the coal mine, Equations 1–4 can be transformed into a function
of coal mining amount and geological conditions, as shown in
Equations 6–9.

Gt
mine = a1(MC −

t

∑
i=1

Mi
S) (6)

Gt
adja = a2 (7)

Gt
goaf1 = a3 (8)

Gt
goaf = a4

t

∑
i=1

Mi
S + b1 (9)

Therefore, based on the coal mining process, the mathematical
model for gas extraction can be simplified as Equations 10, 11.

Gt
stope = G

t
mine +G

t
adja +G

t
goaf (10)

Gt
stope = c1

t

∑
i=1

Mi
S + d1 (11)
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Where Gt
stope represents the gas extraction amount at time t.

a1, a2, a3, a4, b1, c1, and d1 are constants, which are related to the
geological conditions of the mined coal.

In Equation 11, it can be seen that the gas extraction amount
from the coal mine at time t is related to the coal production and
geological conditions at previous time t.

3.2 Consideration of the adjustable
methane generation model based on the
methane virtual storage characteristics

3.2.1 Methane virtual storage model
In this article, “virtual storage” specifically refers to simulating

the physical storage behavior of methane (CH4) resources through
mathematical models and dynamic regulation mechanisms, rather
than relying on traditional physical energy storage facilities such
as batteries and pumped storage. The core idea is to utilize the
dynamic characteristics of methane in pipelines, storage tanks, and
production consumption processes to achieve time translation and
flexible scheduling of energy.

When establishing the methane virtual storage model, the
following assumptions or limitations need to be made:

(1) Methane is considered an ideal gas.
(2) The temperature and pressure distribution inside the methane

storage tank are uniform.
(3) The compression process of methane gas is considered

isothermal.

This paper focuses on the process of methane virtual storage,
including the injection of extracted methane gas into the storage
tank via the pressurization pump station, storage within the tank,
and the release process. The ‘gas loading status’ of the storage tank
is defined to represent the current remaining capacity of methane
in the storage tank. The methane virtual storage model is shown in
Equations 12–18.

Gt
stopep

t
stope = V

t
boosp

t
boos (12)

Gt
stopeρ

t
stope = V

t
boosρ

t
boos (13)

ṁt
in = Cd
√2

ρtboosMmethp
t
boos

RmethTmeth
(ptboos − p

t
tank) (14)

ṁt
out = Cd√2

ρttoutMmethp
t
tout

RmethTmeth
(pttank − p

t
tout) (15)

ṁt
tank =

pttankMmethVtank

RmethTmeth
+ (ṁt

in − ṁ
t
out)Δt (16)

ηtsoc =
pttankVtank

pmax
tankVtank

=
pttank
pmax
tank
=
ṁt

tank

ṁmax
tank

(17)

Vt
tout =

ṁt
outRmethTmeth

ρttankMmethp
t
tank

(18)

Where Vt
boos represents the methane gas volume at time t after

being pressurized by the pressurization pump station. ptstope and p
t
boos

represent themethane gas pressure before and after pressurization at

time t, respectively, where ptstope < p
t
boos; ρ

t
stope and ρ

t
boos represent the

methane gas volume fractions before and after pressurization at time
t, respectively. ṁt

in and ṁ
t
out represent themass flow rates ofmethane

gas entering and exiting themethane storage tank, respectively. ρtboos,
ρttank, and ρttout represent the methane gas volume fractions before
injection into the storage tank, inside the storage tank, and after
release from the storage tank, respectively. ptboos, p

t
tank, and pttout

represent the methane gas pressure before injection into the storage
tank, inside the storage tank, and after release from the storage
tank, respectively, where pttout < pttank < ptboos; ṁ

t
tank represents the

mass of methane gas in the storage tank at time t. Mmeth is the
molar mass of methane gas; V tank is the volume of the methane
storage tank; Rmeth is the ideal gas constant. Tmeth is the absolute
temperature of the methane gas. ηtsoc represents the gas holding state
of the methane storage tank at time t. pmax

tank and ṁmax
tank represent the

maximum methane gas pressure and mass inside the storage tank,
respectively. Vt

tout represents the volume of methane gas released
from the storage tank at time t.

3.2.2 Adjustable methane power generation
model

Methane can balance fluctuations in other resources (Hu et al.,
2022; Huang et al., 2021). Methane and filtered air are mixed in the
mixer, and after reaching the preset concentration, they are injected
into themethane power generation unit through the intercooler and
intake valve. The combustion generates electrical energy and waste
heat. The waste heat is recovered by a waste heat recovery device,
while the electrical energy is transmitted through the city power
grid. The model is shown in Equations 19–25.

pttoutV
t
tout = p

t
chanV

t
chan (19)

ρttoutV
t
tout = ρ

t
chanV

t
chan (20)

Vt
mix = V

t
chan +V

t
air (21)

ρtmixV
t
mix = ρ

t
chanV

t
chan (22)

ptmix =
ptchanV

t
chan + p

t
airV

t
air

Vt
mix

(23)

ptingaTin = p
t
mixTout (24)

Ptmeth = η
e
methV

t
ingaρ

t
ingaCmeth (25)

Where ptchan, ptair, ptmix, and ptinga represent the pressure
of the methane gas after pressure regulation, the pressure
of the air involved in mixing, the pressure of the
mixed methane gas, and the pressure of the methane
gas injected into the methane power generation unit,
respectively. Vt

chan, V
t
mix, and Vt

air represent the volume of methane
gas after pressure regulation, the volume of the mixed gas, and
the volume of the air involved in mixing, respectively. ρtchan, ρ

t
mix,

and ρtinga represent the volume fractions of methane gas at time t
after pressure regulation, in the mixed gas, and injected into the
methane power generation unit, respectively, where ρtmix = ρ

t
inga.

