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This paper proposes an investment efficiency-oriented strategy for power grid
infrastructure planning with high penetration of renewable energy sources.
First, a multi-objective investment portfolio optimization model based on data
envelopment analysis is proposed to improve the cost efficiency of power
grid infrastructure planning. Then, an evolutionary algorithm based on super-
efficiency hyperplane projection transformation is developed to obtain the
optimal Pareto frontier of themulti-objective investment portfolio. Furthermore,
a super-efficiency envelope model with non-radial relaxation variables is
formulated to identify an optimal investment efficiency-oriented solution from
the Pareto frontier set. Comparative case studies have been implemented to
demonstrate the superior performance of the proposed strategy for investment
efficiency enhancement of power grid infrastructure planning.
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1 Introduction

Modern power grids are gradually being dominated by various renewable energy
sources due to global low-carbon and environmental concerns (Yi et al., 2023). The
integration of renewable energy into the grid will bring about an increase in the cost
of various infrastructure investment categories because of its intermittent, volatile, and
regional characteristics (Guo et al., 2023; Saxena and Shankar, 2024; Fu et al., 2022;
Sha et al., 2023). Faced with mounting operational expenses and constrained investment
capacities, power gridsmust devise portfolio optimization strategies tominimize costs while
maximizing investment returns (Lu et al., 2022). The investment portfolio in power grid
infrastructure is a dynamic, sequentially coupled, multi-objective discrete combinatorial
optimization problem (Liu et al., 2023). Traditional infrastructure investment portfolio
decisions that focus onmaximizing a single benefit objective are inadequate for meeting the
demands of high-quality development in power grids (Yan et al., 2022; Garifi et al., 2022;
Ma et al., 2020; Guelpa et al., 2019). Therefore, this study provides practical models and
algorithms for grid infrastructure investment planning oriented to maximize investment
efficiency.

The main contributions of this work can be twofold, as follows: (1) a multi-
objective cost efficiency-oriented investment portfolio optimization model based on
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FIGURE 1
Multi-objective cost efficiency-oriented investment portfolio optimization model.

data envelopment analysis is proposed for power grid infrastructure
planning, and a transformation matrix based on the LASSO
regression model is established with the goal of reducing
the complexity of the portfolio optimization, representing
the relationship between the amount of investment and
benefits. (2) An evolutionary algorithm based on super-
efficiency hyperplane projection transformation is developed
to obtain the optimal Pareto frontier of the multi-objective
investment portfolio, and a super-efficiency envelope model
with non-radial relaxation variables is formulated to identify
the optimal investment efficiency-oriented solution from the
Pareto frontier set.

2 Multi-objective cost
efficiency-oriented investment
portfolio optimization model

With the increase in investment demand and the concurrent
decrease in investment capacity, it has become crucial for grid
operators to prioritize investment efficiency when developing
annual investment plans (Wu et al., 2022). Thus, it is necessary
to establish a multi-objective cost efficiency-oriented investment
portfolio optimization model that considers constraints such as
investment capacity, power supply reliability (Cao et al., 2024a),
energy conservation, and emission reduction. An investment
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TABLE 1 Parameter settings of the investment portfolio optimization model.

Parameter Value Parameter description

Xmax 27.6 billion yuan Maximum investment capacity

M 100 Population size

τc 0.9 Population crossover probability

τv 0.1 Population mutation probability

N 200 Iteration times

ςmin
L,N−1 98.80% Lower limit value of N-1 line passing rate

Nmin
GZ 1.2% Lower limit value of the heavy overload equipment reduction rate

rmin 2.10 MVA/MW Lower limit value of the capacity–load ratio

rmax 2.45 MVA/MW Upper limit value of the capacity–load ratio

Smin
a 2.9 MVA per household Lower limit value of the average household power distribution capacity

Smax
a 3.1 MVA per household Upper limit value of the average household power distribution capacity

Cmin 184.2 yuan/kWh Lower limit value of transmission and distribution cost per unit of electricity

Emin
c 65,000 tons Lower limit value of standard coal saved

Emin
r 165,000 tons Lower limit value of pollutant emission reduction

efficiency-oriented model is formulated based on data envelopment
analysis (DEA) by mapping power grid investment portfolios
to efficiency indicators (Lee and Chen, 2024; Xu et al., 2024).
Then, three investment efficiency objective functions are formulated
through this approach: safety investment efficiency, economic
investment efficiency, and green investment efficiency of power grid
infrastructure investment, as outlined in Equation 1:

{{{{{{{{{
{{{{{{{{{
{

F1 =max
usafY saf

vsafX

F2 =max
uecoY eco

vecoX

F3 =max
ugreYgre

vgreX

s.t. 

