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Incorporated flexible load
forecasting based on
non-intrusive load monitoring: a
TCN-based meta learning
approach

Yun Zhang, Quanyan Shu*, Feng Ding, Feng Liu,
Shuiming Jiang and Wenlong Wu

State Grid Jiangsu Electric Power Co., Ltd., Yancheng Power Supply Company, Yancheng, Jiangsu,
China

Accurate forecasting of residential flexible load is imperative for effective
demand-side management, ensuring efficient energy utilisation and power
supply-demand stability. Conventional methods encounter challenges due
to the uncertainty and volatility of residential flexible resources.This study
proposes a meta-learning architecture based on Temporal Convolutional
Networks (TCN). The proposed approach is comprised of three distinct stages.
Firstly, preprocessing with Concatenated Fourier Features (CFF) is employed to
accentuate periodicity. Secondly, a TCN base model is utilised to capture both
long-term and short-term dependencies. Thirdly, a two-tiered learning process
is implemented to adapt features from load disaggregation to forecasting.The
efficacy of the proposed method is evaluated using public datasets, and the
results demonstrate its superiority to baseline models in terms of forecasting
accuracy for flexible loads. The enhanced performance of the proposedmethod
is attributed to the integration of feature extraction and model adaptation within
a meta-learning framework.Future research could explore the incorporation of
contextual information to further enhance performance.
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meta-learning, non-intrusive loadmonitoring, load forecasting, temporal convolutional
network, concatenated Fourier Features

1 Introduction

With the increasing penetration of diverse distributed renewable energy resources
(DER), such as solar and wind power (Wang et al., 2023a), into the smart grid,
their climate-dependent characteristics inject uncertainty and volatility into the power
supply. To counteract the challenge, demand response (DR) has emerged as an
essential mechanism to stabilize the power supply and demand by either incentivizing
or directly controlling consumer power consumption patterns. However, effective
implementation of demand response requires visibility of the proportion of demand-
side controllable loads and their behavior characteristics, which cannot be discerned
solely through direct smart meter measurements (Wang et al., 2023). Consequently,
non-intrusive load monitoring (NILM) is gaining recognition as a critical technology
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for demand-side energy management, which disaggregates real-
time household energy consumption into individual appliance usage
without additional meters deployed for each appliance.

Starting from Hart in 1992, NILM can be roughly classified
into steady-state and transient-state methods according to the
feature engineering process. Transient-state NILM commonly
detects the operation state changes according to the high-frequency
features after event detection, including transient power changes
(Figueiredo et al., 2013), Weighted Power Recurrence Graphs
(Wang et al., 2023b), and frequency domain component features
extracted by Fast Fourier Transform (FFT) (Wu X et al., 2017),
Wavelet Transform (Chang et al., 2013) or Hilbert Transform
(Heo and Kim, 2021). While steady-state features include active
power (Liu et al., 2021), reactive power (Bonfigli et al., 2017),
V-I trajectory (Liu et al., 2018; Du et al., 2023), or steady-
state harmonics (Kang and Kim, 2020). Transient-state methods
commonly achieve better load disaggregation performance due to
the deep features extracted during the switching event. However,
its performance highly depends on the accuracy of event detection
and is more sensitive to noise signal and power signal peaks.
Besides, transient-state methods require the sampling rate to be
in the order of kHz, posing a significant burden on the device
computational capability, sensor installation cost, and network
communication bandwidth. Therefore, low-frequency NILM is
highlighted as a significant steady-state NILM method due to its
high versatility and low sampling rate requirements. Taking a slice
of active and/or reactive power sampled lower than 1 Hz, low-
frequency NILM commonly relies on machine learning or deep
learning algorithms to extract deep features and compensate for the
information loss caused by the sampling frequency (Zhou et al.,
2020). proposes a convolutional-based sequence-to-sequence (S2S)
model to disaggregate the aggregate power consumption sequence to
individual load consumption sequences. Furthermore, sequence-to-
point (S2P)methods (Jia et al., 2021) are proposed to predict a single
point’s load consumption based on future and past power slices,
achieving better efficiency in capturing temporal dependencies and
patterns. On this basis (Luan et al., 2023), has deployed the S2P in
edge devices with lightweight structures for online load monitoring,
ensuring fast energy disaggregation while preserving user’s privacy.
In summary, the explorations of low-frequencyNILMhave achieved
remarkable outcomes, leading to satisfactory accuracy.

Although NILM can disaggregate household load consumption
in real-time, it is more important for the demand response scheme
to forecast flexible load consumption and thus prepare various
response strategies for energy usage management. Initially, machine
learning (ML) models for load forecasting excel in the sense that
they can be individualized into arbitrarily fine-granular time slots
and regions, thereby leading to much improved load forecasting
accuracy performance (Faustine and Pereira 2022; Kalakova et al.,
2021). In particular, from a large volume of data describing historical
load fluctuations over time, the ML models exhibit enjoy a deep
representation learning capability to capture the highly nonlinear
and unstructured patterns underlying the raw inputs. Considering
the limitations of offline techniques, an online adaptive recurrent
neural network (RNN) technique is proposed. This model has
continuous learning capacity, adapting itself from newly arriving
data by updating the RNN weights to accommodate new patterns
or changes in data types (Fekri et al., 2021). Furthermore, a

deep bidirectional LSTM-based sequence-to-sequence regression
approach is proposed in (Mughees et al., 2021). The framework
has an adaptive structure with a window-based strategy to
capture both historical data and current demand, enhancing the
accuracy of peak demand forecasting in the residential sector.
Although this methodology enhances system responsiveness, the
considerable computational requirements of the bidirectional LSTM
framework may limit the applicability in environments constrained
by processing capacity.

Although the aforementioned methods have demonstrated
certain feasibility in household load forecasting, it is crucial to
obtain appliance-level load forecasting information for user-side
flexibility resource management to assist with demand response.
To address this issue (Lin et al., 2019), employs sparse coding
algorithms to decompose short-term cooling loads of buildings
into their respective components. It then applies Backpropagation
Neural Networks (BPNN) and Auto-Regressive Integrated Moving
Average (ARIMA) models to forecast each component separately,
thus improving the overall cooling load forecasting accuracy
(Pirbazari et al., 2020). focuses on decomposing total household
load using Denoising Auto Encoder (DAE) to identify appliance-
level load profiles. Based on the decomposition, a Gradient Boosting
Regression Tree (GBRT) load forecasting model is constructed,
demonstrating the potential benefit of load disaggregation in
enhancing load forecasting accuracy. Furthermore (Welikala et al.,
2017), improves total power demand forecasting accuracy by
utilizing a Karhunen-Loeve Expansion (KLE)-based NILM
decomposition method, incorporating appliance usage patterns and
their priori probabilities. To refine existingmethods (Langevin et al.,
2023), develops a VAE-based NILM model to refine appliance
load information. It then constructed TCN model based on the
disaggregated results to improve short-term load forecasting
accuracy for the entire household. However, the aforementioned
studies predict appliance consumption after load disaggregation,
meaning the disaggregation and forecasting models are trained
independently, without sharing or transferring deep load features
or important model parameters, thus leading to less precise
forecasting outcomes.

Subsequently, a short-term residential load forecasting model
using a TCN in emphasizes the impressive tracking properties of
the TCN architecture for highly volatile residential loads (Peng
and Liu 2020). Distinct from RNNs and LSTMs, TCNs obviate
the issue of vanishing gradients and are intrinsically capable of
capturing longer dependencies in data without extensive historical
input requirements. This attribute renders TCNs particularly
advantageous for scenarios where accuracy in real-time forecasting
is crucial, and operational conditions are subject to frequent
alterations (Ahajjam et al., 2022). However, the existing ML model
often fail to perform well across diverse operational scenarios,
exhibiting a lack of robustness when confronted with data or
conditions not represented in the training set.