Tout and T in represent the gas temperature of the mixed methane
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gas after the intercooler output and the gas temperature before
output, respectively. Ptmeth is the power output of the methane
power generation unit. ηemeth is the efficiency of the methane power
generation unit;Cmeth is the heating value ofmethane gas.Vt

inga is the
volume of methane gas injected into the methane power generation
unit, and its value is equal to Vt

mix.

3.3 Other power generation model

3.3.1 Photovoltaic power generation model
The output power of the photovoltaic system is mainly

determined by the solar radiation, the area of the photovoltaic array,
the system efficiency, and the temperature correction factor. Its
simplified model is shown in Equations 26–28.

Ptpv = ARtηsysηtemp (26)

ηtemp = 1− θ(Tc −Tref) (27)

Tc = Tamb +
Rt

800
Δt (28)

Where Ptpv is the output power of the photovoltaic system at
time t. A is the total area of the photovoltaic array. Rt is the solar
irradiance per unit area at time t. ηsys is the conversion efficiency of
the photovoltaic system. ηtemp is the temperature correction factor. θ
is the temperature coefficient. Tc is the actual operating temperature
of the photovoltaic module. Tref is the reference temperature. Tamb
is the ambient temperature. Δt is the temperature rise of the
photovoltaic module under radiation.

3.3.2 Wind power generation model
The output power of the wind power generation system

has a nonlinear relationship with wind speed, which specifically
depends on whether the wind speed is between the cut-in wind
speed, rated wind speed, and cut-out wind speed. The model
is shown in Equation 29.

Ptwt =

{{{{{{{
{{{{{{{
{

0, 0 ≤ vt < vci ∪ vt ≥ vco

Ptwt
(v3t − v

3
ci)

(v3r − v
3
ci)
,vci ≤ vt < vr

Prwt, vr ≤ vt < vco

(29)

Where Ptwt is the wind power generation output at time t. vt is the
wind speed at time t. vci, vr, and vco are the cut-in, rated, and cut-out
wind speeds of the wind turbine, respectively. Prwt is the rated power
of the wind turbine.

3.3.3 Hydropower generation model
The output power of hydropower generation is typically

determined by the head height, flow rate, and equipment
efficiency (Qiu et al., 2020). The calculation formula is shown in
Equations 30, 31.

Pthy = ηhyρwagQ
tHud (30)

Hud = (Zu +
pu
ρwag
+
αuν

2
u

2g
)−(Zd +

pd
ρwag
+
αdν

2
d

2g
) (31)

Where Pthy is the output power of the hydropower generation
system at time t. ηhy is the system equipment efficiency. ρwa is the
density of water. g is the acceleration due to gravity. Qt is the water
flow rate through the turbine. Hud is the head height. Zu and Zd
are the reference surface heights at the turbine inlet and outlet,
respectively. pu and pd are the pressures at the turbine inlet and
outlet, respectively. vu and vd are the flow velocities at the turbine
inlet and outlet, respectively. αu and αd are the velocity coefficients
at the turbine inlet and outlet, respectively.

3.4 Objective function and constraints

3.4.1 Objective function
The coordinated optimization scheduling model for wind, solar,

hydro, and methane aims to minimize the total daily operating cost
Ctot, which includes the operating cost Cope, the investment cost of
the methane storage tank Cgas, and the environmental management
cost Cpoll. The objective function is shown in Equations 32–35.

minCtot = Cope +Cgas +Cpoll (32)

Cope =
T

∑
t=1
(Ptgridp

t
E +

Ne

∑
k=1
(μkP

t
k)) (33)

Cgas =
r(1+ y)y

(1+ y)y − 1
CtankVtank (34)

Cpoll =
T

∑
t=1

Np

∑
n=1
(μnmethP

t
methδ

n
meth) (35)

Where T is the total number of time periods in the scheduling
cycle. Ptgrid and ptE are the electricity purchase amount from the
grid and the time-of-use electricity price at time t, respectively.
Ne and Np are the total number of power station types and the
total number of pollutant types emitted by the methane units,
respectively. μk is the unit operation and maintenance cost of the
k-th type of power station. Ptk is the power output of the k-th power
station at time t; r is the discount rate. y is the planned operating
lifetime of the methane storage tank in years. Ctank is the unit
investment cost of the methane storage tank. μnmeth and δ

n
meth are the

emission factor and the environmental management unit cost for
the n-th type of pollutant emitted by the methane power generation
unit, respectively.

3.4.2 System constraints
The system constraints mainly include distribution network

power flow constraints (Equations 36-41), equipment operation
constraints (Equations 42, 43), and coalmine production constraints
(Equations 44, 45).