J

∑
j=1

ujYj

I

∑
i=1

viXi

≤ 1

uj ≥ 0,vi ≥ 0,Xi ≥ 0

, (1)

where usaf, ueco, and ugre, respectively, represent the output weight
vector of infrastructure investment safety, economic, and green
effectiveness indicators, which can be calculated by the combination
of the analytic hierarchy process (Deng andWang, 2020;Wang et al.,
2017) and the entropy weighting method (Li et al., 2024; Qin et al.,
2024); vsaf, veco, and vgre represent the input weight vector of the
investment scale of infrastructure portfolio categories; X represents
the vector of the investment scale of infrastructure portfolio
categories, and X = [X1,X2,⋯,Xi,⋯,X7]

T; Y saf, Y eco, and Ygre,

respectively, represent the vector of the values of infrastructure
investment safety, economic, and green effectiveness indicators,
which can be calculated by the LASSO regressionmodel (Tibshirani,
2011). The multi-objective cost efficiency-oriented investment
portfolio optimization model is shown in Figure 1.

Several constraints have been introduced into the model to
ensure that investments in grid infrastructure are rationalized
(Yang et al., 2024). Constraint (2) stipulates that the total investment
across all infrastructure drivers should not exceed the maximum
investment capacity of the grid. The N-1 line passing rate ςL,N−1
and heavy overload equipment reduction rate NG are used to reflect
the degree of improvement in power reliability. In addition, the
capacity–load ratio r and average household power distribution
capacity Sa are used to reflect the limitation to power supply
capacity. Transmission and distribution cost per unit of electricity
C is selected to limit the profitability of the company. The amount
of saved standard coal Ec and pollutant emission reduction Er are
chosen to reflect the effect of energy saving and emission reduction.
Constraints are shown in Equations 2–4:

I

∑
i=1

Xi ≤ Xmax, (2)

[[[[[[[[[[[

[

ςmin
L,N−1
Nmin

GZ
rmin

Smin
a
Cmin

Emin
c

Emin
r

]]]]]]]]]]]

]

≤

[[[[[[[[[[[

[

ςL,N−1
NG
r
Sa
C
Ec
Er

]]]]]]]]]]]

]

=

[[[[[[[[[[[

[

0 0.41 0 0 0 0.15 0
0 0.12 0 0 0 0 0
0 0.15 0 0.08 0.12 0 0

0.15 0.10 0 0.18 0 0.05 0
0 0.29 0 0 0.76 0 0.19

0.52 0.02 0.20 0.12 0 0 0.28
0.71 0.09 0.20 0.03 0 0.16 0.51

]]]]]]]]]]]

]

[[[[[[[[[[[

[

X1
X2
X3
X4
X5
X6
X7

]]]]]]]]]]]

]

,

(3)
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FIGURE 2
Power grid investment portfolios under different schemes.

[

[

rmax

Smax
a

]

]
≥ [

[

r

Sa
]

]
= [

[

0 0.15 0.08 0.12 0

0.15 0.10 0.18 0 0.05
]

]

[[[[[[[[[[

[

X1

X2

X4

X5

X6

]]]]]]]]]]

]

,

(4)

where Xmax represents the maximum scale of annual infrastructure
investment of the company; ςmin

L,N−1 represents the lower limit value
of the line N-1 passing rate; Nmin

GZ represents the lower limit value
of the decline rate of heavy overload equipment solved; rmax and
rmin, respectively, represent the upper and lower values of the
capacity–load ratio; Smax

a and Smin
a , respectively, represent the upper

and lower values of the average household power distribution
capacity; Cmin represents the lower limit value of the cost of
transmission and distribution of electricity per unit of electricity;
Emin
c represents the lower limit value of the saved standard coal; Emin

r
represents the lower limit value of pollutant emission reduction. X1
represents the investment in improving power access capacity; X2
represents the investment in enhancing the transmission capacity;
X3 represents the investment in enhancing the flexibility capability;
X4 represents the investment tomeet the growing load;X5 represents
the investment in improving the level of digitization; X6 represents
the investment in optimizing the grid structure; X7 represents the
investment in new models and new formats.