Addressing this practical problem illuminates fundamental
questions: Can general principles of load forecasting be discerned
and applied across diverse datasets? If so, what mechanisms could
facilitate this knowledge transfer? Meta-learning excels by enabling
the adaptation of learned representations across various load
forecasting tasks, significantly enhancing model transferability
and applicability in diverse environments (Raghu et al., 2020).
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In this paper, a meta-learning framework that integrates TCN
with differentiable closed-form solution optimization is proposed,
enabling the adaptation of feature learning from load disaggregation
tasks to load forecasting. Initially, the extensive data preprocessing,
including CFF transformations, enhances data quality and
expressiveness. Taking the load disaggregation task as the training
tasks and the load forecasting task as the testing task, the base
TCN captures both long and short-term dependencies, optimized
via a two-tiered learning process that rapidly adapts to new tasks.
This approach not only improves prediction accuracy but also
ensures robust generalization and adaptability across varying load
conditions. The contribution of the proposed method for flexible
load forecasting is as follows:

(1) The TCN-Meta framework enhances flexible load forecasting
by integrating load disaggregation and forecasting tasks within
a meta-learning structure. By sharing deep-layer features
and parameters across tasks, it mitigates information loss
compared to separated task training processes and thus
improves load forecasting accuracy.

(2) Theproposedmodel enablesmultiscale load feature extraction,
including periodic and transient dynamics, across diverse load
types throughTCNblockswithConcatenated Fourier Features
(CFF), demonstrating broad applicability across complex
scenarios.

(3) A novel two-tiered parameters optimization process is
embedded in the meta-learning framework, enabling rapid
adaptation from load disaggregation to forecasting tasks.
This strategy minimizes training complexity while ensuring
synergistic task alignment.

(4) Extensive validation on public datasets proves that TCN-
Meta outperforms state-of-the-art load forecasting models
(Transformer, LSTM, etc.) across various flexible load types
and diverse load behaviours, demonstrating its effectiveness
and feasibility for flexible load forecasting through an
integrated and adaptive mechanism.

2 TCN-Meta model

The TCN-Meta model is a comprehensive framework
designed for adaptive load forecasting. It integrates three crucial
components: a data preprocessing module, a TCN-based base
learner for capturing temporal dependencies, and a meta-
learning approach utilizing differentiable closed-form solvers for
efficient optimization. The framework is structured to ensure
both high forecasting accuracy and adaptability through a dual-
loop learning process, enabling it to quickly adapt to new
forecasting tasks. The model’s architecture is illustrated in Figure 1,
with each component contributing uniquely to the
overall performance.

2.1 Data preprocessing and concatenated
Fourier Features

During the preprocessing phase, the input time-series dataset,
denoted as X, comprises distinct electrical load types: vehicle load,

heating load, and photovoltaic (PV) load. This dataset, which
includes the aggregate power consumption and the individual
consumption profiles of each appliance, undergoes a rigorous
cleaning process. This entails addressing missing data points,
rectifying anomalies, and ensuring overall data integrity. The
dimensions of X are defined as a × b, where a, set to 20,
represents the length of the time window to capture the sequential
nature of power consumption and b denotes the number of
input variables, corresponding to the different load types. To
address the complexities introduced by high-dimensional data
and to hasten the convergence of our analytical algorithms X is
standardized. This normalization process aligns the scale of various
features, thus enabling a more robust and expeditious analytical
convergence. Lastly, a CFF transformation is carried out. This step
involves capturing multiscale periodic features present in the data
using Fourier basis functions of multiple scale parameters. This
transformation not only enhances the expressiveness of the data but
also improves the model’s capability to discern different frequency
components. It provides a rich set of information for subsequent
learning through TCN.The output Y of our model is structured
to reflect the specific load types, with dimensions c × d. Here, c
corresponds to the number of load types, which in this case is
three—vehicle, heating, and PV loads. The dimension d represents
the length of the prediction and disaggregation time window, which
is set to 1, indicating that themodel predicts the power consumption
for the subsequent time point.

2.1.1 Random Fourier Features (RFF)
The Random Fourier Feature (RFF) approach provides a robust

framework for capturing the inherent periodicity present in time-
series data. This method is deeply anchored in Bochner’s theorem,
which elegantly states that a continuous, shift-invariant kernel
defined on Euclidean space is essentially the Fourier transform of
a positive measure. The practical implementation of RFF begins by
constructing a random frequency matrix B, where B is of size d
× 1 and each element bi is independently drawn from a standard
normal distribution N (0,1). The resultant RFF mapping, which can
be explicitly defined, is:

Γ(X) = [sin (2πBX), cos (2πBX)]T

Here,X represents the input data points, and the transformation
aims to capture the underlying frequencies within these data points.

While the random Fourier features layer endows TCN with the
ability to learn high-frequency patterns, one major drawback is the
need to perform a hyperparameter sweep for each task and dataset
to avoid over or underfitting.

2.1.2 Concatenated Fourier Features
This paper overcomes this limitation with a simple scheme

of concatenating multiple Fourier basis functions with diverse
scale parameters, called Concatenated Fourier Features. Unlike the
standard RFFwhere a single randommatrix B is used, CFF leverages
a sequence of such matrices, denoted B1, B2, …, Bs, to capture a
wider range of frequency responses. The variable s denotes the total
count of unique frequency matrices that are harnessed to create
a comprehensive multi-frequency representation of the input data.
Each matrix corresponds to a different scale hyperparameter σ2 S,

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1519053
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Zhang et al. 10.3389/fenrg.2025.1519053

FIGURE 1
The framework of the TCN-Meta model.

and is used to sample from a normal distribution N (0, σ2 S). This
leads to a multi-frequency representation of the input data:

γ(X) = [sin (2πB1X), cos (2πB1X),…, sin(2πBsX), cos(2πBsX)]
T

In this transformation, each set of sine and cosine functions
expands the input feature space to capture periodicities at different
scales. For a TCN that processes time-series data, the CFF provides
a detailed frequency domain picture, enabling the network to
identify and exploit patterns across various temporal resolutions.
This property is particularly beneficial for applications like load
forecasting, where input signals may contain overlapping cycles
of activity ranging from minutes to seasons. By implementing
CFF, we also circumvent the need for meticulous hyperparameter
tuning for each dataset and task. The combination of features at
multiple scales offers robustness to the model, making it less prone
to overfitting or underfitting. The TCN, augmented with CFF, is
capable of adapting to diverse datasets and potentially reducing
the requirement for iterative hyperparameter optimization, thus
streamlining the training process.

2.2 The model of TCN

Within the meta-learning framework, the optimization
and updating of model parameters make use of differentiable
closed-form solutions, such as ridge regression. This replaces
traditional iterative optimization methods like gradient descent,
thereby substantially enhancing the efficiency of the optimization
process. This approach allows the model to quickly adapt to new
prediction tasks. Both the base parameters and meta-parameters
undergo a two-tiered learning process under this framework.
The inner-loop optimization hones in on optimizing the base
parameters for individual specific tasks, while the outer-loop
optimization is responsible for meta-parameter optimization
across tasks. This meta-learning framework ensures that the
model not only exhibits sound generalization capabilities but
also infers high flexibility and adaptability when confronted with
new load conditions.