3.4.2.1 Distribution network power flow constraints

∑
ij∈Ωbc

(Pt,ij − rijI2t,ij) + Pt,j = ∑
jh∈Ωbc

Pt,jh (36)

∑
ij∈Ωbc

(Qt,ij − xijI2t,ij) +Qt,j = ∑
jh∈Ωbc

Qt,jh (37)

U2
t,i = U

2
t,j + 2(rijPt,ij + xijQt,ij) + (r2ij + x

2
ij)I

2
t,ij (38)
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U2
t,iI

2
t,ij = P

2
t,ij +Q

2
t,ij (39)

Umin ≤ Ut,i ≤ Umax (40)

Qemin
i ≤ Q

ex
t,i ≤ Q

emax
i (41)

Where Pt,ij andQt,ij are the active and reactive power from node
i to node j at time t, respectively. rij and xij are the resistance and
reactance between node i and node j, respectively. It,ij is the current
from node i to node j at time t; Pt,j and Qt,j are the active and
reactive power injected at node j at time t, respectively. Ωbc is the
set of boundary nodes; U t,i and U t,j are the voltage magnitudes at
nodes i and j at time t, respectively; Umin and Umax are the lower
and upper limits of node voltage magnitudes, respectively. Qex

t,i is
the reactive compensation at node i of the coal mine distribution
network at time t;Qemin

i andQemax
i are the maximum andminimum

capacities of the reactive compensation device at node i in the coal
mine distribution network.

3.4.2.2 Equipment operation constraints

0 ≤ Ptk ≤ P
max
k (42)

Pdownk ≤ P
t
k − P

t−1
k ≤ P

up
k (43)

Where Pmax
k , Pdownk , and Pupk are the maximum output, ramp-

up limit, and ramp-down limit of the kth type of equipment,
respectively.

3.4.2.3 Coal mine safety constraints
To ensure the safe operation of the coal mine, under the three-

shift system, one shift must be arranged for the maintenance of
important equipment. The constraint is as follows:

κt =
{
{
{

 0, t ∈ [t1, t2]

 1, t ∉ [t1, t2]
(44)

T

∑
t=1

κt = T− (t2 − t1 + 1) (45)

Where κt is the operating status of the mining machine at time
t, where 0 indicates maintenance and 1 indicates operation; t1 and t2
are the start and end times of the maintenance period, respectively.

4 Coordinated optimization
scheduling model for wind, solar,
hydro, and methane under
source-load fluctuations based on
F-EIGDT

4.1 Overview of F-EIGDT principle

Decision theory aims to provide decision-makers with methods
to make optimal choices in uncertain environments. Traditional
decision-making methods, such as Bayesian decision theory, rely
on probabilistic information. However, in practical applications,

decision-makers often face situations with missing or incomplete
information, making it difficult to accurately estimate probability
distributions. IGDT addresses this by quantifying the decision-
maker’s cognitive gap regarding uncertainty, offering a method for
assessing the robustness of decision alternatives under extreme
uncertainty. However, the conservatism of IGDT may limit its
effectiveness in practical applications.Therefore, this paper proposes
the introduction of fuzzy logic and fuzzy set theory into IGDT,
forming F-EIGDT, to enhance its performance in dealing with fuzzy
uncertainty.

4.1.1 IGDT principle
IGDT was proposed by Yakov Ben-Haim in the late 1990s,

aiming to provide robust decision alternatives in highly uncertain
environments. IGDT evaluates the performance of different decision
alternatives under varying levels of information gaps (ϕ), which
measure the degree of deviation of decision parameters from
reference values (Ben-Haim, 2006). The core of IGDT is to find
solutions that can still meet the decision objectives within the
maximum information gap range, incorporating both risk-averse
and risk-seeking strategies. This paper involves the safe scheduling
of coal mines, thus constructing an IGDT robustmodel tomaximize
the avoidance of uncertainty’s impact on the solution results. The
general form of the IGDT robust model (Peng et al., 2022; Lv et al.,
2023) is shown in Equation 46.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

max
s

φ

s.t.

{{{{{{{{{{
{{{{{{{{{{
{

maxF(s,w) ≤ FC
FC = (1+ β)F0
G(s,w) = 0

K(s,w) ≤ 0

U(φ, w̃) = {w:|w− w̃| ≤ φw̃}

(46)

Where φ represents uncertainty, indicating the fluctuation range
of uncertain variables. F is the objective function. s is the decision
variable; w is the actual value of the uncertain variable. w̃ is the
predicted value of the uncertain variable. F0 is the optimal solution
under the deterministicmodel. β is the deviation factor, representing
the degree of deviation between the expected robust optimization
target and the optimal solution of the deterministic model. FC is
the maximum expected value that the decision-maker can accept.
G (s,w) = 0 is the equality constraint. K (s,w) ≤ 0 is the inequality
constraint;U (φ, w̃) is the fluctuation range of the uncertain variable.

4.1.2 IGDT principle
F-EIGDT enhances flexibility and accuracy in handling fuzzy

uncertainty by combining fuzzy logic with IGDT. In F-EIGDT, fuzzy
set theory defines a membership function that relates elements
to their degree of membership in a fuzzy set (Nikoobakht et al.,
2020), allowing the expression of partial membership, which can be
represented as Equation 47.

F̃ = {(s,μF̃(s)) ∣ s ∈H} (47)

Where H is the domain of the fuzzy variable. ̃F is the fuzzy set
of H. μ ̃F(x) is the membership function, representing the degree of
membership of element s to the fuzzy set ̃F, with a range of [0,1].
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The larger the value of it, the higher the likelihood that s belongs
to this set.

