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Due to their high energy density, long life cycle, minimal self-discharge (SD), and
environmental benefits, lithium-ion batteries (LIBs) have become increasingly
prevalent in electronics, electric vehicles (EVs), and grid support systems.
However, their usage also brings about heightened safety concerns and
potential hazards. Therefore, it is crucial to promptly identify and diagnose any
issues arising within these batteries tomitigate risks. Early detection and diagnosis
of faults such as Battery Management Systems (BMS) malfunctions, internal short
circuits (ISC), overcharging, over-discharging, aging effects, and thermal runaway
(TR) are essential for mitigating these risks and preventing accidents. This study
aims to provide a comprehensive overview of fault diagnosis by meticulously
examining prior research in the field. It begins with an introduction to the
significance of LIBs, followed by discussions on safety concerns, fault
diagnosis, and the benefits of such diagnostic approaches. Subsequently, each
fault is thoroughly examined, along with discussions on methods for detection
and diagnosis, including both model-based and non-model-based approaches.
Additionally, the study elevates the role of cloud-based technologies for real-
time monitoring and enhancing fault mitigation strategies. The results show how
well these approaches work to increase LIB systems’ safety, dependability, and
economic feasibility while emphasizing the necessity for sophisticated diagnostic
methods to support their growing use in a variety of applications.
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1 Introduction

Energy storage systems have proliferated in modern power systems due to the flexibility
they provide in operation and stability (Hussain I. et al., 2020; Das et al., 2022; Chauhan
et al., 2021; Barik et al., 2021; Ulutas et al., 2020). LIBs have seen a significant surge in
popularity over the past few decades, firmly establishing themselves as the leading
rechargeable battery technology. Currently, they dominate the battery market, powering
a wide array of devices including portable electronics such as computers, EVs, mobile
phones, and grid systems due to their high energy density, longer life cycle, minimal self-
discharge (SD) capacity, and environmental benefits (Alqarni, 2024; Chen et al., 2020; Rao
et al., 2024a; Xu et al., 2023; Rao K. D. et al., 2024; Zhao et al., 2024a). Due to this popularity,
there are various fault diagnosis approaches developed as shown in Figure 1. Energy density
stands out as the most notable feature distinguishing LIBs from other types like nickel-metal
hydride (NiMH), nickel-cadmium (NiCd), and lead-acid batteries, as illustrated in Figure 2.
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LIBs, being lightweight and small, possess a high electrochemical
potential, ultimately resulting in higher energy density (Kaushik
et al., 2024; Keshan and Thornburg, 2016; Olabi et al., 2023).

LIBs typically exhibit longer life cycles compared to other battery
types, making them cost-effective as they can undergo multiple
charge-discharge cycles before capacity degradation occurs (Alqarni,
2024; Chen et al., 2020; Rao et al., 2024a; Xu et al., 2023; Rao K. D.
et al., 2024; Zhao et al., 2024a). Unlike lead-acid batteries that may
require multiple replacements throughout a product’s lifespan, LIBs
enable continuous product operation until the end of their life.
Moreover, LIBs demonstrate minimal SD rates, allowing them to
retain charge over a long duration of time (Bajagain, 2017; Roth
et al., 2023). Although SD rates can be reduced by maintaining the
battery above its nominal voltage and lowering the temperature,
performance degradation remains inevitable (Liao et al., 2022). The
intricate electrochemical reactions within LIBs impose limitations
on their safe performance, posing challenges to their widespread
adoption, particularly in EVs (Zou et al., 2023; Du et al., 2024).

Numerous LIBs have been implicated in explosions and fire
incidents, significantly damaging the reputation of associated
market sectors and causing economic problems (Hu et al., 2020;
Chen et al., 2022; Shen R. et al., 2024; Ubaldi, 2024). Poor heat
dissipation and an uneven temperature distribution in battery packs
are the causes of thermal runaway. Heat accumulation from LIBs
high energy density can result in internal deterioration and
exothermic reactions, which can cause explosions or fires. By
enhancing heat transfer and temperature homogeneity, effective
thermal management such as the use of liquid cooling plates with
porous media helps avoid thermal runaway.

Over time, the implementation of safety features has played a
pivotal role in mitigating various risk factors associated with battery

performance, thereby enhancing overall functionality (Close et al.,
2024; Simpa et al., 2024). It is imperative to closely focus on
advancing battery material systems, designing BMS, optimizing
the structural aspects of energy storage systems, and other related
areas to ensure the highest level of safety and stability when these
systems are actively utilized in EVs (Akhil et al., 2024). These aspects
are critical in the field of system engineering.

Furthermore, the establishment of an efficient and reliable real-
time BMS is paramount for the security and wellbeing of LIBs. This
advanced system is equipped to handle a wide range of tasks,
including charging, equalization, monitoring the state of charge
(SOC), and ensuring effective thermal management (Kumar et al.,
2023). Additionally, it monitors the state of health (SOH) and
potential faults of a LIB. Failure to diagnose and manage the
faults effectively might lead to serious harm to LIBs from even
minor issues (Hu et al., 2020).

Incidents like EV battery fires generally result from both internal
and external faults, stemming from various factors such as
mechanical abuse, electrical abuse, and thermal abuse (Linja-Aho,
2024; Mishra et al., 2024; Hao et al., 2024; Lalinde et al., 2024). As
illustrated in Figure 3, these issues arise during battery utilization
and may lead to TR. Mechanical abuse, for instance, involves
impacts from needle punctures or crashes into battery cells, both
cases of which can be detrimental (Chang et al., 2023). On the other
hand, electrical abuse covers problems like overcharging, external
short circuits (ESC), over-discharging, and other malfunctions.
Thermal abuse occurs in LIBs due to when the system is
subjected to higher demanding conditions, including rising
temperatures (Chang et al., 2023). Early warnings in battery
performance can significantly mitigate all safety incidents and
eventually create a safer environment for all EV drivers. This

FIGURE 1
Conventional and advanced Fault diagnosis Framework
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research on the diagnosis and mitigation of faults in LIBs ensures
safety and reliability in EVs and other applications of battery
technology (Zhao et al., 2024b; Ranga et al., 2023). The need
to minimize the risk of faults with fires and explosions in the LIBs
is addressed by an all-rounded understanding of the causes of
battery failures: mechanical, electrical, and thermal abuses.
Effective fault diagnosis and management strategies profit not
only the wellbeing of EV drivers but also the market sectors
involved, as reputation and loss of revenues due to economic
battery accident losses are also protected. Moreover, it also
contributes to creating a safer environment by enhancing the
comprehensive safety and stability of LIB systems to make people
feel more confident about the widespread acceptance of EVs and
other battery-powered technologies (Rao et al., 2023a; Svetlík

et al., 2024). Ultimately, the findings of this research endeavor are
very far-reaching, depicting progressive moves towards even
advanced forms of battery technology for a more sustainable,
secure future in practice.