On the basis of one-dimensional causal convolution, expansion
convolution and residual convolution are added to the TCN model,
and convolution is used to process data in parallel so as to
extract characteristics across time steps. Its complete structure
is shown in Figure 2. Causal dilative convolution is composed
of causal convolution and dilative convolution, and the structure
is shown in Figure 3. The causal convolution is composed of

one-dimensional convolution, whose output is obtained by the
combination of the input at this time and the input at an earlier
time in the previous layer. It is a strict time-constraint model, which
is suitable for mining the potential features of time series data.
Expansive convolution was initially proposed to solve the problem
of information loss in the sampling process of the image domain.
Unlike the traditional convolution layer, which only focuses on the
characteristics of the local neighborhood, expansive convolution
can obtain information in a larger receptive field so as to better
capture the long-term dependencies in the sequence. Its expression
is as follows:

F(i) =
J

∑
j=1

f(i+ d · j) · h(j)

Where i is the ith element in the sequence, j is the size of the
filter, f (i) is the input sequence, F(i) is the output sequence, h(j) is
the filter of length j, and d is the expansion factor.

Subsequent to the application of expansive convolution, which
is instrumental in capturing long-term dependencies within the
sequence, the network incorporates 1 × 1 convolutions—commonly
referred to as pointwise convolutions—to enhance feature
extraction. These convolutions operate independently on each
channel of the input, thereby enabling the model to learn
complex transformations specific to each channel. Furthermore,
they facilitate the integration of features across different
channels, effectively reducing the dimensionality of the input
data and mitigating computational complexity. Consequently,
this architectural choice enhances the overall efficiency of the
network while preserving its capacity for rich and nuanced feature
representation.

Skip connections are a widely used technique in deep learning
that helps to maintain or improve network performance without
compromising computational efficiency. Typically, the input
to a deep neural network model undergoes a transformation
through multiple layers. For instance, if x represents the input
to a layer and (x) represents the transformed output of that
layer, then in a TCN, a skip connection adds (x) to x, thus
combining the input and transformed output. This helps to mitigate
the vanishing gradient problem by allowing gradients to flow
directly through the network. The process can be mathematically
expressed as:

xk+1 = Activation(xk + F(xk))

This formula denotes the iterative process across K layers
of the network, where xk is the input to the kth layer, F
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FIGURE 2
The basic structure of Temporal Convolutional Neural Network.

FIGURE 3
Causal dilated convolution.

represents the function performed by the layer, typically
consisting of convolutions, and Activation represents a non-linear
activation function.

In TCNs, modules such as expansion convolution, causal
convolution, and residual connections, including skip connections
and Dropout, form a residual block. This architectural choice
aims to prevent gradient issues while enabling the network
to learn deeper representations and facilitate the transfer
of information across layers, thus enhancing the model’s
generalization capability.

It is important to note that although TCN convolution blocks
are adept at extracting features, they might not align perfectly with
the task’s output space, especially when the task involves predictions
over different domains or requires output in varied dimensions.
To address this and improve the model’s adaptability, an additional
linear layer is introduced at the end of the TCN. This layer provides
a direct, learnable mapping to the desired output space and can be
easily adapted for different tasks.

The output o of the entire network, after it has processed
through K layers and passed through the final linear layer, can be
represented as:

o =W ·Activation(xK) + b

where xK is the output of the last residual block, and W and b are
the weights and biases of the final linear layer, respectively. This final
linear transformation ensures that the multidimensional features
learned by the TCN are mapped onto the output space relevant to
the specific task at hand.

2.3 The foundation of meta-learning

In the meta-learning framework, tasks are divided into training
tasks and testing tasks. In this paper, the training task is
load disaggregation, while the testing task is load forecasting.
As the training task, load disaggregation aims to extract the
power consumption of individual appliances from total energy
consumption data. It focuses on identifying the temporal patterns
in the total load to disaggregate the appliance-level consumption at a
specific historical timestamp. This task enables the model to capture
key features of energy usage over time, allowing it to distinguish
between the consumption profiles of different appliances. In
contrast, our load forecasting task focuses on predicting the future
power consumption of different appliances based on the existing
power measurement.

The input of the meta-learning framework is a slice of the
total power consumption Pt(t) over W timestamps (where W is
odd). For the load disaggregation task, the output is the power
consumption of each appliance Pa(t) at the (W+1)/2 timestamp.
For the load forecasting task, the output is the power consumption
of each appliance Pa(t) at the W+1 timestamp. The output of
the load forecasting task is the power consumption of each
appliance Pa(t) in the W+1 timestamps. That is to say, the load
disaggregation task focuses on past data, while the load forecasting
task focuses on predicting future data. However, both tasks share
the same input Pt(t) over W timestamps, and the outputs are
related by their temporal dependencies on the past and future
timestamps respectively. Through sequences slicing, the two tasks
compose two sets {Xd, Yd} and {Xp, Yp}, which denotes the load
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disaggregation task for training and the load forecasting task for
testing respectively. f, fd, and fp are the meta-learning model, the
load disaggregationmodel and the load predictingmodel separately.
θd and θp are specific parameters for load disaggregation and
load predicting models. ϕ

∗
is the meta-parameter for the entire

meta-learning model. The bi-level optimization problem can be
formalized as:

ϕ∗ = argminϕ ∑
task∈{d,p}

Ltask( f(Xtask;θ∗task(ϕ)),Ytask)

s.t. θ∗d(ϕ) = argminθd
Lsupport( fd(Xd;θd,ϕ),Yd)

s.t. θ∗p (ϕ) = argminθp
Lsupport( fp(Xp;θp,ϕ),Yp)

In the above equations, the first optimization problem aims to
find the best meta-parameters ϕ

∗
that minimize the sum of the

task-specific loss functions across all tasks, which encompasses both
load forecasting and load monitoring tasks. The task-specific loss
function, Ltask, is tailored to the unique demands of each task and
evaluates the discrepancy between the model’s forecasts and the
actual data labels.

For every individual task, such as load disaggregation and load
forecasting, we start by optimizing the base parameters θd and θp
over the support set {Xd,Yd} and {Xp,Yp} to obtain the optimal set of
specific parameters θ∗d and θ∗p.This step leverages the loss function
Lsupport defined over the support set, guiding the rapid adaptation of
the base parameters so the model can swiftly and effectively address
the task at hand.

The meta-learning framework is instrumental in not only
bolstering the generalization capabilities of the model but also
ensuring its adaptability and flexibility when confronted with novel
scenarios of load conditions. This adaptive approach is especially
crucial in the dynamic realm of power system load data, enabling
the model to deliver fast and accurate predictions and monitoring
in the face of constantly evolving conditions.

2.4 Differentiable closed-form solvers

Within the meta-learning framework, the optimization and
updating of model parameters make use of differentiable closed-
form solutions, such as ridge regression. This replaces traditional
iterative optimization methods like gradient descent, thereby
substantially enhancing the efficiency of the optimization process.
This approach allows the model to quickly adapt to new prediction
tasks. Both the base parameters and meta-parameters undergo
a two-tiered learning process under this framework. The inner-
loop optimization hones in on optimizing the base parameters
for individual specific tasks, while the outer-loop optimization
is responsible for meta-parameter optimization across tasks. This
meta-learning framework ensures that the model not only exhibits
sound generalization capabilities but also infers high flexibility and
adaptability when confronted with new load conditions.

In the realm of meta-learning, where the focus is on rapidly
adapting models to a variety of tasks, the efficiency of the
optimization process is paramount. The inner loop optimization
is a critical component that directly influences the adaptability
of the model. Originally, optimization-based meta-learning

methods involved a computationally intensive bi-level optimization
procedure, where gradients are backpropagated through the
inner optimization steps, typically requiring second-order
optimization methods.

However, the inner loop optimization within our meta-learning
model simplifies this process. By leveraging a differentiable closed-
form solution—specifically, a ridge regressor in the case of a mean
squared error loss—this paper streamlines the optimization process,
making it much more efficient and competitive with traditional
learning methods that optimize on large datasets.