Common membership functions include linear, Gaussian
membership functions, etc. Taking the linear function as an
example, the membership function μ(β) of the uncertainty β in the
IGDT model and the membership function μ(F) of the scheduling
cost F are represented as Equations 48, 49.

μ(β) =

{{{{{{
{{{{{{
{

 1 β ≥ βmax

β− βmin

βmax − βmin  β
min ≤ β ≤ βmax

 0 β ≤ βmin 

(48)

μ(β) =

{{{{{
{{{{{
{

 1 F ≤ Fmin

Fmax − F
Fmax − Fmin  F

min ≤ F ≤ Fmax

 0 F ≥ Fmax 

(49)

Where βmin and βmax are the minimum and maximum values of
uncertainty β. Fmin and Fmax are theminimumandmaximumvalues
of the scheduling cost F.

The satisfaction of the robust strategy can be
expressed in Equation 50.

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

maxλ

β− βmin

βmax − βmin ≥ λ

Fmax − F
Fmax − Fmin ≥ λ

s.t.

{{{{{{{{{{
{{{{{{{{{{
{

maxF(s,w) ≤ FC
FC = (1+ β)F0
G(s,w) = 0

K(s,w) ≤ 0

U(φ, w̃) = {w: ∣ w− w̃ ∣≤ φw̃}

(50)

Where λ is the satisfaction of the robust strategy.
Fuzzy set theory, by introducing membership functions and

fuzzy operations, provides a flexible and powerful tool for dealing
with and analyzing complex systems with fuzziness and uncertainty.
When combined with IGDT, fuzzy set theory can further enhance
the expressiveness of the decision model and the accuracy of the
robustness evaluation, enabling decision-makers to make more
scientific and reasonable decisions in highly uncertain and fuzzy
information environments.

4.2 Coordinated optimization scheduling
model for wind, solar, hydro, and methane
based on F-EIGDT

4.2.1 Modeling of source-load uncertainty
The uncertainty fluctuation range of source-load demand under

the F-EIGDT model can be expressed in Equations 51–53.

U(αi, P̃
t
i) = {P

t
i:|P

t
i − P̃

t
i| ≤ αiP̃

t
i}, i ∈ ΩS (51)

U(αL, P̃
t
load) = {P

t
load:|P

t
load − P̃

t
load| ≤ αLP̃

t
load} (52)

ψ =∑εiαi (53)

Where αi is the uncertainty of the ith power generation
unit on the source side. ̃Pti and Pti are the predicted and actual
power generation values of the ith generation unit at time t,
respectively. ΩS is the set of power generation units on the
source side. αL is the uncertainty of load demand. ̃Ptload and
Ptload are the predicted and actual system load demand values
at time t, respectively. ψ is the combined uncertainty. εi is
the weight coefficient of the ith generation unit, where ∑εi =
1.

4.2.2 F-EIGDT mathematical model
The F-EIGDT model is constructed by combining

IGDT with fuzzy set theory. Equation 54 is the IGDT
robust model, and Equations 55–57 represent the fuzzy set
theory model.

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

max
X

ψ

s.t.

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

maxC(X,P) ≤ CC

CC = (1+ βR)C0

U(αi, P̃
t
i) = {P

t
i :|P

t
i − P̃

t
i|≤αiP̃

t
i}

U(αL, P̃
t
load) = {P

t
load :|P

t
load − P̃

t
load|≤αLP̃

t
load}

ψ =∑εiαi
G(X,P) = 0

K(X,P) ≤ 0

(54)

C̃ = {(X,μC̃(X)) ∣ X ∈ L} (55)

μ(ψ) =

{{{{{{
{{{{{{
{

 1 ψ ≥ ψmax

ψ−ψmin

ψmax −ψmin  ψ
min ≤ ψ ≤ ψmax

 0 ψ ≤ ψmin 

(56)

μ(C) =

{{{{{
{{{{{
{

 1 C ≤ Cmin

CC −C
CC −Cmin  C

min ≤ C ≤ CC

 0 C ≥ CC 

(57)

Where X is the decision variable. P is the uncertainty variable.
C0 is the optimal solution of the deterministic model. CC is
the maximum expected value acceptable to the decision-maker.
βR is the deviation factor. G(X,P) = 0 represents other equality
constraints; K(X,P) ≤ 0 represents other inequality constraints.
L is the domain of the fuzzy variable. C̃ is the fuzzy set of
L; μC̃(X) is the membership function. μ(ψ) and μ(C) are the
membership functions of combined uncertainty ψ and scheduling
cost C, respectively. ψmin and ψmax are the minimum andmaximum
values of uncertainty, respectively. Cmin is the minimum value of
scheduling cost.

Based on the above models, the following can be derived, as
shown in Equation 58.
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{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

maxλR
ψ−ψmin

ψmax −ψmin ≥ λR

CC −C
CC −Cmin ≥ λR

ψ =∑εiαi

s.t.