3 Evolutionary algorithm for power
grid investment efficiency
maximization

An evolutionary algorithm based on super-efficient hyperplane
projection transformation (EASEHPT) is proposed to optimize
multiple objectives within the model. The proposed algorithm

is based on the principle of the NSGA-III algorithm (Deb and
Jain, 2014), which selects sub-generation grid portfolio populations
by calculating the integrated distance of non-dominated portfolio
populations. Then, the grid portfolio populations are sorted
according to the integrated distance, and populations that perform
better in the same class will be retained. The optimal solution
is selected from the Pareto efficiency frontier set of the multi-
objective infrastructure portfolio through the super-efficiency
selection strategy. The multi-objective evolutionary algorithm
is shown in Figure 1.

This study compares all portfolio individuals in a new
population with a size of 2M after the genetic evolution operation,
according to three optimization objectives, F1, F2, and F3, to achieve
a Pareto non-dominated hierarchical sorting. Moreover, the single-
objective optimal solution set is chosen to construct the spatial
hyper-efficiency plane. Then, the Pareto non-dominated solution
of the grid infrastructure investment portfolio is projected to the
hyper-efficiency plane (Chen et al., 2021). The general expression
for the super-efficiency plane of the three objectives is shown in
Equation 5:

a1 ⋅ f 1 + a2 ⋅ f 2 + a3 ⋅ f 3 = 1, (5)

where (a1,a2,a3) denote the unit normal vector of the super-
efficiency plane; (f 1, f 2, f 3) denote the extreme point vector. The
ideal individuals ( f1,min, f2,min, f3,min) are extracted and converted
to zero vectors (Chen et al., 2020), and the target individuals are
normalized and projected onto the super-efficient plane is shown in
Equations 6, 7:

f
k
i =

f ki − f
k
i,min

f ki,max − f
k
i,min

, (6)

̂f ki =
f
k
i

3

∑
i=1

f
k
i

, (7)
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TABLE 2 Investment efficiency and convergence effect of the solution set under different schemes.

Scheme Safety
investment
efficiency

Economic
investment
efficiency

Green
investment
efficiency

Comprehensive
investment
efficiency

Inverse
generational
distance

Spacing

Scheme 1 1.18 1.21 1.77 1.43 0.5374 0.1493

Scheme 2 1.50 0.76 1.62 1.33 — —

Scheme 3 1.09 1.13 1.48 1.26 0.7226 0.2041

where f
k
i denotes the ith normalized target value under the kth

grid infrastructure investment portfolio solution; ̂f ki denotes the
intercept of the ith target in the super-efficiency plane under the
kth grid infrastructure investment portfolio solution; f ki,max and
f ki,min, respectively, denote the maximum and minimum values
of the ith target under the kth grid infrastructure investment
portfolio solution.

In this paper, the integrated distance is introduced to evaluate
the super-efficiency and equilibrium performance of solutions.
Assuming that the coordinates f

k
of the kth portfolio solution and

its projection point ̂f k in the super-efficiency plane are ( f
k
1 , f

k
2 , f

k
3 )

and ( ̂f k1 , ̂f
k
2 , ̂f

k
3 ), and the coordinates of the intersection point with

the new production frontier plane ̃f k in the super-efficiency plane
are ( ̃f k1 , ̃f

k
2 , ̃f

k
3 ), and the coordinates of the reference pointR

ck in the
super-efficiency plane are (rck1 , r

ck
2 , r

ck
3 ); then, the calculationmethod

of the equilibriumdistanceDk
b, the super-efficiency distanceDk

se, and
the integrated distance D̃k is shown in Equations 8–10:

Dk
b = ‖ ̂f

k,Rck‖
2
, (8)

Dk
se = ‖ ̃f

k‖
2
− ‖f

k
‖
2
, (9)

D̃k = wk
b ⋅

Dmax
b −D

k
b

Dmax
b −D

min
b

+wk
se ⋅

Dk
se −Dmin

se

Dmax
se −Dmin

se
, (10)

whereDk
b denotes the Euclidean distance (Cao et al., 2024b) between

the projection point of the kth grid infrastructure portfolio solution
on the super-efficiency plane and the nearest super-efficiency plane
reference point. The smaller the value of Dk

b, the higher is the
balance of the investment portfolio solution regarding the three
target efficiency values. Dk

se is the Euclidean distance between
the kth investment portfolio solution and the new production
frontier. The bigger the value of Dk

se, the higher the efficiency;
wk
b and wk

se, respectively, indicate the weighting coefficients of
balanced performance and super-efficiency performance of the
kth infrastructure investment portfolio solution; Dmax

b , Dmin
b , Dmax

se ,
and Dmin

se , respectively, represent the maximum and minimum of
all equilibrium and super-efficiency distance values calculated in
the solution set of the grid infrastructure investment portfolio
frontiers. The integrated distance D̃k serves as an indicator
of the quality of the investment solution, with larger values
reflecting superior performance.

In this paper, a super-efficient envelope model with non-radial
relaxation variables is introduced to select the optimal solution from
the Pareto efficient frontier set of the multi-objective infrastructure
investment portfolio. In this model, the relaxation variable is used to
measure the deviation between the solution and the hyper-efficiency
plane. Specifically, s−i denotes the relaxation variable of the scale of
the ith type of infrastructure investment portfolio, and s+j denotes
the relaxation variable of the value of the jth type of investment
benefits. When s−i > 0, it means that there is a lot of waste in the
investment portfolio. When s+i > 0, it means that the output of the
investment portfolio can be further improved. When the relaxation
variable is zero, it means that the investment portfolio is optimal.
Therefore, the optimal investment efficiency-oriented solution can
be identified from the resulting Pareto frontier set. It can be found
that a smaller value of s−i + s

+
j in the solution indicates higher

overall efficiency.

min 
1− 1

I
∑I

i=1
s−i
Xio

1+ 1
J
∑J

j=1

s+j
Yjo

s.t. 
M

∑
l=1,l≠o

Xilλl − s−i ≤ Xio i = 1,2, ..., I

M

∑
l=1,l≠o

Yjlλl − s
+
j ≥ Yjo j = 1,2, ..., J

M

∑
l=1,l≠o

λl = 1 λl, s−i , s
+
j ≥ 0

, (11)

where I denotes the total number of infrastructure portfolio
categories in the population individuals; J denotes the total
number of investment effectiveness indicators in the population
individuals;Xio denotes the investment scale of the ith infrastructure
portfolio category of the oth population individual; Yjo denotes
the jth construction effectiveness value of the oth population
individual; Xil denotes the investment scale of the ith infrastructure
portfolio category of the lth population individual; Y jl denotes
the jth construction effectiveness value of the lth population
individual; λl denotes the impact factor of the lth population
individual. Because of the existence of bilinear variable division
terms in Equation 11, it cannot be solved directly, so this paper
adopts the simplex method and pairwise planning to linearize
the model by introducing the transformed variables d, S−i , S

+
j ,
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and Λl. Let d = 1/(1+ΣJ
j=1(s
+
j /Yjo)/J); then, Equation 11 can be

expressed as follows:

min d− 1
I
∑I

i=1

s−i d
Xio

s.t.