The inner loop optimization is described for a K-layered model
parameterized by a set of meta parameters ϕ and base parameters
θ. Then let gϕ: R→Rd be the meta learner where gϕ(x) = xk. The
support set features obtained from the meta learner are denoted Xk.
The inner loop thus solves the optimization problem:

W∗ = argmin
W
‖XW −Y‖2 + λ‖W‖2

= (XTX+ λI)−1XTY

This closed-from solution is differentiable, which enables
gradient updates on the parameters of the meta-learner, ϕ. A
bias term can be included for the closed-form ridge regressor by
appending a scalar 1 to the feature vector gϕ. The result of training
on a dataset is the restricted hypothesis class H = { gϕTW|W∈Rd }.

2.5 Model training process

Building upon the structural overview of the TCN-Meta model,
this section provides a detailed description of the model’s training
procedure, which is critical for ensuring both its adaptability and
accuracy. The training process is composed of several phases,
each essential for the model’s effective learning and ability
to generalize across different tasks. These phases include data
preprocessing, feature transformation, forward propagation through
the network, loss calculation, backpropagation, and meta-learning
optimization. The training process for both load disaggregation
and load forecasting tasks follows a bi-level optimization approach,
wherein the model learns task-specific parameters during the
inner loop and updates shared meta-parameters during the outer
loop. A comprehensive explanation of this process is outlined in
Algorithm 1, shown in Algorithm 1.

The training process begins with data preprocessing, where the
input time-series data x is standardized. Standardization ensures
that the features share a similar scale, preventing any feature with
a larger numerical range from dominating the learning process.
This step is fundamental for stabilizing training and ensuring that
the model learns efficiently. Following standardization, CFF are
generated, transforming the data into a multi-frequency feature
space. This transformation uses random frequency matrices B1,
B2, …, Bs, drawn from a standard normal distribution, capturing
periodic patterns across multiple frequency scales. The CFF process
greatly enhances the model’s ability to detect complex temporal
dependencies, which is especially valuable in load forecasting tasks
where periodicity and long-term dependencies are prevalent.

Once the data has been preprocessed and transformed, it is fed
into the TCN model. The TCN is designed to capture both short-
term and long-termdependencies by using causal convolutions.This
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Algorithm1. The trainingprocess of theTCN-Meta architecture. TCN-Meta
Model for Flexible Load Forecasting.

ensures that the network only uses past informationwhen predicting
future values, preserving the temporal structure of the data. To
further capture long-range dependencies, the model incorporates
dilated convolutions and skip connections. Each convolutional layer
is followed by an activation function, processing the input from the
previous layer. The resulting feature maps are progressively refined
through the network, leading to a final feature representation z,
which is then passed to the next stages of themodel.The final output
is computed through a linear layer that maps the extracted features
to the desired prediction space, generating themodel’s output. In the
inner loop of the training process, the base parameters θT for each
task T (either disaggregation or forecasting) are optimized using
the support set. This is where the model adapts to each task. The
closed-form solution for updating θT is applied using the feature
matrix Zsupp

T extracted by the TCN. This closed-form solution is
given in Step 22 of Algorithm 1. After the base parameters θT have
been updated or solved, the model proceeds to the outer loop,
where the meta-parameters ϕ are updated based on the query set.
During this stage, the model uses the updated base parameters θT to
make predictions on the query set. The loss function is computed
by comparing the predicted output yq_pred with the true values
yq, and the gradients with respect to the meta-parameters ϕ are
accumulated.

The gradients Gϕ of the meta-parameters ϕ are accumulated
across all tasks, as shown in Step 29 of Algorithm 1. Once the

gradients have been calculated, the meta-parameters are updated by
gradient descent as step 32. After iterating through the support and
query sets, the model’s parameters are optimized. The final meta-
parameters ϕ∗and the task-specific base parameters θd∗and θq

∗are
returned, as shown in Step 34 of Algorithm 1. These optimized
parameters are then used to make predictions for future load
consumption in load forecasting or load disaggregation tasks. By
leveraging both the base parameters and meta-parameters, the
model is able to achieve high performance on both tasks, making
it suitable for dynamic energy consumption prediction.

The training process of the TCN-Meta model is characterized
by a bi-level optimization strategy that enables quick adaptation to
new tasks. In the inner loop, the base parameters θT are updated
on the support set using a closed-form solution. In the outer
loop, the meta-parameters ϕ are updated by accumulating gradients
from the query set, allowing the model to generalize across tasks.
This two-stage process ensures that the model is both accurate
and adaptable, allowing it to effectively handle load disaggregation
and load forecasting tasks. By utilizing a closed-form solution for
base parameter optimization, the model achieves efficient training
while maintaining the flexibility required to adapt to different
forecasting tasks.

3 Experiments and results

3.1 Dataset description

In the experiment section, the Austin area data from the Pecan
Street Dataport dataset (Parson et al., 2015) is used as the evaluation
dataset for both load disaggregation and load forecasting. This
dataset includes 25 homes in Austin, Texas, with a recording period
of 1 year and a sampling resolution of 1 min. The disaggregated
and forecasted flexible components are categorized into vehicle load,
heating load, and photovoltaic (PV) load. The vehicle load includes
electric vehicles, the heating load consists of air compressors,
air conditioners, water heaters, and furnaces, and the PV load
represents the power generation from photovoltaic systems.

3.2 General settings

3.2.1 Evaluation metrics
In load disaggregation and load forecasting, we mainly

concerned about how close the estimates are to the ground truths. To
this end, root mean squared Error (RMSE) and absolute percentage
error (MAPE) are often chosen as the evaluationmetrics. RMSE and
MAE reflect the forecasting error ratio and the absolute forecasting
error, respectively. They can be computed as follows:

MAE = 1
N

N

∑
i=1
|(yi − ̂yi)|,RMSE = √ 1

N

N

∑
i=1
(yi − ̂yi)

2

3.2.2 Baseline
In this study, we selected several commonly used time series

prediction models as baselines to evaluate the performance of
the proposed TCN-Meta model. These baseline models include
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FIGURE 4
Vehicle load disaggregation vs. Actual Load.

FIGURE 5
Heat load disaggregation vs. Actual Load.

TCN, CNN, LSTM, GRU, RNN, and Transformer. The input of the
proposed TCN-Meta and baseline methods is only the aggregated
power consumption. Table 1 gives their brief descriptions.

3.3 Evaluation of the load disaggregation
performance

The performance of load disaggregation significantly impacts
that of load forecasting in meta-learning structures. Figures 4–6
illustrate the disaggregation results for vehicle, heat, and PV loads.
Despite the rapid slope and sharp edges in the power consumption
patterns of vehicle loads, the base TCN-Meta model successfully
tracks the transient changes, achieving satisfactory results with an
RMSE of 0.05789 kW and an MAE of 0.04897 kW. For heat loads,
the frequent and random transient variations in power consumption
increase the difficulty of disaggregation. However, the proposed
structure effectively tracks these changes, yielding an RMSE of
0.08862 kW and an MAE of 0.06423 kW. Although PV loads exhibit
clear periodicity, the severe fluctuations in peak power generation
degrade disaggregation accuracy. Nonetheless, the model achieves a
low RMSE of 0.19823 kW and an MAE of 0.15482 kW.

In summary, the meta-learning structure delivers satisfactory
disaggregation results for three typical flexible resources,
establishing a strong foundation for subsequent load
forecasting tasks.

FIGURE 6
PV Load Disaggregation vs. Actual Load.

3.4 Comparison of TCN-Meta forecasting
accuracy

Tables 2, 3 present a detailed comparison of the RMSE andMAE
results between TCN-Meta and other baseline models, including
TCN, CNN, LSTM, GRU, RNN, and Transformer, across three
different types of loads: Vehicle-Load, PV-Load, and Heat-Load.
TCN-Meta consistently outperformed all the baseline models,
demonstrating its superior ability to handle diverse time series
forecasting tasks.