The environmental effects of LIBs have gained more attention
due to their growing demand. It is necessary to understand the
distribution of effects throughout the life cycle of LIBs, to identify all
the relevant environmental hotspots and to develop mitigation plans
for impacts. The goal of this study is to thoroughly examine how
LIBs affect the environment and offer solutions to lower costs and
adverse consequences. Most of the literature did not include the
cloud-based technique for fault diagnosis. In this regard, this paper
highlights the cloud-based techniques for fault mitigation
and diagnosis.

FIGURE 2
Comparison among different battery technologies (A) in terms of volumetric and specific energy densities and (B) quantification in terms of
energy density.
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The rest of this paper is organized as follows: In section 2, the
safety concerns that are associated with LIBs during their operation
are discussed. In section 3, the benefits of fault diagnosis were
discussed. In section 4, the types of faults and each fault that
generally occurs were discussed. In section 5, the model-based
and non-model-based methods that were previously reported by
the researchers to detect/diagnose the faults that occur in LIBs are
reviewed. Finally, Section 6 concludes and offers some future
research directions.

2 Safety concerns associated with LIBs

All types of batteries, including LIBs, are the widely used
batteries in EVs (Tappeta et al., 2022). This demands safety
concerns should be taken into consideration. LIBs have potential
safety risks since they are operated at extremely high energy
densities (Ralls et al., 2023). The use of LIBs in EVs has been
retarded due to the explosions and fire accidents significantly

resulting in economic issues for the battery market. This
proposed the interest in safety measurements and is being
developed (Zhao et al., 2024a; Chen et al., 2021).

The chemistry of the battery, operating conditions,
environment, and damage acceptance have important impacts on
battery safety (Zhang Y. et al., 2023). Due to the electrochemical
system instability internal failure occurs. The cathode material is one
of the parts in LIBs that costs the most (around 36% of battery
system) and this has a considerable influence on the overall
electrochemical capability of the battery. Hence, the primary
safety issue is associated with cathode material composition. The
application of lithium metal at the anode has been restricted as they
form dendrites during the reaction. Graphite has been used in LIBs
for the last 20 years as a safe and eco–friendly material. On the other
hand, this also brings with its associated demerits, which include low
capacity that leads to poor Coulombic efficiency and poor rate
performance causing problems with LIB performance. It is, thus, a
big effort in the proper selection of the anode material yet with
improvement in one performance characteristic, other properties

FIGURE 3
The Cell Thermal Runaway evolution causes are listed in (A), damages are depicted in (B), types of abuse are categorized in (C), battery parts are
impacted in (D) and fire or explosions are depicted using (E).
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are often disturbed (Chen et al., 2021; Cheng et al., 2021).
Temperature and voltage are the other two variables that govern
battery reactions. These temperature, Voltage, and electrochemical
reactions change according to the environmental conditions in
which the battery is operated and cause internal disturbances
that affect the safety of LIBs. As shown in Figure 4, the safety
strategies can be applied to LIB both internally and externally to
mitigate the safety issues.

Though the battery is operated in normal operating conditions
the heat generated by them is not completely resolved particularly
on higher temperature days or in larger battery packs (Patel, 2023;
Raijmakers et al., 2019). When the temperature of the battery
increases drastically, causes the TR which is an uncontrollable
state of battery heat generation. TR will happen even more
quickly than mechanical, electrical, and thermal abuse situations
during accidents (Menale et al., 2022). Most of the accidents that
have been reported in recent times are attributed to mechanical
abusive loading. Industry standards, therefore, give rise to significant
concerns regarding the safety of the mechanical aspect. This includes
but is not limited to, the potential risks associated with drop,
penetration, mechanical shock, crush, vibration, and rollover
(Ralls et al., 2023).

Additionally, there are safety concerns related to the cell,
modules, pack, and vehicle levels. These concerns have been
highlighted in (Liu et al., 2020). To meet the prerequisites for
voltage, current, power, and energy, a considerable number of
lithium batteries are commonly interconnected in series and
parallel configurations (Liu et al., 2020; Rao et al., 2021; Kumar,
2024). This interconnection allows for the formation of battery
modules and packs within EVs. These battery modules and packs
serve as a means of large-scale energy storage and distributed energy
storage. However, it is important to acknowledge that as the system
becomes more complex due to the numerous components being
connected together, it also becomes more susceptible to a variety of
faults (Mitra and Mukhopadhyay, 2024). These faults encompass
various types, such as cell faults, BMS faults, sensor faults,
overcharging, over-discharging, TR, ESCs, and ISCs (Zhao et al.,
2024a). Each of these faults poses unique risks and could potentially
compromise the overall safety and functionality of the system. Thus,
in order to guarantee the safe functioning of electric cars and the
efficient storage of energy, it is imperative to fully comprehend and
resolve these issues. BMS technology has advanced quickly, making
it possible to quickly identify and detect failure signals (Huang et al.,
2024; Rao C. et al., 2024). This allows the operator to be notified as
soon as a fault arises. In order to prevent any potential battery safety

accidents, the battery will undergo a continuous charging process
until it reaches a state of TR. This charging process will persist even
in the event of failures in various subsystems within the BMS, such as
the balancing circuits, upper computer communication, and
measurement circuits. If these malfunctions are not addressed,
there might be a serious risk to the battery system’s safety
(Parekh et al., 2020; Donati, 2024).

3 Benefits of fault diagnosis

In this tech-filled world, LIBs are everywhere, running
everything from phones to electric cars (Xu et al., 2023; Tappeta
et al., 2022; Parekh et al., 2020). Keeping them safe and reliable is
very important. The role of LIBs is widespread and due to the
reliance on these energy storage systems, the need for efficient fault
diagnosis has emerged as a critical aspect of ensuring their reliability
and safety.

The multifaceted benefits of fault diagnosis in LIBs.

I. Fault diagnosis allows the identification of possible faults in
LIBs before they become actual safety threats. It can prevent
failures that may lead to fires or explosions since it has the
capability to identify abnormalities such as overcharging,
over-discharging, or ISCs.

II. In general, LIBs have a longer cycle life owing to the early
detection and fixing of defects. Consumers can correct the
shortcomings in terms of capacity decay or uneven cell aging
and then apply remedial measures like alterations in
charging and discharging operations to minimize the
effect on the cycle life of the battery.

III. Fault diagnosis can help in better understanding the SOH
and SOC of the battery. Such information allows the users to
utilize their systems or devices in the best way possible,
optimizing them for best performance. By detecting and
replacing fault cells, a ripple effect that could impact the
performance of the entire battery pack could be avoided.

IV. In addition, faster fault detection minimizes possible safety
risks and is economically beneficial. It is relatively cheaper
for heavy users of LIBs since their cost-saving measures will
minimize the need for expensive repairs or replacements.