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

1 = d+ 1
J
∑J

j=1

s+j d

Yjo
M

∑
l=1,l≠o

Xilλl − s−i ≤ Xio i = 1,2, ..., I

M

∑
l=1,l≠o

Yjlλl − s
+
j ≥ Yjo j = 1,2, ..., J

M

∑
l=1,l≠o

λl = 1 λl, s−i , s
+
j ≥ 0

. (12)

Let S−i = s
−
i d, S
+
j = s
+
j d, and Λl = λld; then, Equation 12 can be

transformed into Equation 13:

min d− 1
I
∑I

i=1

S−i
Xio

s.t.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

1 = d+ 1
J
∑J

j=1

S+j
Yjo

S−i = s
−
i d,S
+
j = s
+
j d,Λl = λld

M

∑
l=1,l≠o

XilΛl − S−i ≤ Xiod i = 1,2, ..., I

M

∑
l=1,l≠o

YjlΛl − S
+
j ≥ Yjod j = 1,2, ..., J

. (13)

Through the above processing, the fractional planning problem
is transformed into a general linear planning problem so as to obtain
the optimal solution of the Pareto frontier solution.

4 Case studies

To validate the proposed model, taking a provincial power grid
in central China as an example, three comparison schemes are
established: scheme 1 uses the method proposed in this paper to
select the optimal investment portfolio. Based on scheme 1, scheme
2 changes the super-efficiency selection strategy into a fuzzy multi-
attribute decision-making method to obtain the optimal investment
portfolio. Scheme 3 uses theNSGA-III algorithm formulti-objective
optimization and combines the fuzzy multi-attribute decision-
making method to select the optimal investment portfolio (Yu et al.,
2019;Wang et al., 2024; Hussain et al., 2024).The parameter settings
of the multi-objective cost efficiency-oriented investment portfolio
optimization model are shown in Table 1. Power grid investment
portfolios under different schemes are shown in Figure 2. The
comparative results under different schemes are shown in Table 2.

The proposed scheme prioritizes power infrastructure
investments on the transmission capacity and flexibility capability
enhancements. It can be seen from Figure 2 that the investment
portfolio obtained from scheme 2 prioritizes optimizing the grid
structure, and the investment portfolio obtained from scheme 3
prioritizes enhancing the transmission capacity and meeting the
growing load. It can be found from the analytical results that
scheme 1 demonstrates superior performance on the comprehensive

investment efficiency while maintaining the balanced performance
in all efficiency indicators. Compared to scheme 3, the lower
inverse generational distance and spacing in scheme 1 indicate
that the solution set is close to the ideal Pareto front and has
a better distribution of solutions. This is because the proposed
algorithm employs a super-efficiency DEA model to rank these
population individuals through equilibrium distances so that
the better individuals can be selected from the non-dominated
population individuals. Additionally, the algorithm utilizes a super-
efficiency envelopment model to extract optimal solutions from the
Pareto frontier set. As a result, the power grid investment portfolio
achieves higher comprehensive efficiency while maintaining the
balanced performance in all efficiency indicators.

The power grid investment portfolio obtained from scheme 2
demonstrates a stronger emphasis on safety investment efficiency
while exhibiting notably lower economic investment efficiency and
inferior comprehensive investment efficiency compared to those of
scheme 1. These results stem from the decision making of scheme
2 to improve safety benefits for the goal of protecting people’s
livelihood and policies, and it easily leads to the lack of investment
in enhancing economic benefits, resulting in the reduction in
the comprehensive investment efficiency of power grids. Although
scheme 3 shows relatively balanced performance in all indicators, all
its investment efficiency indicators are lower than those of scheme 1.
Moreover, the inverse generational distance and spacing of scheme
3 are significantly higher than those of scheme 1, indicating that its
solution set is far away from the ideal Pareto frontier set.

5 Conclusion

In this paper, an investment efficiency-oriented strategy is
proposed to improve the overall investment efficiency for power
grid infrastructure planning with high penetration of renewable
energy sources. The following are the key findings of this study:
1) the proposed investment portfolio model prioritizes enhancing
the transmission capacity and flexibility capability of power grids
with proportions of 31.35% and 22.62%, respectively, and thus,
the system investment efficiency can be enhanced with renewable
energy accommodation enhancement. 2) The proposed EASEHPT
algorithm can improve the overall investment efficiency by 11.9%
compared to traditional methods, and the obtained Pareto front
solution set of themulti-objective investment portfolio exhibits both
diversity and optimality.
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