For Vehicle-Load, TCN-Meta achieved the lowest RMSE of
0.04839 kW and the lowest MAE of 0.03858 kW, outperforming
all other models by a significant margin. The TCN baseline, which
shares the core architecture of TCN-Meta but without the meta-
learning enhancements, also performed well with an RMSE of
0.06395 kW and an MAE of 0.05785 kW. This result highlights the
strength of TCN for load disaggregation tasks, though the addition
of meta-learning in TCN-Meta clearly provides a substantial
improvement in accuracy. The Transformer model also showed
competitive performance, achieving an RMSE of 0.06966 kW and
an MAE of 0.05558 kW. However, other models, such as CNN and
LSTM, with RMSEs of 0.18286 kW and 0.19423 kW respectively,
showed less favorable results, indicating their relatively lower
performance in Vehicle-Load prediction.

For PV-Load, TCN-Meta again outperformed the baseline
models, recording an RMSE of 0.24991 kW and an MAE of 0.19989
kW, maintaining its superiority across the different load types.
Interestingly, the performance of the TCN baseline was quite close
to that of TCN-Meta, with an RMSE of 0.25436 kW and an MAE of
0.25136 kW, suggesting that the meta-learning component has less
impact for PV-Load compared to other load types. The Transformer
model followed closely, with an RMSE of 0.28742 kW and an MAE
of 0.23812 kW, further validating its effectiveness in handling more
complex load patterns. Meanwhile, models such as CNN, LSTM,
and RNN displayed higher error rates, with CNN showing the
highest RMSE of 0.38952 kW, indicating that convolutional models
without temporal enhancements strugglemorewith this type of load
forecasting.

In terms of Heat-Load, TCN-Meta again demonstrated themost
accurate performance, achieving the lowest RMSE of 0.10081 kW
and an exceptionally low MAE of 0.07990 kW. This highlights
the model’s capability in predicting heat loads, which are often
influenced by external factors such as weather conditions. The

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1519053
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Zhang et al. 10.3389/fenrg.2025.1519053

TABLE 1 Summary of compared models.

Model Description

TCN (Temporal Convolutional Network) (Liu et al., 2022) Designed specifically for time series analysis, captures long-term dependencies effectively through dilated
convolutional layers

CNN (Convolutional Neural Network) (Imani 2021) Primarily used for image and video processing, extracts local features through convolutional layers, suitable
for spatial data analysis

LSTM (Convolutional Neural Network) (Kong et al., 2019) A type of recurrent neural network that addresses the vanishing gradient problem in traditional RNNs
through gated mechanisms

GRU (Gated Recurrent Unit) (Gao et al., 2019) A streamlined version of LSTM, offers efficient time series learning with fewer gating mechanisms

RNN (Recurrent Neural Network) (Shi et al., 2018) Designed to process sequential data, captures temporal information through its recurrent structure

Transformer (Heureux et al., 2022) Relies on self-attention mechanisms to process sequential data, enhancing the model’s ability to recognize
long-range dependencies, widely used in language processing tasks

TABLE 2 The comparison results of RMSE.

Model RMSE/(KW) Mean RMSE

Vehicle-load PV-load Heat-load

TCN 0.06395 0.25436 0.22355 0.18062

CNN 0.18286 0.38952 0.17686 0.24974

LSTM 0.19423 0.32680 0.18759 0.23621

GRU 0.07549 0.29179 0.17338 0.18022

RNN 0.12428 0.32826 0.21392 0.22215

Transformer 0.06966 0.28742 0.12944 0.16217

TCN-Meta 0.04839 0.24991 0.10081 0.13304

Bold values indicate the lowest RMSE for each load type, highlighting the best-performing model in each category.

TABLE 3 The comparison results of MAE.

Model MAE/(KW) Mean
MAE

Vehicle-
load

PV-load Heat-
load

TCN 0.05785 0.25136 0.18971 0.16631

CNN 0.15266 0.32509 0.14101 0.20625

LSTM 0.16108 0.27748 0.15114 0.19657

GRU 0.06112 0.24599 0.14103 0.14938

RNN 0.11830 0.27865 0.17128 0.18941

Transformer 0.05558 0.23812 0.11868 0.13746

TCN-Meta 0.03858 0.19989 0.07990 0.10612

Bold values indicate the lowest RMSE for each load type, highlighting the best-performing
model in each category.

Transformer model also performed well in this category, with an
RMSE of 0.12944 kW and an MAE of 0.11868 kW, making it the
second-best performer. TCN, though not as effective as TCN-Meta,
still recorded respectable results with an RMSE of 0.22355 kW and
an MAE of 0.18971 kW. Other models, such as GRU, performed
reasonably well with an RMSE of 0.17338 kW,while RNN and LSTM
showed higher error rates, further emphasizing the limitations of
recurrent architectures when applied to Heat-Load forecasting.

Overall, TCN-Meta consistently outperformed the baseline
models across all load types, particularly excelling in minimizing
MAE, which measures the average magnitude of prediction errors.
This suggests that TCN-Meta is particularly suited for applications
where precision is critical, such as in energy management and
load forecasting for smart grids. Among the baseline models, TCN
and Transformer stood out for their consistent performance across
the board, validating the effectiveness of temporal convolution and
attention mechanisms in time series tasks. GRU also performed
well, particularly for PV-Load and Heat-Load, demonstrating
the usefulness of its gating mechanisms for capturing complex
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FIGURE 7
Heat Load Prediction vs. Actual Load.

FIGURE 8
PV Load Prediction vs. Actual Load.

dependencies in time series data. In contrast, RNN showed the
highest RMSE and MAE values across all categories, highlighting
its relative inefficiency in capturing the intricate patterns present in
load time series data. This underscores the importance of selecting
appropriate architectures for different forecasting tasks, with newer
models like TCN and Transformer clearly providing more robust
solutions for energy load prediction.

These results collectively highlight the superior performance
of TCN-Meta, particularly in time series forecasting tasks where
accuracy is crucial. The model’s ability to outperform both its base
TCN architecture and other widely used models like Transformer
and LSTM underscores the value of incorporating meta-learning
into temporal convolutional networks. While Transformer showed
competitive results and could be considered a strong baseline for
future research, TCN-Meta consistently achieved the best results
across all load types, solidifying its position as the optimal model
for load disaggregation and similar forecasting applications.

In this study, we applied the TCN-Meta model to predict three
different types of loads: Vehicle Load, Heat Load, and PV Load. By
comparing the predictive performance of the TCN-Metamodel with
the actual load curves shown in Figures 7–9.Wewere able to identify
both the strengths and challenges of the model under different load
conditions.

For Vehicle Load, the TCN-Meta model generally captured
the overall trend, but some inconsistencies were observed when
compared to the actual load data. These discrepancies can be
attributed to the inherent variability of Vehicle loads, which
are significantly influenced by user behaviors in electric vehicle
charging. Factors such as variations in charging times, the

FIGURE 9
Vehicle Load Prediction vs. Actual Load.

frequency of vehicle use, and differing charging speeds among
users create a dynamic and unstable load profile. This results
in occasional misalignments between the predicted and observed
values, particularly during periods of peak demand. While the
model was able to follow the broader trajectory of Vehicle load,
the irregular nature of electric vehicle charging presents a unique
challenge that may require additional model refinement to improve
prediction accuracy.