{{{{{{{
{{{{{{{
{

maxC(X,P) ≤ CC

Cc = (1+ βR)C0

U(αi, P̃
t
i) = {P

t
i :|P

t
i − P̃

t
i ∣≤ αiP̃

t
i}

U(αL, P̃
t
load) = {P

t
load :|P

t
load − P̃

t
load ∣≤ αLP̃

t
load}

(58)

Equations (11)–(31), Equations (36)–(45)
Where λR is the satisfaction level of the F-EIGDT robust strategy.
Equation 58 is a two-level optimization model, where the lower

level model calculates the maximum operating cost of the system
based on the system operation scheduling model when uncertain
variables fluctuate; The upper level is to solve the maximum
satisfaction value when the operating cost of the system meets the
predetermined objective of robust optimization; In the lower level
model, when the resource output decreases, the systemwill purchase
energy from external sources to compensate for this shortfall, and
the lower the output, the higher the cost of external energy purchase;
When the systemdemand increases, the system energy consumption
increases, and the greater the load demand, the higher the system
scheduling cost. Therefore, for a given range of uncertainty, the
maximum operating cost of the lower level model occurs at the
lowest resource output and the highest load demand. Therefore,
when the resource output takes the lower boundary and the load
demand takes the upper boundary value, the lower level scheduling
cost is the highest. At this point, the bi-level optimization model
in Equation 58 can be equivalently transformed into a single-level
optimization model (Dolatabadi et al., 2019), that is Equation 59.

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

maxλR
ψ−ψmin

ψmax −ψmin ≥ λR

CC −C
CC −Cmin ≥ λR

 ψ =∑εiαi
 C(X,P) ≤ CC

Cc = (1+ βR)C0

Pti = (1− αi)P̃
t
i

Ptload = (1+ αL)P̃
t
load

(59)

Equations (11)–(31), Equations (36)–(45)
At this point, for any objective function C (X,P), it is less than

the maximum expected value CC set by the decision-maker.

4.3 Model linearization

Since there are nonlinear terms in the modeling process, which
make it difficult for solvers to solve directly, this paper adopts
piecewise linearization (Liang et al., 2024a) and second-order cone
relaxation (Lv et al., 2022) based on the characteristics of the
nonlinear terms for linearization.

FIGURE 2
F-EIGDT solving process.

4.3.1 Piecewise linearization
The formulas used for piecewise linearization include

Equations 14, 15. The linearization process can be represented as
Equations 60–64.

L(f(x)) =
n

∑
k=1
 f(ak)tk (60)

x =
n

∑
k=1
 aktk,z ∈ {0,1} (61)

n−1

∑
k=0
 zk = 1,

n

∑
k=0
 tk = 1 (62)

t0 ⩽ z0, tn ⩽ zn−1 (63)
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FIGURE 3
Typical daily output of distributed power generation.

tk ⩾ 0, tk ⩽ zk−1 + zk,k = 0,1,⋯,n− 1 (64)

Where ak is the segmentation point of the piecewise function f
(x). L ( f (x)) is the linearized function of f (x). k is the index of the
segmentation point. n is the number of segmentation points. tk and
z are 0/1 variables.

The above expression contains n newly added binary variables
z0, z1, …, zn-1, where the number of these variables is the same as
the number of segmentation intervals in the linearized function L
( f (x)).

4.3.2 Second-order cone relaxation
For the quadratic terms present in the distribution network

power flow constraints, we introduce slack variables αt,i and βt,ij, and
apply second-order cone relaxation for convexification,which can be
expressed as Equations 65, 66.

αt,i = U2
t,i (65)

βt,ij = I
2
t,ij (66)

Therefore, Equations 36–39 can be transformed into
Equations 67–70.

∑
ij∈Ωbc

(Pt,ij − rijβt,ij) + Pt,j = ∑
jh∈Ωbc

Pt,jh (67)

∑
ij∈Ωbc

(Qt,ij − xijβt,ij) +Qt,j = ∑
jh∈Ωbc

Qt,jh (68)

αt,i = αt,j + 2(rijPt,ij + xijQt,ij) + (r
2
ij + x

2
ij)βt,ij (69)

αt,iβt,ij = P
2
t,ij +Q

2
t,ij (70)

The standard second-order cone form is Equation 71.

‖‖‖‖

‖

2Pt,ij
2Qt,ij

βt,ij − αt,i

‖‖‖‖

‖2

≤ βt,ij + αt,i (71)

The relaxation error Et,ij can be expressed as Equation 72.

Et,ij = αt,iβt,ij − P
2
t,ij −Q

2
t,ij (72)

4.4 Model solution process

The solution process for the wind-solar-hydro-methane
coordinated optimization scheduling model based on F-EIGDT
is shown in Figure 2.

1) Input the device parameters, the output forecast values of wind,
solar, hydro, and methane power generation units, and the
forecast values of electrical load demand.

2) Minimize the total cost as the objective and solve for the
optimal solution C0 of the deterministic model.

3) Set C0 as the baseline value for the F-EIGDT model, and
replace the forecast values with the actual values of wind, solar,
hydro, and methane generation units, and load demand.

4) Set the cost deviation factor βR, uncertainty αi, αL, and their
weight coefficients εi.

5) Introduce fuzzy membership functions μ(ψ), μ(C), and solve
for the objective function λR.

6) Dispatch the unit scheduling plan.

5 Case study

In this paper, a case study is conducted on a coal mine in Shanxi
and its adjacent distribution system. The computer configuration
used in this study is an Intel Core i7-14700F processor with a 64-
bit Windows 11 operating system.The proposed model is simulated
usingMATLAB_R2024b software, with the YALMIP toolbox calling
the GUROBI solver (version 11.0.3).