V. The car industry uses LIBs primarily as the power source in
EVs. In such a context, fault diagnosis assists in the
attainment of reliability of the EV’s drivetrain and
avoidance of unscheduled malfunctions which
subsequently establishes customer confidence in
adopting EVs.

VI. Recycling and responsible disposal are the two faces of
responsible LIBs management. Using fault diagnostics,
environmentally friendly recycling technologies may
apply: this determines which particular battery has just
reached, or will shortly reach, its end of the life cycle,
thus reducing the environmental impact associated with
wasted batteries and promoting sustainable energy storage
alternatives.

VII. New advances in problem diagnostic technology now ensure
continuous LIB monitoring. Using predictive maintenance
models, it would thus become possible for the models to

FIGURE 4
Strategies to improve LIB safety (Raijmakers et al., 2019).
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allow users to foresee possible problems and take action
before these prove harmful to battery performance.

4 LIB faults

The different types of faults are reviewed in this section Battery
overcharging, over-discharging, TR, ISCs/ESCs, and accelerated
degradation are some faults that cannot be easily detected due to
the less knowledge of the operation within the Li cells. Among these
faults, TR and accelerated degradation are the most dangerous ones
as they affect the LIB application and in turn affect directly the user
(Rangarajan et al., 2022; Lalinde et al., 2022). Figure 5 depicts the
fault classification in LIBs.

4.1 Over charging and over discharging

When a BMS fails in stopping the charging of cells then more
energy enters into the cell even after the source is fully charged and
goes beyond the recommended voltage which results in
overcharging of the LIB (Lalinde et al., 2022; Wang et al., 2024;
Mago, 2024; Juarez-Robles et al., 2020). A battery’s cathode becomes
over-delighted whereas the anode becomes over-lithiated when it is
overcharged, causing several adverse effects (Rana et al., 2023)
(Giuliano et al., 2011). Over-discharge causes side reactions in
the cathode, such as irreversible structural changes and the
breakdown of active materials. The electrolyte oxidizes and TR
occurs as a result of those side reactions, which produce a lot of
heat and oxygen (Liu S. et al., 2023). Dendrites of metallic lithium
will occur on the anode surface when the anode is fully loaded with
intercalated lithium. Ohmic resistance may increase (ORI) as a
result of the deposited lithium reacting with the electrolyte to

thicken the solid electrolyte interphase (SEI) film. The TR
process is accelerated by the ORI because it increases the joule
heat (Q = I2Rt) (Chen et al., 2024).

Over-discharge is a phenomenon that occurs when a cell is
discharged beyond the lower safe voltage limit determined by the
coupling of the electrode chemistry, as stated in reference (Menale
et al., 2022). It is important to note that even when a deep over-
discharge (between 2.0 and 0.0 V) takes place, there are no observable
negative impacts on the thermal stability of the cells. Surprisingly, no
harmful effects were observed, apart from the generation of gas and the
swelling of the cell. It is interesting to highlight that over-discharging,
although it has the potential to cause permanent capacity loss and have
a detrimental effect on the cycle-life of the cells, did not exhibit any such
consequences, as mentioned in reference (Li et al., 2024). Overcharging
is one of themost abusive conditions that causes the degradation of LIBs
(Tappeta et al., 2022; Ouyang et al., 2023; Rao et al., 2023b). Generally, it
occurs in the cells that are connected in series as they are inconsistent in
voltage and capacity in individual cells (Ouyang et al., 2023; Le et al.,
2023). A small over-discharge event that appears may be difficult for a
BMS to identify, this results inmany reversible or irreversible changes in
LIBs (Sun et al., 2023; Park et al., 2024).

In Kurzweil et al. (2022) focuses on the challenges of
overcharging and over-discharging in automotive LIBs. The
battery dynamic simulation model proves its effectiveness in
analyzing LIB with varying parameters. When combined with
equivalent circuit model (ECM) analysis, the model adeptly
identifies failures in automotive LIBs, thereby improving the
safety of battery use in vehicles. Experimental evidence indicates
that under slight overcharging cycling, the battery’s failure behavior,
mechanism, and diagnosis do not lead to TR. This suggests that local
micro-internal factors are not the predominant contributors to LIB
TR. The assesses lithium battery health under dynamic discharge
conditions across temperatures. Extracting features from voltage

FIGURE 5
Categories of LIB faults.
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and current data during tests on various cell types, the study
proposes three health indicators strongly correlated with battery
capacity. Using a Gaussian Process Regression (GPR) model,
accurate battery capacity estimation is achieved with a Mean
Absolute Error (MAE) of 0.3578%. The method maintains
accuracy across diverse conditions and temperatures, validated
through excellent results for unknown batteries (Liu S. et al., 2023).

4.2 Sensor faults

Common sensors includeHall effect sensors for voltage and current
monitoring, thermocouples, and resistance temperature detectors for
temperature measurements (Liu and Kang, 2023) (Xiong et al., 2024).
However, various factors such as manufacturing defects, harsh
environments, and mechanical shocks can compromise sensor
integrity. Sensor faults manifest as biases, drifts, scaling errors, or
complete failures, directly impacting measurement signals (Seba
et al., 2024) (Shen D. et al., 2024). These faults can be additive or
multiplicative, influencing critical metrics like voltage in battery
systems. Accurate management over battery charging, state
estimation, fault diagnosis, and overall system performance depends
on the detection and resolution of sensor problems. When sensor
problems are not promptly detected, data might become erroneous.
This can impact the multi-state estimate of battery characteristics and
could result in the BMS malfunctioning or giving the wrong directives
(Schmid et al., 2021).

When proposing a scheme to attract fault detection and isolation
(FDI), it is important to focus on detecting any faults in the current or
voltage sensors of a single battery cell. This can be achieved through the
use of nonlinear parity equations and sliding mode observers (Xu et al.,
2024). Hazard analysis of the battery system should also be conducted,
which involves using structural analysis theory to evaluate the
detectability and isolation of sensor faults within the battery system
(Schmid et al., 2021). While an extended Kalman filter (EKF) can be
used to identify current or voltage sensor faults in a single battery cell,
achieving fault isolation can be challenging. It is worth noting that there
is a significant gap in the existing literature regarding FDI for sensors
specifically in a battery pack (Obrien et al., 2023). The robust approach
that utilizes sensor data, including battery expansion force and gas
levels, to detect ISCs in batteries has been discussed (Cai et al., 2020). It
specifically addresses ISC events characterized by a swift voltage drop
and recovery, without a substantial change in surface temperature, a
challenge for traditional measurements. The simulation demonstrates
the sensor’s rapid response to such events. However, further exploration
is needed to determine optimal threshold values for gas and force
detection. Notably, the simulation overlooks sensor drift and model
mismatch in aged cells, necessitating additional research to handle
potential bias and errors in detection quantities.