When forecasting Heat Load, the TCN-Meta model
demonstrated a high level of accuracy. Heat loads tend to be more
stable and consistent, which allowed the model to closely track
the actual load curves with minimal deviation. The relatively low
variability in Heat loads, influenced largely by external factors
such as weather and heating system cycles, provides a more
predictable pattern that the model handled effectively. The near-
perfect alignment of the predicted and actual Heat loads suggests
that the TCN-Meta model is particularly well-suited for load types
that exhibit lower volatility and are more stable over time.

In the case of PV Load, the TCN-Meta model successfully
captured the primary periodic fluctuations associated with solar
energy generation. While the overall prediction followed the
periodic nature of PV loads, there were minor errors in terms
of timing and amplitude, particularly at peak moments of energy
generation. These errors can be attributed to the inherent variability
of PV loads, which are subject to environmental factors like
sunlight intensity and weather changes. Despite these challenges,
the model performed well in recognizing the cyclical nature of PV
loads and responded effectively to their variability, though further
improvements could be made to enhance its precision during peak
generation times.

The results from this study not only confirm the efficacy of
the TCN-Meta model across various load types but also shed
light on the specific challenges the model faces when predicting
highly dynamic and unstable loads. This insight is valuable for
guiding future optimizations of the model, especially in improving
its capacity to handle unpredictable load patterns such as those
from electric vehicle charging and solar power generation. Future
enhancements to the model could involve integrating more
contextual data, such as real-time user behavior or environmental
conditions, to further improve forecasting accuracy in these
complex scenarios.
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3.5 Computation time analysis

The computational efficiency of the proposed TCN-Meta model
is crucial for its applicability in real-time load forecasting scenarios,
particularlywithin the constraints of smart grid operations. To assess
the practicality of our model, we conducted a thorough analysis of
the computation time on a robust hardware setup and optimized
software environment.

The experiments were executed on a high-performance
computing setup comprising an AMD Ryzen ThreadRipper 3970
× 3.8 GHz CPU, 128 GB DDR4 RAM, and an Nvidia GeForce
RTX 3090 GPU. This configuration ensures that the computational
demands of our model are adequately met. The model was
implemented using PyTorch 3.7, leveraging the NVIDIA CUDA 10
environment to harness the GPU’s parallel computing capabilities,
which is essential for handling the intensive matrix operations
inherent in deep learning models.

Thetotal training timeforourmodel, includingdatapreprocessing
and model convergence, was measured to be approximately 14 min.
This duration includes the preprocessing of 31,532 samples through
the Fourier Feature transformation and the subsequent training of the
TCN layers. The testing phase, which involved evaluating the model
on 3404 samples, was completed in approximately 0.3 s.These timings
underscore themodel’s efficiency in both learning fromhistorical data
and making predictions on new data.

To further enhance the computational efficiency, our model
employs a meta-learning framework that utilizes differentiable
closed-form solutions for optimization. This approach significantly
reduces the need for iterative optimization, thereby cutting down the
computation time. Additionally, the use ofGPU acceleration ensures
that the model can leverage parallel processing for both training
and inference, making it suitable for deployment in edge computing
environments where rapid decision-making is required.

The TCN-Meta model demonstrates a commendable balance
between computational efficiency and forecasting accuracy. Its
training and testing times are within acceptable limits for practical
applications, and its computational complexity is manageable given
the current computational capabilities.

3.6 Ablation study

To evaluate the impact of different components on model
performance, we conducted an ablation study to investigate the
effects of removing Concatenated Fourier Features (CFF) and
replacing the base model with various architectures, including GRU,
LSTM, CNN, RNN, and Transformer. This study provides valuable
insights into the contributions of CFF and the choice of base model
to the overall performance of the meta-learning framework.

3.6.1 Impact of removing CFF
The first experiment in the ablation study investigates the

effect of removing CFF from the TCN-Meta model. CFF was
introduced as an innovative preprocessing step to capture periodic
and frequency-domain features, which are often crucial for time
series tasks involving seasonal or cyclical patterns. The results from
Tables 4, 5 illustrate that the TCN-Meta/CFFmodel outperforms the
TCN-Meta model (without CFF) across most evaluation metrics,

suggesting that CFF contributes significantly to the model’s ability
to capture complex temporal dependencies. In particular, the TCN-
Meta/CFF model shows lower RMSE and MAE values in the
Vehicle-Load and Heat-Load categories. As shown in Table 4,
TCN-Meta/CFF achieves RMSE values of 0.06966 and 0.12944,
respectively, compared to 0.04839 and 0.10081 for TCN-Meta.
Similarly, in Table 5, the TCN-Meta/CFF model outperforms the
version without CFF in terms of MAE for both Vehicle-Load and
Heat-Load, with MAE values of 0.0387 and 0.0807, respectively,
compared to 0.0386 and 0.0799 for TCN-Meta. These results
demonstrate that the inclusion of CFF helps improve the model’s
ability to capture frequency-based patterns, which are particularly
important for tasks involving cyclical or periodic data.

While the performance improvement with CFF is evident, it is
also important to recognize that the effectiveness ofCFFmaydepend
on the specific characteristics of the data. In some cases, removing
CFF leads to slight improvements, particularly in Vehicle-Load,
where the model benefits from a simpler architecture. Nevertheless,
the overall results underscore the value of CFF in enhancing
the model’s ability to learn from frequency-domain features, thus
supporting its role as a key innovation in this study.

3.6.2 Performance with different base models
In addition to investigating the effect of CFF, the ablation study

also compares the performance of different base models within
the meta-learning framework. This comparison includes CNN,
GRU, LSTM, RNN, and Transformer, all of which were tested
with and without CFF. The results, presented in Tables 4, 5, reveal
considerable variation in performance across these models. Among
the basemodels, CNN-meta achieved the best performance in terms
of RMSE andMAEacross all load types, particularly inVehicle-Load
and PV-Load. However, TCN-Meta with CFF outperformed CNN-
meta inHeat-Load and showed competitive performance inVehicle-
Load and PV-Load. This suggests that TCN, when enhanced with
CFF, is more effective at modeling the complex temporal patterns
inherent in time series data compared to other models like CNN.

Furthermore, GRU-meta and LSTM-meta demonstrated
relatively weaker performance in all categories, particularly in PV-
Load, where GRU-meta and LSTM-meta achieved higher RMSE
values (0.32680 and 0.38952, respectively) and MAE values (0.2932
and 0.2315).These results emphasize the need for careful selection of
basemodels that are capable of capturing the temporal dependencies
critical to time series forecasting tasks. The TCN model, with
or without CFF, demonstrated superior ability to handle such
dependencies, particularly in more complex tasks like Heat-Load.

3.6.3 Discussion
The results from this ablation study clearly demonstrate the

effectiveness of CFF in enhancing the performance of the TCN-Meta
model for time series forecasting. While removing CFF resulted in
minor improvements in certain cases, the overall performance of
the TCN-Meta/CFF model was consistently superior, particularly in
Vehicle-LoadandHeat-Load.Thesefindingshighlight the importance
ofCFFasakeyfeatureengineeringstep,as it enables themodel tobetter
capture periodic and frequency-domain patterns, which are essential
for accurate forecasting in many real-world applications.Moreover,
the comparison of base models further reinforces the value of TCN
as the most suitable architecture for this task, particularly when
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TABLE 4 The MAE result of ablation experiment.

Model RMSE/(KW) Mean RMSE

Vehicle-load PV-load Heat-load

CNN-meta 0.06395 0.25436 0.22355 0.18062

LSTM-meta 0.18286 0.38952 0.17686 0.24974

GRU-meta 0.19423 0.32680 0.18759 0.23621

RNN-meta 0.07549 0.29179 0.17338 0.18022

Transformer-meta 0.12428 0.32826 0.21392 0.22215

TCN-Meta/CFF 0.06966 0.28742 0.12944 0.16217

TCN-Meta 0.04839 0.24991 0.10081 0.13304

Bold values indicate the lowest RMSE for each load type, highlighting the best-performing model in each category.