5.1 Parameter settings

This study focuses on a typical summer day. The wind speed,
solar radiation, temperature, and water flow data for the typical day
are clustered using the K-means algorithm. The predicted output of
the photovoltaic, wind turbine, and hydroelectric power generation
for the typical day are shown in Figure 3.Themine needs to conduct
maintenance on underground production equipment between 11:00
and 16:00, during which no coal mining occurs. The time-of-use
electricity prices are shown in Table 1. The equipment parameters
are listed in Table 2, and other parameter information is in Table 3.
For the renewable energy forecasts, manymethods can achieve good
prediction accuracy, so the forecast error range for wind, solar,
hydro, andmethane generation is set to [-10%, +10%].The coalmine
has a strong production schedule with minimal load fluctuations, so
the error range for the overall load forecast of the mine is set to [-
3%, +3%]. The forecast deviation for the overall load of the urban
distribution network is set to [-5%, +5%].
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TABLE 1 Time of use tariff.

Type Peak Flat Off-peak

Period 08:00–11:00
18:00–23:00

07:00–08:00
11:00–18:00

23:00–07:00

Electricity price/(¥/kWh) 0.7659 0.5295 0.3058

TABLE 2 Power supply access to urban distribution network nodes
and capacity.

Node Access type Capacity/kVA

4 Methane 500

5 Photovoltaic 1,000

14 Wind turbine 500

21 Hydropower 1700

TABLE 3 Additional parameters.

Parameter Value Parameter Value

c1 9.95 × 10−5 μpv/(¥/kWh) 0.0235

d1 380.34 μwt/(¥/kWh) 0.0196

εwt 0.45 μhy/(¥/kWh) 0.0286

εpv 0.27 μmeth/(¥/kWh) 0.0250

εhy 0.14 Cmeth/(MJ/m3) 35.9

εmeth 0.14 Ctank/(¥/m3) 1,500

5.2 Scheduling results under deterministic
scenarios

In the deterministic scenarios, two cases are set to study the
impact of the gas regulation characteristics on the system’s optimal
scheduling:

Scenario 1: No consideration of the virtual regulation
characteristics of methane (no methane storage tank
installed).

Scenario 2: Consideration of the virtual regulation characteristics of
methane (methane storage tank installed).

The system relaxation error using the second-order cone
relaxation method adopted in this study is shown in Figure 4. The
maximum magnitude of branch power relaxation error is on the
order of 10–6, indicating that second-order cone relaxation is feasible
without loss of accuracy.

The system scheduling costs under different scenarios
are shown in Table 4.

From Table 4, it can be seen that in Scenario 2, where a methane
storage tank is configured, the system operating cost decreases
from 75,258.6 RMB in Scenario 1 to 69,651.5 RMB, a reduction
of approximately 7.45%. This indicates that the introduction of
the methane storage tank significantly improved the system’s
operational efficiency and regulation capability. At the same time,
the environmental management cost slightly increased from 322.5
RMB to 366.7 RMB. Although the investment cost for the methane
storage tank in Scenario 2 reached 6,584.1 RMB (the investment
cost here is the equivalent annual cost of the total investment in the
methane storage tank), the total cost of Scenario 2 is only 1,021.2
RMBhigher than that of Scenario 1.Therefore, equipping the system
with a methane storage tank helps to enhance the flexibility of
methane storage and supply, while also improving the economic
performance of the system to some extent.

Figure 5 shows the variation inmethane power generation under
different scenarios. The power generation is determined by the
methane quality input to the methane power generation units.
Specifically, Scenario 1 is significantly affected by the coal mine
maintenance between 11:00 and 16:00, leading to a shortage of
methane supply and resulting in notably lower power generation.
In contrast, Scenario 2 introduces the methane storage tank, which
enables the reserve and scheduling of methane resources, thereby
providing supplementation when methane supply is insufficient.
In this way, Scenario 2 effectively mitigates the limitations
of power generation caused by methane supply fluctuations,
significantly improving the flexibility and responsiveness of the
power generation system.

Scenario 2 is selected to analyze the virtual energy storage state
of the methane storage tank. The variation in the methane gas state
in the storage tank is shown in Figure 6.

From Figure 6, it can be seen that the State of Charge (SOC)
of the methane storage tank changes with methane injection and
release. Between 01:00 and 07:00, and 17:00 and 19:00, the amount
of methane injected into the storage tank is less than the amount
released, causing the SOC to decrease. From07:00 to 12:00 and 14:00
to 17:00, the SOC changes more steadily. At 12:00 and 21:00, the
amount of methane injected into the storage tank is significantly
greater than the release amount, resulting in a noticeable increase
in SOC at those times. Additionally, between 19:00 and 22:00,
the injection efficiency of methane increases, and the SOC of
the storage tank gradually rises. Through dynamic regulation of
methane injection and release, the methane storage tank promotes
the efficient utilization of methane.

As shown in Figure 7, the system’s electric powermainly consists
of wind, solar, hydro, and purchased power from the grid. Methane
power generation acts as a supplementary unit to traditional wind,
solar, and hydro generation, compensating for the shortfalls in

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1563828
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Chen et al. 10.3389/fenrg.2025.1563828

FIGURE 4
System relaxation error.

TABLE 4 System scheduling costs in deterministic scenarios.