4.3 Battery management system faults

One of the primary responsibilities that a BMS undertakes is the
essential objective of reducing and mitigating the potential hazards
and dangers that are inherently connected with the utilization and
operation of a LIB. This paramount function not only encompasses
the safeguarding and preservation of the battery itself, but it also

extends to the protection and well-being of the individuals who
interact with and rely upon the battery’s functionalities and
capabilities. Through the implementation of various
precautionary measures, the BMS diligently strives to proactively
minimize and curtail any potential risks or adverse consequences
that may arise from the usage of the LIB, thus ensuring the utmost
safety and security for both the battery and its users (Tran and
Fowler, 2020).

Figure 6 illustrates how the BMS performs fault diagnosis on
LIBs. It can protect a battery from many common problems, but it
cannot protect against all possible problems. For example, it cannot
prevent damage caused by lithium coating, a phenomenon where
lithium ions accumulate on the battery and its surface and can cause
the battery to swell or even explode. Although a BMS can monitor
the battery and its temperature and cut power when the temperature
becomes too high, it cannot prevent the battery from being exposed
to extreme temperatures. This is a serious problem because
temperatures that are too high or too low can seriously damage
the battery. As mentioned earlier, BMS cannot prevent lithium
plating. This can cause the battery to expand and potentially
explode, creating a significant safety hazard. It also can prevent
many of the common chemical reactions that can damage a battery,
but it cannot prevent all of them like, it cannot prevent the battery
from reacting with certain chemicals or substances that cause
damage to the LIBs (Zou et al., 2023).

A technique for diagnosing power battery faults in EVs using
enhanced Radial basis function (RBF) neural networks. The lithium
iron phosphate battery pack’s six parameters are its variables, and its
fault levels are called targets. The CAN bus is used to collect
experimental data. Then, to identify battery defect information,
the Probabilistic Neural Network (PNN) and General Regression
Neural Network (GRNN) algorithms are used. Parameter and
sample size concerns are then discussed and compared. The
outcomes validate the efficacy of GRNN and PNN algorithms in
detecting battery issues by demonstrating the impact of parameters
and sample size on neural network performance (Wang et al., 2021).

Future studies will incorporate the SOH parameter for precise
battery protection, validating the accuracy and feasibility of the new

FIGURE 6
Illustration of BMS fault diagnosis (Tran and Fowler, 2020).
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fault diagnosis method. A novel approach is proposed for
diagnosing faults in batteries, which is based on a modified
version of Shannon entropy. This method aims to identify cells
within battery systems that exhibit abnormal voltage fluctuations.
This is accomplished by computing the voltage sequence’s Shannon
entropy inside a shifting time window, which enables real-time
implementation. A sensitivity factor (SF) is developed to precisely
determine the magnitude of anomalous voltage fluctuations, and it is
found to be both accurate and efficient. Utilizing battery operating
data from a cloud monitoring platform, the diagnostic model is
tested in order to further improve the problem diagnosis’ accuracy.
A thorough examination is guaranteed by the 0.1 Hz sampling
frequency of the data. It is discovered throughout the validation
phase that the diagnostic findings contain a sizable number of false
alarms, suggesting the need for improvement (Liu Q. et al., 2023).

4.4 Short circuit (SC) faults

In LIBs, SCs appear both internally and externally. LIBs have an
insulating separator layer between the two electrodes (anode and
cathode), when this insulating separator fails both electrodes lose
contact between them, and then ISCs occur (Tran and Fowler, 2020;
Yuan et al., 2023; Huang et al., 2021). This condition results in TR
because the electrolyte tends to break down through an exothermic
reaction. When an SC arises it builds up some heat this heat is the
main reason for the TR of LIBs. As LIBs have higher capacity they
undergo TR from ISCs (Abu et al., 2023). ESCs in LIBs may occur
when the tabs are linked via a low resistance channel, or when
electrolyte leaks from the expanding cell as a result of gas production
from side reactions during overcharge, immersion in water, or
impact deformation. According to a study (An et al., 2023), an
ESC causes limited current to flow through the negative electrode’s
Li-ion diffusion, while the positive electrode’s electrolyte breakdown
produces heat that causes TR. Excessive discharge of a cell’s stored
energy can also result from an ESC (Shen D. et al., 2024).

Detecting soft SCs involves utilizing various methods such as
thermal analysis, which makes use of a 3D electrochemical-thermal
model to simulate different scenarios of ISCs (Khosravi et al., 2024).
Another approach to estimating faults entails employing an
extended ECM that accounts for both ISCs and ESCs. Since the
nonlinearity of the battery OCV-SOC curve poses a challenge, a
systematic self-regulating mechanism is proposed, which involves
the utilization of Takagi-Sugeno fuzzy system modeling and
optimized Gaussian membership functions across different SOC
ranges (Meng et al., 2020). In addition to this, there exists a method
for diagnosing short-circuit faults in battery module components,
which relies on voltage cosine similarity and extracts features from
the battery’s ISC fault. With the use of this technique, fault-signal
characteristics may be effectively separated by creating a two-
dimensional feature vector and enhancing eigenvectors with a
gain multiple (Wu et al., 2023).

4.5 Thermal runaway

Exothermic chain reactions within LIBs cause a phenomenon
known as TR. These reactions typically result in a sudden rise in the

battery’s internal temperature, which causes the battery’s internal
structures to become unstable and deteriorate, which may to the
battery’s complete failure. There is a chance of TR from different
kinds of thermal, electrical, and mechanical abuse (Shahid and
Agelin-Chaab, 2022). If TR starts at the battery level, it spreads
to the batteries next to it and eventually to the battery pack. Figure 7
shows how the damage in one cell passes to the entire battery.

In the present era, there exists a multitude of data centers
dedicated to storing an extensive reservoir of historical data
pertaining to new energy vehicles, encompassing a wide range of
information including but not limited to current, voltage, and
temperature readings (Choi et al., 2021). By harnessing the
knowledge derived from the analysis of these vast repositories of
historical data, one can effectively anticipate and issue timely
warnings regarding TR phenomena. The application of
methodologies rooted in the realm of big data holds the promise
of augmenting the generalization capabilities of these warning
systems. Furthermore, the experimental process entails the
deliberate accumulation of a substantial volume of laboratory-
generated TR data by means of various fault injection techniques,
acupuncture, and collision simulations, amongst others. This
particular approach serves as a complementary means of
verifying and validating the efficacy of data-driven algorithms,
thus lending further credence to their practicality and
effectiveness (Kim et al., 2021; Guo and He, 2022; Huria et al., 2012).