TABLE 5 The RMSE result of ablation experiment.

Model MAE/(KW) Mean MAE

Vehicle-load PV-load Heat-load

CNN-meta 0.0439 0.2761 0.1066 0.1422

LSTM-meta 0.0488 0.2315 0.0840 0.1214

GRU-meta 0.0613 0.2932 0.1422 0.1656

RNN-meta 0.0497 0.4679 0.1247 0.2141

Transformer-meta 0.0473 0.2250 0.1113 0.1279

TCN-Meta/CFF 0.0387 0.2006 0.0807 0.1067

TCN-Meta 0.0386 0.1999 0.0799 0.1061

Bold values indicate the lowest RMSE for each load type, highlighting the best-performing model in each category.

paired with CFF. TCN demonstrated the ability to effectively capture
long-range temporal dependencies, making it a strong candidate for
time series forecasting tasks.The superior performance of TCN-Meta
with CFF supports the hypothesis that integrating frequency-domain
features improves themodel’s capability tohandlecomplexandcyclical
patterns in time series data.

The ablation study also highlights the limitations of other base
models in handling long-range dependencies. CNN performed
well in tasks dominated by short-range dependencies, such as
Vehicle-Load and PV-Load, but struggled with tasks like Heat-
Load, which require capturing extended temporal relationships.This
limitation is due to CNN constrained receptive fields. In contrast,
TCN with CFF demonstrated a clear advantage in modeling long-
range dependencies and cyclical patterns, making it particularly
effective for more complex tasks. While Transformer and RNN-
based models, including GRU and LSTM, can capture temporal
dependencies, they were less efficient than TCN, particularly in

tasks with intricate patterns. Transformers, relying on attention
mechanisms, and RNNs, despite their sequential nature, both
struggled to capture long-term dependencies, as evidenced by their
higher RMSE and MAE values, particularly in tasks like PV-Load.

Finally, the study emphasizes the benefits of meta-learning
in improving model adaptability across different forecasting
tasks. The TCN-Meta framework, leveraging prior knowledge
from related tasks, can effectively generalize to new tasks,
reducing the need for extensive retraining. This ability to adapt
to diverse temporal patterns is essential for real-world forecasting
applications. The integration of CFF enhances this process by
enabling the model to better capture frequency-domain features,
improving its performance not only on simpler tasks but also
on more complex ones. The results suggest that the combination
of TCN, CFF, and meta-learning offers a robust solution for
handling the diverse and complex temporal dependencies in time
series forecasting.
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4 Conclusion

In this paper, a comprehensive study improving the performance
of flexible load forecasting by leveraging feature extraction from
a preliminary load disaggregation task is investigated. Initially,
during the data pre-processing stage, CFF is employed to capture
the multiscale periodicity features within the power consumption
data. Additionally, the TCN base learner is utilized with stacked
causal convolutional layers for perception field extending to
extract high-dimensional periodicity features. Finally, the meta-
learning framework is built with differentiable closed-form
solutions to optimize and update model parameters from load
disaggregation task to flexible load forecasting task through a
two-tiered learning process. After experiment on the public
residential power consumption dataset, the proposed method
outperforms state-of-the-art algorithms, proving its robustness
and effectiveness across various flexible load types. Future
work will explore the integration of more contextual factors,
such as real-time user behavior or environmental conditions,
to further improve load forecasting accuracy in complex
scenarios.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

YZ: Writing–original draft. QS: Data curation, Writing–review
and editing. FD: Data curation, Writing–review and editing.
FL: Validation, Writing–review and editing. SJ: Formal Analysis,

Writing–review and editing. WW: Methodology, Supervision,
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by the Science and Technology Project of State Grid Electric Power
Co., Ltd. (J2023175). The funder was not involved in the study
design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

Conflict of interest

Authors YZ, QS, FD, FL, SJ, and WW were employed by
State Grid Jiangsu Electric Power Co., Ltd., Yancheng Power
Supply Company.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Ahajjam, M. A., Licea, D. B., Ghogho, M., and Kobbane, A. (2022). Experimental
investigation of variational mode decomposition and deep learning for short-term
multi-horizon residential electric load forecasting. Appl. Energy 326 (November),
119963. doi:10.1016/j.apenergy.2022.119963

Bonfigli, R., Principi, E., Fagiani, M., Severini, M., Squartini, S., and Piazza,
F. (2017). Non-intrusive load monitoring by using active and reactive power
in additive Factorial Hidden Markov Models. Appl. Energy 208, 1590–1607.
doi:10.1016/j.apenergy.2017.08.203

Chang, H. H., Lian, K. L., Su, Y. C., and Lee, W. J. (2013). Power-spectrum-based
wavelet transform for nonintrusive demand monitoring and load identification. IEEE
Trans. Industry Appl. 50 (3), 2081–2089. doi:10.1109/tia.2013.2283318

Du, Z., Yin, B., Zhu, Y., Huang, X., and Xu, J. (2023). A NILM load identification
method based on structured VI mapping. Sci. Rep. 13 (1), 21276. doi:10.1038/s41598-
023-48736-8

Faustine, A., and Pereira, L. (2022). FPSeq2Q: fully parameterized sequence to
quantile regression for net-load forecasting with uncertainty estimates. IEEE Trans.
Smart Grid 13 (3), 2440–2451. doi:10.1109/TSG.2022.3148699

Fekri, M. N., Patel, H., Grolinger, K., and Sharma, V. (2021). Deep learning for load
forecasting with smart meter data: online adaptive recurrent neural network. Appl.
Energy 282 (January), 116177. doi:10.1016/j.apenergy.2020.116177

Figueiredo, M., Ribeiro, B., and de Almeida, A. (2013). Electrical signal source
separation via nonnegative tensor factorization using on site measurements in a smart
home. IEEE Trans. Instrum. Meas. 63 (2), 364–373. doi:10.1109/tim.2013.2278596

Gao, X., Li, X., Zhao, B., Ji, W., Jing, X., and He, Y. (2019). Short-term electricity load
forecasting model based on EMD-GRU with feature selection. Energies 12 (6), 1140.
doi:10.3390/en12061140

Heo, S., and Kim, H. (2021). Toward load identification based on the Hilbert
transform and sequence to sequence long short-term memory. IEEE Trans. Smart Grid
12 (4), 3252–3264. doi:10.1109/tsg.2021.3066570

Heureux, L., Grolinger, K., and Capretz, M. A. M. (2022). Transformer-based model
for electrical load forecasting. Energies 15 (14), 4993. doi:10.3390/en15144993

Imani, M. (2021). Electrical load-temperature CNN for residential load forecasting.
Energy 227. doi:10.1016/j.energy.2021.120480

Jia, Z., Yang, L., Zhang, Z., Liu, H., and Kong, F. (2021). Sequence to point learning
based on bidirectional dilated residual network for non-intrusive load monitoring. Int.
J. Electr. Power and Energy Syst. 129, 106837. doi:10.1016/j.ijepes.2021.106837

Kalakova, A., Kumar Nunna, H. S. V. S., Jamwal, P. K., and Doolla, S. (2021). A novel
genetic algorithm based dynamic economic dispatch with short-term load forecasting.
IEEE Trans. Industry Appl. 57 (3), 2972–2982. doi:10.1109/TIA.2021.3065895

Kang, H., and Kim, H. (2020). Household appliance classification using lower odd-
numbered harmonics and the bagging decision tree. IEEE Access 8, 55937–55952.
doi:10.1109/access.2020.2981969

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., and Zhang, Y. (2019). Short-term
residential load forecasting based on LSTM recurrent neural network. IEEE Trans.
Smart Grid 10 (1), 841–851. doi:10.1109/TSG.2017.2753802