Scenario Operating cost/¥ Methane storage
tank investment

cost/¥

Environmental
governance cost/¥

Total cost/¥

1 75258.6 0 322.5 75581.1

2 69651.5 6584.1 366.7 76602.3

FIGURE 5
Methane power generation under different scenarios.

renewable generation. During the 22:00–05:00 period, when the
output of wind, solar, and hydro generation is low, there is a power
shortage. At the same time, due to the impact of peak and valley
electricity prices, most of the power deficit is made up by purchasing
electricity from the grid. By adjusting methane power generation,
the system can effectively address the randomness and intermittency
of wind and solar power, enhancing the overall regulation capability
of the system and promoting the efficient coupling and coordinated
operation of methane generation with wind, solar, and hydro power.

FIGURE 6
Changes in virtual energy storage state of methane.

In summary, although the methane storage tank slightly
increases the total operational cost of the system, it can dynamically
adjust methane resources, enabling efficient storage and scheduling
of methane, effectively mitigating the impact of methane supply
fluctuations on power generation capability, and promoting the
efficient utilization of methane. At the same time, methane power
generation serves as an effective supplement to traditional wind,
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FIGURE 7
Wind-solar-hydro-methane multi-resource scheduling results under
deterministic scenarios.

FIGURE 8
Uncertainty and scheduling cost under IGDT strategy.

solar, and hydro generation, working in synergy to meet the
operational demands of the system.

5.3 Scheduling results under uncertainty

Scene 2 is selected for the study of wind, solar, hydro, and
methane uncertainty. To explore the impact of uncertainty in wind,
solar, hydro, and methane on system scheduling, the following five
combinations are set:

Combination 1: Only consider the uncertainty of wind turbines.
Combination 2: Only consider the uncertainty of photovoltaics.
Combination 3: Only consider the uncertainty of hydropower.
Combination 4: Only consider the uncertainty of methane.
Combination 5: Consider the combined uncertainty of wind, solar,

hydro, and methane.

5.3.1 IGDT scheduling results
Under the IGDT strategy, the variations of each uncertainty

and scheduling cost with the cost deviation factor under different
combinations are shown in Figure 8. The uncertainties of wind,
solar, hydro, methane, and the combined uncertainty correspond to
combinations 1–5, respectively.

Figure 8 illustrates the total scheduling cost of the system
and the uncertainty variations of each distributed energy source
under different cost deviation factors based on the IGDT strategy.
As the cost deviation factor increases, the total scheduling cost
rises non-linearly, and the uncertainty of each distributed energy
source gradually increases, eventually reaching the maximum
robustness level (uncertainty of 0.1). Methane and hydropower have
relatively low uncertainties due to their stable power generation
capability and flexible regulation. In contrast, photovoltaic and
wind turbines are significantly affected by weather and climate,
resulting in higher cost uncertainties and greater sensitivity to the
deviation factor. Additionally, once the system reaches maximum
robustness, further increasing the scheduling cost offers limited
improvement in robustness and significantly reduces the economic
performance. Therefore, the optimal scheduling strategy should
choose a moderate deviation factor that enables the system to
achieve a reasonable level of robustness at a lower cost.

Furthermore, for each target cost deviation set by the decision-
maker, each distributed energy source has its corresponding
maximum uncertainty fluctuation range. This relationship provides
key reference for the expansion planning and coordinated
scheduling of multi-energy systems, helping to formulate more
robust power scheduling schemes in highly heterogeneous and
stochastic environments. It enables efficient energy management
that balances both system robustness and economic performance,
further promoting the efficient integration and optimized utilization
of wind, solar, hydro, and methane resources.

5.3.2 F-EIGDT scheduling results
Under the F-EIGDT strategy, the uncertainty and scheduling

cost variations with cost deviation factors under different
combinations are shown in Figure 9.

Figure 9 illustrates the trend of uncertainty and total system
scheduling cost of different distributed energy sources under the
F-EIGDT strategy as the cost deviation factor changes. The trend
is similar to that in Figure 8, except that under the F-EIGDT
strategy, the increase in cost is lower than that under the traditional
IGDT. This indicates that the introduction of fuzzy logic enhances
the system’s ability to handle uncertainty. In particular, when the
cost deviation factor is 0.092, the system reaches its strongest
robustness level, and the total scheduling cost is reduced by 4.3%
compared to IGDT. When the actual output of wind, solar, and
hydro power fluctuates within 10% of the forecasted values, the
system can effectively mitigate the fluctuations in the output of
wind, solar, and hydro, while ensuring that the total scheduling cost
does not exceed 83,649.71 yuan, significantly improving operational
economics. This shows that F-EIGDT, through fuzzy logic and
fuzzy set theory, addresses various uncertainties, overcoming the
limitations of traditional IGDT in the absence of probabilistic
information. It enables the system to achieve higher robustness and
economic performance in complex scenarios such as wind and solar
output deviations and methane supply fluctuations.

The methane power generation and methane storage tank
SOC (State of Charge) under the IGDT and F-EIGDT strategies
are shown in Figure 10.

As shown in Figure 10, under the IGDT strategy, the methane
power generation fluctuates significantly, with frequent adjustments
causing notable peaks and valleys. For example, power changes are
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FIGURE 9
Uncertainty and scheduling cost under F-EIGDT strategy.

FIGURE 10
Methane power generation and methane storage tank SOC status under different strategies.

TABLE 5 Comparison of different optimization strategies.