The method of predicting TR, which is specifically based on fault
injection, allows researchers to investigate the consequences of
particular incentives on the occurrence of battery TR, as
evidenced by signals from battery sensors. Nonetheless, the
majority of data sources in this methodology rely on simulation
data from an ECM, experiments designed to trigger battery TR, or a
combination of both. Despite ongoing enhancements to the model
and triggering techniques, this set of approaches still encounters
difficulties when applied to real-vehicle data for the purpose of early
warning of TR (Zhang X. et al., 2023). Enhancing the intrinsic safety
of LIBs, particularly their resistance to TR, can be achieved through
material modification. Passive defense design helps minimize
secondary damage during abusive conditions, while an early
detection algorithm becomes crucial for alerting passengers about
potential faults (Hu et al., 2024).

5 Methods of fault diagnosis

Two broad categories can be used to group the research methods
for fault diagnosis which include model-based and non-model-
based methods (Lalinde et al., 2024; Wu et al., 2022).

5.1 Model–based fault diagnosis methods

In the model–based fault diagnosis technique, a physical model
of the battery is created and this model can be used to compute the
battery parameter values with accuracy. Then, these values are
compared with the gathered battery parameters. A defect is said
to happen if there is a difference between them that is greater than a
certain value (threshold value) (Wu et al., 2022). In general, there are
different categories to estimate the states Figure 8 outlines the
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FIGURE 7
Destruction of LIB due to TR

FIGURE 8
Outlines the standard approach of the model-based method.

TABLE 1 Model-based fault diagnosis methods–An analysis.

Approach/Method of
diagnosis

Application Reference Properties of the proposed method

EKF ISCs Zhang et al. (2023c) Earlier detection; Substitute test confirmation; Robustness

Lai et al. (2020) Highly accurate and stable; Fast Detection; Robustness with less
noise; Suitable for any operating conditions; Limited to series

connected cells

Takagi - Sugeno fuzzy system Incipient SC Meng et al. (2020) Flexible; Detects small changes; Complexity; Presence of noise

Adaptive DKF SOC inconsistency Rao et al. (2023c) Low computational effort; Quick convergence; Robustness; Limited
accuracy; limited experimental validation

Electrochemical observer model Fault diagnosis (overcharging, over-
discharging, aged battery)

She et al. (2024) Real–time implementation; Effective; Accurate

EKF Overcharging, over-discharging Bustos et al. (2024), Rao
et al. (2024d)

Real-time implementation; Robustness against noise; Computational
complexity

HNN and fault threshold
optimization algorithm

Thermal faults Zhao et al. (2024c) Real-time application potential, cost-effectiveness, ease of detection,
and accurate parameter identification

UKF over-charge, over-discharge, and SC
faults

Sadhukhan et al. (2022) Quicker response than KF method

Fault Localization
Framework (FLF)

Incipient thermal faults Feng et al. (2024) Reduction in required sensors; Reliable
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standard approach for state estimate. The different works that have
been done previously in the fault diagnosis sector of LIBs using
model-based techniques and the properties of the proposed method
are depicted in Table 1.

In the study (Zhang K. et al., 2023), the authors offer a novel
technique for identifying soft ISC errors in LIB packs used in EVs early
on. By extracting fault features from incremental capacity curves (ICC),
as opposed to typical voltage measurements, the suggested method
facilitates the identification of minute changes. To determine the
severity of a fault and monitor its development during charge and
discharge cycles, the local outlier factor (LOF) method is utilized. The
efficiency and applicability of the approach are shown by simulation
testing and data from actual vehicles. The results underscore the need
for prompt defect identification in averting TR and guaranteeing the
secure functioning of battery systems. Real-time monitoring without
complicated modeling is now feasible thanks to this technique. Its
efficacy complements industry demands and encourages BMS use.
Utilizing current battery data reduces expenses and improves safety in
an economical manner. For implementation and interpretation, the
approach requires little training and is easy to use. Voltage variations
and ICC are critical characteristics for identification, allowing for
prompt fault intervention. With its lightweight ICC extraction and
LOF, the approach has a minimal computational cost. Because of ICC’s
sensitivity to fault identification, it guarantees excellent accuracy. Real-
world data and BMS integration are used to validate high reliability.
Robustness under various conditions may be confirmed by
additional testing.

In Lai et al. (2020), the ISCs in series-connected LIB packs are
examined based on the correlation between the SOC. The EKF is
utilized to estimate the real-time SOC, utilizing the first-order ECM
to estimate the SOC of each cell. The correlation coefficient for
adjacent cells is then calculated to identify the ISC faults. This
method is characterized by its speed, high accuracy, and ability to
detect ISC faults of 100 Ω within 20.4 h. The industry’s adoption of
this approach is limited by its lack of sensitivity for early-stage ISCs,
despite its simplicity and affordability. Better detection times are
provided by the SOC difference and voltage difference methods, but
they are less useful in dynamic situations since they depend on high
sensor precision and are susceptible to noise. If electrochemical
impedance spectroscopy gives great precision but requires expensive
equipment and precise measurements, impeding its wider adoption,
dedicated circuitry offers fast detection at the expense of increased
implementation costs.

To establish the OCV-SOC relationship, a second-order RC
equivalent circuit is employed, as described in Meng et al. (2020).
This relationship is subsequently fuzzified for the purpose of
recognizing and calculating the ISC cells. While fuzzy logic
systems offer improved accuracy but may require more complex
implementation, ECMs are widely adopted in the industry due to
their adaptability and ease of integration with existing systems. The
practicality of methods for detecting incipient SC faults in LIBs
varies. Adoption strategies include minimizing experimental
restrictions by using verified models and existing literature,
which can save money and time. Economically speaking,
techniques such as cumulative sum control charts offer low-cost
detection with few false alarms. Additionally, by identifying factors
like battery current and SOC, these techniques facilitate detection
and are therefore appealing for widespread industry use.

In Rao et al. (2023c), an adaptive dual Kalman filter (DKF) for
precise SOC estimation has been discussed. Further, for real-time
updates, it uses recursive least squares and a fractional-order ECM.
With SOC estimation errors of less than ±0.01, the DKF
demonstrates excellent accuracy and resilience. This method is
more complex but provides higher accuracy and adaptability,
essential for advanced applications. Higher implementation costs
but offer better long-term savings through improved performed and
efficiency. The fault detection is complex as it requires sophisticated
sensors and algorithms. Multiple parameters include voltage,
current, temperature and battery characteristics for precise SOC
estimation. By analyzing the SOC residuals, current, and voltage
(She et al., 2024), presents a diagnostic approach that relies on an
electrochemical observer model and a fuzzy logic algorithm in
identifying and diagnosing the faults. For typical faults, the
approach offers excellent accuracy, reliability, and a reasonable
computing cost; however, performance is dependent on
appropriate calibration and tuning.