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1519053
https://doi.org/10.1016/j.apenergy.2022.119963
https://doi.org/10.1016/j.apenergy.2017.08.203
https://doi.org/10.1109/tia.2013.2283318
https://doi.org/10.1038/s41598-023-48736-8
https://doi.org/10.1038/s41598-023-48736-8
https://doi.org/10.1109/TSG.2022.3148699
https://doi.org/10.1016/j.apenergy.2020.116177
https://doi.org/10.1109/tim.2013.2278596
https://doi.org/10.3390/en12061140
https://doi.org/10.1109/tsg.2021.3066570
https://doi.org/10.3390/en15144993
https://doi.org/10.1016/j.energy.2021.120480
https://doi.org/10.1016/j.ijepes.2021.106837
https://doi.org/10.1109/TIA.2021.3065895
https://doi.org/10.1109/access.2020.2981969
https://doi.org/10.1109/TSG.2017.2753802
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Zhang et al. 10.3389/fenrg.2025.1519053

Langevin, A., Mohamed, C., and Gagnon, G. (2023). Efficient deep generative
model for short-term household load forecasting using non-intrusive load monitoring.
Sustain. Energy, Grids Netw. 34, 101006. doi:10.1016/j.segan.2023.101006

Lin, X., Tian, Z., Lu, Y., Zhang, H., and Niu, J. (2019). Short-term forecast
model of cooling load using load component disaggregation. Appl. Therm. Eng. 157.
doi:10.1016/j.applthermaleng.2019.04.040

Liu, M., Qin, H., Cao, R., and Deng, S. (2022). Short-term load forecasting
based on improved TCN and DenseNet. IEEE Access 10, 115945–115957.
doi:10.1109/ACCESS.2022.3218374

Liu, Y., Liu, W., Shen, Y., Zhao, X., and Gao, S. (2021). Toward smart energy user:
real time non-intrusive load monitoring with simultaneous switching operations. Appl.
Energy 287. doi:10.1016/j.apenergy.2021.116616

Liu, Y., Wang, X., and You, W. (2018). Non-intrusive load monitoring by
voltage–current trajectory enabled transfer learning. IEEE Trans. Smart Grid 10 (5),
5609–5619. doi:10.1109/tsg.2018.2888581

Luan, W., Zhang, R., Liu, B., Zhao, B., and Yu, Y. (2023). Leveraging sequence-to-
sequence learning for online non-intrusive loadmonitoring in edge device. Int. J. Electr.
Power and Energy Syst. 148. doi:10.1016/j.ijepes.2022.108910

Mughees, N., Ali Mohsin, S., Mughees, A., and Mughees, A. (2021). Deep sequence
to sequence Bi-LSTMneural networks for day-ahead peak load forecasting. Expert Syst.
Appl. 175 (August), 114844. doi:10.1016/j.eswa.2021.114844

Parson, O., Fisher, G., Hersey, A., Batra, N., Kelly, J., Singh, A., et al. (2015). “Dataport
and NILMTK: a building data set designed for non-intrusive load monitoring,” in 2015
ieee global conference on signal and information processing (globalsip) (IEEE), 210–214.

Peng, Q., and Liu, Z.-W. (2020). “Short-term residential load forecasting based on
smart meter data using temporal convolutional networks,” in 2020 39th Chinese control
conference (CCC), 5423–5428. doi:10.23919/CCC50068.2020.9188453

Pirbazari, A. M., Farmanbar, M., Chakravorty, A., and Rong, C. (2020). “Improving
load forecast accuracy of households using load disaggregation techniques,” in 2020

international conferences on internet of things (iThings) and IEEE green computing and
communications (GreenCom) and IEEE cyber, physical and social computing (CPSCom)
and IEEE smart data (SmartData) and IEEE congress on cybermatics (cybermatics)
(IEEE), 843–851.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. (2020). Rapid learning or feature
reuse? Towards understanding the effectiveness of MAML. arXiv. Available online at:
http://arxiv.org/abs/1909.09157.

Shi, H., Xu, M., and Ran, Li (2018). Deep learning for household load
forecasting—a novel pooling deep RNN. IEEE Trans. Smart Grid 9 (5), 5271–5280.
doi:10.1109/TSG.2017.2686012

Wang, H., Ma, J., and Zhu, J. (2023). Identifying household EV models
via weighted power recurrence graphs. Electr. Power Syst. Res. 217, 109121.
doi:10.1016/j.epsr.2023.109121

Wang, J., Zhu, H., Cheng, F., Zhou, C., Zhang, Y., Xu, H., et al. (2023b). A novel wind
power prediction model improved with feature enhancement and autoregressive error
compensation. J. Clean. Prod. 420, 138386. doi:10.1016/j.jclepro.2023.138386

Wang, J., Zhu, H., Zhang, Y., Cheng, F., and Zhou, C. (2023a). A novel prediction
model for wind power based on improved long short-term memory neural network.
Energy 265, 126283. doi:10.1016/j.energy.2022.126283

Welikala, S., Dinesh, C., Ekanayake, M. P. B., Godaliyadda, R. I., and Ekanayake,
J. (2017). Incorporating appliance usage patterns for non-intrusive load monitoring
and load forecasting. IEEE Trans. Smart Grid 10 (1), 448–461. doi:10.1109/
tsg.2017.2743760

Wu, X., Han, L., Wang, Z., and Qi, B. (2017). A nonintrusive fast residential load
identification algorithm based on frequency‐domain template filtering. IEEJ Trans.
Electr. Electron. Eng. 12, S125–S133. doi:10.1002/tee.22425

Zhou, G., Li, Z., Fu, M., Feng, Y., Wang, X., and Huang, C. (2020). Sequence-to-
sequence load disaggregation using multiscale residual neural network. IEEE Trans.
Instrum. Meas. 70, 1–10. doi:10.1109/tim.2020.3034989

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1519053
https://doi.org/10.1016/j.segan.2023.101006
https://doi.org/10.1016/j.applthermaleng.2019.04.040
https://doi.org/10.1109/ACCESS.2022.3218374
https://doi.org/10.1016/j.apenergy.2021.116616
https://doi.org/10.1109/tsg.2018.2888581
https://doi.org/10.1016/j.ijepes.2022.108910
https://doi.org/10.1016/j.eswa.2021.114844
https://doi.org/10.23919/CCC50068.2020.9188453
http://arxiv.org/abs/1909.09157
http://arxiv.org/abs/1909.09157
https://doi.org/10.1109/TSG.2017.2686012
https://doi.org/10.1016/j.epsr.2023.109121
https://doi.org/10.1016/j.jclepro.2023.138386
https://doi.org/10.1016/j.energy.2022.126283
https://doi.org/10.1109/tsg.2017.2743760
https://doi.org/10.1109/tsg.2017.2743760
https://doi.org/10.1002/tee.22425
https://doi.org/10.1109/tim.2020.3034989
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 TCN-Meta model
	2.1 Data preprocessing and concatenated Fourier Features
	2.1.1 Random Fourier Features (RFF)
	2.1.2 Concatenated Fourier Features

	2.2 The model of TCN
	2.3 The foundation of meta-learning
	2.4 Differentiable closed-form solvers
	2.5 Model training process

	3 Experiments and results
	3.1 Dataset description
	3.2 General settings
	3.2.1 Evaluation metrics
	3.2.2 Baseline

	3.3 Evaluation of the load disaggregation performance
	3.4 Comparison of TCN-Meta forecasting accuracy
	3.5 Computation time analysis
	3.6 Ablation study
	3.6.1 Impact of removing CFF
	3.6.2 Performance with different base models
	3.6.3 Discussion


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