Strategy Total operating cost/¥ Maximum uncertainty/% Solving time/s

Stochastic optimization 87412.6 4.6 22.6

IGDT 83649.7 9.2 4.73

F-EIGDT 83649.7 10.0 7.52

sharp at 03:00, 12:00, and 23:00, and the methane storage tank
SOC (State of Charge) also experiences rapid fluctuations, indicating
poor operational stability. This is because IGDT lacks the precise
handling of uncertainty information and relies solely on worst-case
scenarios for scheduling, resulting in frequent changes in gas power
generation and storage tank charging/discharging operations. In
contrast, the F-EIGDT strategy introduces fuzzy logic and fuzzy set
theory, effectively smoothing the adjustment process of gas power

generation, reducing the amplitude of SOCfluctuations, and keeping
it within a relatively stable range.This strategy significantly enhances
the system’s robustness and economic performance when facing
fluctuations in wind and solar output, load forecasting errors, and
methane supply uncertainties. It improves the stability of gas storage
tank operations and reduces the economic cost caused by frequent
adjustments, providing a better solution for the stable operation of
multi-energy systems.
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In conclusion, F-EIGDTcan effectively smooth the fluctuations of
gas power generation, reducing the amplitude of power fluctuations
and enhancing the stability of system scheduling. By optimizing
the trend of gas storage tank SOC changes, it reduces the dramatic
fluctuations in gas injection and release, ensuring the stability
and reliability of gas storage tank operations. Furthermore, F-
EIGDTcomprehensivelyconsidersvariousuncertainties, suchaswind
and solar output deviations, load forecasting errors, and methane
supply fluctuations, enabling the scheduling scheme to achieve high
robustness while maintaining superior economic performance.

5.4 Comparison of results

To verify the superiority of the proposed F-EIGDT in handling
the uncertainty of wind, solar, hydro, and gas power, this
section compares the F-EIGDT, IGDT, and stochastic optimization
methods. The cost deviation factor of 0.092 from F-EIGDT is
selected as the fluctuation range for the companion resources
in the stochastic optimization method. Monte Carlo scenario
generation and K-means clustering methods are used to generate
five typical scenarios, and the maximum prediction deviation in
different scenarios is represented using the definition of integrated
uncertainty in the IGDTmodel.The comparison results of the three
strategies are shown in Table 5.

From Table 5, it can be seen that stochastic optimization has a
lower computational efficiency. Due to its insufficient consideration
of system uncertainty, it results in the highest operating costs and
the worst robustness, with a maximum prediction deviation of only
4.6%. IGDT, through worst-case-based optimization, significantly
reduces operating costs and improves robustness, with a maximum
prediction deviation of 9.2%, and the highest solving efficiency.
In comparison, F-EIGDT, after introducing fuzzy logic to handle
uncertainty, not only keeps operating costs consistentwith IGDTbut
also increases the maximum uncertainty to 10.0%, demonstrating
stronger robustness and risk resistance. Although the solving time
is slightly higher, it remains within a reasonable range. Overall, the
F-EIGDT strategy achieves a better balance between robustness,
economy, and computational efficiency, making it a superior choice
for addressing complex uncertainty scenarios in the system.

6 Conclusion

This paper proposes a wind-solar-hydro-gas coordinated optimal
scheduling method with adjustable methane power generation. By
analyzing the actual energy supply network of coalmines in depth, we
construct a refined methane power generation and virtual methane
storage model, and propose an optimized scheduling framework that
incorporates the dynamic regulation characteristics of gas resources.
In addition, to address the multiple uncertainties of wind-solar
power generation and gas supply, this paper introduces the F-EIGDT,
which significantly improves the system’s scheduling robustness and
economic performance in complex uncertain environments. The
analysis and verification are conducted through a case study of a coal
mine in Shanxi. The results show that:

1) A refined model for gas power generation and virtual gas
storage is developed, closely aligned with the actual coal mine

production. This model fully considers the key influencing
factors in the gas extraction process and integrates gas storage
and utilization, forming a virtual storage mechanism focused
on dynamic gas regulation. Through detailed modeling, the
flexibility and fast response capability of the gas power
generation units are quantitatively evaluated.

2) The proposed wind-solar-hydro-gas coordinated optimization
scheduling model makes full use of the dynamic regulation
characteristics of the gas storage tank, combining coal mine
safety constraints and network operation requirements to
achieve time-shifting and flexible utilization of gas resources.
The case study results show that this method effectively
mitigates the challenges caused by the randomness and
intermittency of wind-solar power generation, enhances
the system’s comprehensive regulation capability, optimizes
energy utilization efficiency, and reduces operational costs to
some extent.

3) The F-EIGDT method with fuzzy logic significantly improves
the decision-making robustness under multiple uncertainty
factors. By applying fuzzy logic, the stability and economy
of the decision-making plan are enhanced when facing
actual operational fluctuations. Experimental results show
that F-EIGDT outperforms traditional stochastic optimization
methods in smoothing gas power generation, reducing gas
storage tankfluctuations, andoptimizing systemoperationcosts.

In summary, the wind-solar-hydro-methane coordinated
optimization scheduling method proposed in this paper, combined
with virtual gas storage and F-EIGDT, provides an innovative solution
for addressing the challenges of complex system uncertainties. Future
research will focus on expanding this method’s application to larger-
scalemulti-gas power generation systems, exploring the integration of
more uncertainty handling techniques, and continuously optimizing
model parameters with actual operational data to promote the wide
application and sustainable development of coordinated optimization
scheduling methods in energy systems.
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