Lastly, some utilize equivalent circuit methodology and
impedance spectroscopy technology to construct multiple battery
signature fault models. A Kalman Filter (KF) method or an EKF
method is employed to estimate the terminal voltage of the model
and generate residuals. This was done because overcharging and
overcharging can lead to changes in the model parameters (Bustos
et al., 2024; Rao et al., 2024d). The probability of failure was also
indicated using a probability-based method. However, this approach
comes with the challenge of finding several models to execute an
EKF. Although the procedure is computationally costly, it is
effective. Model quality and system conditions affect accuracy
and dependability.

In Zhao et al. (2024c), a hybrid neural network (HNN) and fault
threshold optimization algorithm for online prediction and
diagnosis of LIB temperature abnormalities. By combining
convolutional neural networks (CNN) and long-short-term
memory (LSTM) networks, it achieves accurate temperature
predictions. Experimental validation demonstrates timely and
reliable fault diagnosis with an average execution time of under
3.5 ms, showing real-time application potential and addressing
existing limitations in battery management. The HNN and fault
threshold optimization algorithm offer practicality with real-time
application potential, making them attractive for industry adoption.
Because of their affordability, simplicity of detection, and precision
in identifying characteristics, they are useful instruments for
enhancing battery safety and dependability but depend on quality
training data and proper setup.

The Unscented Kalman Filter (UKF) has been adopted for the
detection of problems such as over-charge, over-discharge, and
short circuits in LIBs. The UKF outperforms the EKF in defect
diagnosis with faster and better results. High-energy density LIBs
modeling and simulation have been used for the purposes of fault
identification (Sadhukhan et al., 2022). Damage in terms of
application is saved as much as possible due to its cost-
effectiveness. The UKF is supposed to be the best option in
diagnosing the fault in LIBs since it has strong performance and
detection efficiency. Despite its increased computing cost and
dependence on exact models, it is more accurate and reliable
than the EKF because it effectively handles nonlinear systems.
However, it is still cost-effective and efficient.
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Optimization algorithms for parameter identification and
backstepping approaches are integrated with boundary observer
design techniques to find Thermal failures in LIBs (Feng et al., 2024).
This strategy reduces the number of sensors needed while preserving
dependable performance by using residual evaluation and threshold
calculation. It makes it possible to identify flaws early on, which
facilitates prompt maintenance and stops the battery’s performance
from getting worse. However, the optimization techniques for
parameter identification can be modified for industrial usage with
the right training and system integration, even though the execution
of this method requires specialized knowledge and significant
computational resources. The boundary observer design increases
the precision of defect parameter identification and detection, which
could lead to operational and maintenance cost savings. For the
procedure to be effective, calibration is essential. Table 2 depicts the
model-based techniques comparative analysis in terms of accuracy,
precision, computation cost, reliability and real-time
implementation. The UKF performs better in comparison to
other techniques in terms of all the mentioned performance
indices (Xu et al., 2017).

5.2 Non-model-based fault
diagnosis methods

Non-model-based techniques were further divided into two
types they are based on expert systems and based on data-driven
methods. The primary goal of the expert system-based approach was
to diagnose particular fault types by first building a knowledge base
through experience and knowledge between fault types and fault
data (Chang et al., 2023). Figure 9 describes the standard approach
of data-driven methods. Table 3 lists all of the previous research,
conducted in the field of LIB fault diagnosis employing non-model-
based techniques, along with an arrangement of the suggested
method’s properties.

A data-driven methodology is employed for the fault diagnosis
of LIB packs in EV in order to identify minor faults (Wu et al., 2022).
It employs ordinary least squares (OLS) for feature extraction,
K-means clustering for reference cell selection, and the R-Lowess
algorithm for data cleaning. The discrete Frechet algorithm is
employed for fault localization and diagnosis. It has a high
accuracy, modest computational cost and has been validated

TABLE 2 Comparison of model-based techniques based on Performance Parameters.

Method Accuracy Precision Computational
cost

Reliability Real-time
implementation

EKF (Zhang et al., 2023c; Lai et al., 2020;
Bustos et al., 2024; Rao et al., 2024d)

High for non-
linear systems

High Moderate to High Sensitive to model
accuracy

Suitable, but requires efficient
algorithms

Takagi – Sugeno Fuzzy System (Meng
et al., 2020)

Flexible Moderate Moderate Robust but sensitive to
noise

Suitable, but implementation
complexity varies

Adaptive DKF (Rao et al., 2023c) High High Moderate Robust Yes

Electrochemical observer model (She
et al., 2024)

High High High High Effective, but computation
intensive

HNN and fault threshold optimization
algorithm (Zhao et al., 2024c)

High Moderate to
High

Moderate Reliable, depends on the
quality of training data

Yes, with the proper setup

UKF (Sadhukhan et al., 2022) High for nonlinear
systems

High High High Suitable, handles nonlinear
systems

FLF (Feng et al., 2024) High Moderate to
High

Low to Moderate Reliable with reduced
sensors

Suitable with an optimized
implementation

TABLE 3 Non-Model based fault diagnosis methods–A discussion.

Approach/Method of
diagnosis

Application Reference Properties of the proposed method

K – means and Frechet algorithm Cell failure Wu et al. (2022) Noise free; Early warnings; reduce false alarms; effective; reliable; robust

Rule-based method and probabilistic
method

Over discharging Kim and Kowal
(2022)

Early detection; real-time implementation; implemented on single-cell

Fast SD determination Nascent ISCs Bharathraj et al.
(2022)

Fast; reduced uncertainty; detects various SCs early

Modified CNN TR Tian et al. (2024) Accuracy; Efficient

Cell voltage difference-based method ISCs and TR
abnormalities

Gao et al. (2020) Early detection; simple and reliable; limited to voltage signals

eXtreme Gradient Boosting Over-discharge Gan et al. (2021) successfully identify a previous over-discharge that occurred

GBDT and i-Forest Abnormal Voltage Zhang et al. (2024) Fast and Accurate prediction; Hyperparameter Optimization; Robustness and
Adaptability; Practical implications
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experimentally as dependable. In the course of battery over-
discharge, the two primary principles of anomalous temperature
elevation and anomalous voltage reduction were to establish rational
thresholds for preliminary assessment. Subsequent to deriving
statistical discoveries from initial experimental data, they
subsequently calculated the likelihood of fault incidence (Kim
and Kowal, 2022). Experimental data and statistical analysis
support its high reliability and low computational cost. The
current orientation of a continuous voltage source provided by a
battery, after establishing a parallel configuration with a constant
voltage source, along with the direction of current flow, can serve as
a diagnostic tool to ascertain the presence of any malfunctions
within the battery (Bharathraj et al., 2022). In any case, it is quite
uncomfortable to monitor EVs in real-time and can be difficult at
times to add a steady voltage supply. There are drawbacks like
complexity and integration issues.

In Tian et al. (2024), a modified CNN technique for LIBs
thermal fault detection technique has been elaborated. The model
is trained with a dataset of thermal pictures and is based on a mask
region-based CNN. The method is data-driven and seeks to increase
fault detection efficiency and accuracy. The ability to identify heat
problems in LIBs is promising, according to the results. Due to its
high efficiency and precision, this method is helpful in fault
detection of LIBs. The industrial acceptance would depend on
the availability of thermal imaging equipment and the investment
in data-driven methodologies. The approach economics would be a
one-time expenditure for training and equipment, but a cost saved
by early fault detection and prevention.

With a given voltage drop pattern and strategy that follows the
cell voltage differences, a new framework for online ISC detection in
batteries is proposed. The framework can differentiate between ESC,
ISC, and incorrect connections of wires associated with voltage

signals. It is possible to issue alarms and prevent false alarms for ISC
using the model even when it does not achieve the high temperature.
Early detection and false alarm prevention of such anomalies are
offered by BMS software, thereby improving the safety aspects of
batteries and the dependability of the vehicle. In all methods, early
ISC detection in the EV batteries forms the key component in order
to enhance the safety standards in the industries. With respect to cell
abnormality detection, the proposed voltage difference-based
approach is reliable, cost-effective, and very easy to implement
(Gao et al., 2020).

A dual-tier fault diagnosis methodology utilizing machine
learning techniques is employed to detect over-discharge
phenomena in LIBs. To ascertain instances of over-discharge, the
initial tier conducts a comparative analysis of the battery’s voltage
against a predetermined cut-off voltage; furthermore, to ascertain
previous occurrences of over-discharge, the subsequent tier
implements an Extreme Gradient Boosting algorithm (Gan et al.,
2021). Real-world EV data is used to validate the suggested
approach. In electric cars, over-discharge is a common problem
that can cause irreversible changes and battery TR. Over-discharge
fault diagnosis techniques currently in use can be divided into three
categories: knowledge-based, model-based, and data-driven. Data-
driven techniques are popular and have been used on actual EVs.
They do not require precise battery models. With characteristics
based on voltage comparison, it is easily detectable, has efficient
economics, and has a strong potential for industry application.

A modified Gradient Boosting Decision Tree (GBDT) algorithm
and the isolation Forest (iForest) methods are to forecast and
diagnose battery issues in EVs (Zhang et al., 2024). Exact battery
voltage prediction and anomaly detection are critical to EV safety,
according to the research. With consideration for a number of
vehicle and battery parameters, including driving style and charging
condition, the study suggests a quick and accurate voltage forecast
approach. A useful problem diagnosis method called iForest-
Boxplot is also introduced. Utilizing actual EV data the
algorithms are proven and demonstrate the capacity to precisely
diagnose faults and forecast voltage abnormalities up to six minutes
in advance. With applications extending to safer warning systems
for EVs, the research attempts to improve BMS and EV
performance. Table 4 depicts the non-model-based techniques
comparative analysis in terms of accuracy, precision,
computation cost, reliability and real-time implementation. The
modified CNN outperforms other techniques across all the
mentioned performance indices.

5.3 Technical challenges in fault mitigation
and diagnosis

LIB systems, especially in electric vehicles and grid applications,
pose significant challenges due to their complexity. With numerous
interconnected cells, detecting early-stage faults like ISC and TR
becomes increasingly difficult. These faults can propagate to
neighboring cells, making early detection critical, yet technically
challenging, due to the complexity of the systems.

Current fault detection methods primarily rely on sensors to
monitor temperature, voltage, and current. However, these sensors
often experience drift, scaling errors, andmechanical wear leading to

FIGURE 9
Outlines the standard approach of the data-driven method.
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inaccuracies in the fault diagnosis process. Moreover, the lack of
real-time data from internal battery components, such as the
electrode material, limits the ability to detect critical issues like
ISC or over-discharge in their early stages. Since the impacts of
latent faults like overcharging, over-discharging, and slow
degradation take time to emerge, it is particularly challenging to
diagnose them using current diagnostic models.

Additional challenges are presented by both model-based and
non-model-based approaches. Though they are resource-intensive,
model-based approaches seek to provide accurate physical models
but necessitate thorough calibration and precise initial
circumstances. Non-model-based methods, like machine learning,
have potential, but their practical use is complicated by their high
data requirements and noise susceptibility. These restrictions make
fault detection systems less useful for early defect diagnosis and real-
time monitoring in LIBs.

6 Future advances and the extent of
fault diagnostics

The future of LIB fault diagnosis is bright with sophisticated
sensor technologies as well as a rich set of machine learning
algorithms that can lead towards the early inception of anomalies
and fault prediction. The strategic deployment of intelligent BMS
and advanced thermal management enhances fault mitigation and
provides more accurate diagnoses. Techniques for monitoring
battery health open up exploration into fault-tolerant designs and
integrated diagnostic platforms so that the overall system reliability
and safety can be improved. Standardization and regulation
initiatives yield better consistency of the testing protocol, thus
facilitating continuous improvements to the methodology for
fault diagnosis.

Future research projects can focus on the development of
advanced techniques for fault diagnosis of LIBs to deal more
effectively with present problems causing impairments in the

safety levels of the entire battery. Hybrid fault diagnosis
approaches may be developed, merging each of the strengths of
model-based and non-model-based techniques. Integration of
machine learning algorithms with physics-based models may be
used to further accuracy and efficiency toward fault detection at
minimal computational costs. New sensing technologies as well as
diagnostics tools capable of real-time monitoring of health and
performance in batteries are areas that need more research.
Advanced sensor technologies, such as distributed fiber optic
sensors, and novel electrode materials with sensors integrated
inside for early fault detection and error prevention in LIBs, are
just but a few examples.

In recent times, it has emerged as a promising field of
investigation in the area of LIB fault diagnosis: multi-physics
modeling techniques. This approach relates to the development
of powerful computational models that are used for the simulation
of various electrochemical, thermal, and mechanical processes
occurring inside battery cells. In this way, multi-physics models
lead to a holistic understanding of battery behavior under different
operating conditions by taking into account a diverse variety of
physical phenomena, such as ion transport, electrode kinetics, and
heat generation. The models are applied by the researchers in
simulating faults, predicting faults’ time-scales evolution, and also
assessing the impact of faults on battery performance. Due to the
inclusion of multi-physics modeling, the researchers can understand
some complex interactions between the various determinants of
battery faults, allowing them to achieve better diagnostics strategies.

Besides multi-physics modeling, researchers are also focusing on
the application of advanced diagnostic techniques for LIB
performance for real-time monitoring. Such techniques include
observation of the behavior of the battery under real operating
conditions so that researchers can capture dynamic changes during
charge-discharge cycles. A number of advanced characterization
techniques have pointed to the same internal state of a battery
comprising electrode degradation, electrolyte decomposition, and
SEI layers. At an early stage of application of these techniques,

TABLE 4 Comparison of non-model based techniques based on performance parameters.

Method Accuracy Precision Computational
cost

Realibility Real-time
implementation

K-means and Frechet algorithm (Wu
et al., 2022)

High High Moderate Robust to Noise Effective with early warnings

Rule-based method (Kim and Kowal,
2022)

Moderate Moderate Low Moderate Yes

probabilistic method (Kim and Kowal,
2022)

High High Moderate High Limited

Fast SD determination (Bharathraj et al.,
2022)

High High Low Moderate Yes

Modified CNN (Tian et al., 2024) High High High Requires thermal
imaging tools

Excellent for specific faults

Cell voltage difference-based method
(Gao et al., 2020)

Moderate to
High

Moderate Low Moderate Yes

eXtreme Gradient Boosting (Gan et al.,
2021)

Moderate Moderate Low Reliable for Over -
Discharge

Effective for prior fault
identification

GBDT and iForest (Zhang et al., 2024) High High Moderate High Yes
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evidence of degradation or fault is realized; such proactive
maintenance allows the extension of the service life of the battery.

Moreover, new fault-tolerant designs are also underway, making
LIBs even more reliable and safe. These include different
redundancies in individual components, self-healing materials or
systems (Ustun and Ayyubi, 2019), or adaptive control strategies
(Ustun et al., 2012) that may be necessary to reduce faults while
allowing systems to continue operation. Designs focusing on faults,
mainly suppress faults to a very minimal effect on battery
performance, avoiding catastrophic failure mainly in EV and grid
energy storage applications (Hussain S. M. S. et al., 2020). The aim of
this study is to introduce fault tolerance into the battery system to
enhance the system’s robustness and minimize potential dangers or
failure events.

The future research in this area of LIB fault diagnosis will be to
build a unified diagnostic platform, putting various diagnostic
methods and algorithms under one framework, to integrate data
from sensor sources with modeling simulations and in-situ
measurements for holistic assessment of the condition and
performance of batteries (Hashimoto et al., 2021). Integrated
diagnostic platforms will use advanced data analytics and
machine learning algorithms to generate actionable insights into
the state of the batteries, allowing for informed decisions about their
maintenance and operations, and safety protocols. Similar
implementations in smartgrids can be found in Ustun et al.
(2021a), Ustun et al. (2021b). In this sense, integrated diagnostic
platforms would be a key way of strengthening the reliability, safety,
and longevity of LIBs in all applications.

As depicted in Figure 10, the future of fault diagnosis in LIBs
suggests an integrated system based on IoT, ML, and Cloud for in-
time monitoring and in-time detection of faults. It is built for large
deployments and gives predictive maintenance, which prevents
problems from happening in the first place. This approach can
enhance cost efficiency through data-driven decision-making and
operational optimization as well as remote monitoring and control
of battery systems. Furthermore, enhancements realized due to the
ML algorithm make for more response times and reliability of
the systems.

The LIBs begin with the Battery Pack, which consists of an array
of Li-ion cells, used in applications like electric vehicles and energy
storage systems. Numerous sensors, including voltage, temperature,
and current sensors, track important battery metrics to keep an eye
on this pack and identify problems like thermal runaway or
overcharging. The IoT Module (Edge Device), which receives this
real-time data, aggregates the sensor data, processes it locally
(filtering noise, does basic anomaly detection), and gets it ready
to be transferred to the cloud. At this point, local data processing
minimizes latency and bandwidth by calculating pertinent metrics
prior to transferring data to the cloud.

After processing, data is sent to a cloud server via wireless
communication technologies like Wi-Fi, LTE, or LoRaWAN, where
it is centrally stored and accessible for analysis. Cloud-based
machine learning analytics algorithms evaluate past and present
data to identify patterns, forecast battery malfunctions, and
determine the state of charge and SOH of the battery. Lastly, this
data is displayed through a User Interface/Monitoring Dashboard,

FIGURE 10
Li-ion battery fault diagnosis using advanced cloud-based BMS.
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which gives users or operators access to a web or mobile interface for
tracking battery health, receiving alarms, and visualizing
performance patterns.

7 Conclusion

LIBs are essential to contemporary electronics and electric vehicles
due to their high energy density, extended lifespan, low self-discharge
rates, and environmental advantages. But there are serious safety issues
with their extensive use, especially in some operational environments.
To reduce risks like fires and explosions, accurate problem diagnosis is
crucial. This study examines a variety of LIB flaws and divides
diagnostic approaches into model-based and non-model-based
approaches. While non-model-based approaches rely on a large
amount of data and training without requiring intricate battery
models, model-based approaches offer exact fault location and
quantification but require accurate battery modeling.

Incorporating advanced sensor technologies and machine
learning algorithms for precise diagnostics and early fault
prediction is one of the future developments in LIB fault
diagnosis. Advanced heat management techniques and intelligent
BMS will enhance fault diagnosis and mitigation. The main focus of
research should be on hybrid diagnostic techniques that maximize
accuracy and efficiency while reducing computing costs by
combining the advantages of model-based and non-model-based
approaches. This research is novel in that it explores multi-physics
modeling methodologies, providing detailed computer models to
simulate different battery cell processes for improved diagnostic
approaches.

In summary, improving LIB safety via efficient fault diagnostics
is essential for wider implementation across a range of applications,
guaranteeing a safer environment and a sustainable future. For
researchers creating more effective defect diagnosis methods for
LIB systems, this thorough overview is an invaluable resource.
Battery systems’ safety and dependability can be greatly increased
by implementing cutting-edge technology and creative strategies,
which will increase user confidence.
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Glossary
SD Self-discharge

ECM Equivalent Circuit Model

LIBs Lithium-ion Batteries

FDI Fault Detection and Isolation

EVs Electric Vehicles

EKF Extended Kalman Filter

BMS Battery Management Systems

RBF Radial Basis Function

ISC Internal Short Circuit

PNN Probabilistic Neural Network

TR Thermal Runaway

GRNN General Regression Neural Network

NiMH Nickel-Metal Hydride

SF Sensitivity Factor

NiCd Nickel-Cadmium

ICC Incremental Capacity Curves

SOC State of Charge

LOF Local Outlier Factor

SOH State of Health

DKF Dual Kalman Filter

ESC External Short Circuits

KF Kalman Filter

SEI Solid Electrolyte Interface

HNN Hybrid Neural Network

OCV Open Circuit Voltage

CNN Convolutional Neural Networks

HT High-temperature

LSTM Long-Short Term Memory

NT Normal-temperature

UKF Unscented Kalman Filter

EOL End of Line

OLS Ordinary Least Squares

ORI Ohmic Resistance Increase

GBDT Gradient Boosting Decision Tree

MAE Mean Absolute Error

GPR Gaussian Process Regression

SD Self-discharge

ECM Equivalent Circuit Model
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