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Threshold pressure is a critical parameter in evaluating the capillary sealing
capacity of rocks, especially in reservoir and caprock studies related to CO2

storage and hydrocarbon recovery. In this research, we conducted a comparative
analysis of two methods for measuring threshold pressure: the traditional
mercury intrusion porosimetry (MIP), which operates under different fluid
dynamics, and a new gas-water/brine system (e.g., CO2-water) using novel
equipment. The new apparatus employs techniques to directly measure the
threshold pressure by monitoring the displacement of water by gas, such as
CO2, in core samples. This system is designed tomore accurately replicate in-situ
subsurface reservoir conditions by accounting for key parameters such as CO2-
brine interfacial tension, and pressure. By directly measuring the point at which
gas begins to displace water from rock pores, it provides a more realistic
assessment of the threshold pressure for CO2 sequestration projects. For
example, in the case of Sample 1, the direct measurement under a confining
pressure of 15 MPa resulted in a threshold pressure of 0.4 MPa. In contrast,
mercury intrusion data converted for CO2 drainage estimated the threshold
pressure at only 0.1 MPa. Similarly, for Sample 2, the direct measurement
yielded a threshold pressure of 0.24 MPa, while the MIP method indicated a
significantly lower threshold of 0.05 MPa. These discrepancies underscore the
limitations of mercury intrusion when applied to CO2-water/brine systems.
Underestimation of threshold pressure can have significant consequences for
the design and safety of CO2 storage projects, as this parameter is essential to
assess the sealing efficiency of the caprocks and determine the storage capacity.
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1 Introduction

The rise in global warming is related to increased CO2 emissions in the atmosphere (IPCC,
2007). The urgency to mitigate climate change has forced advancements in Carbon Capture and
Storage (CCS) technologies, focusing on the geological sequestration of carbon dioxide (CO2)
(War and Arnepalli, 2021). This involves injecting CO2 into underground geological formations
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such as saline aquifers, depleted oil and gas fields, and deep coal seams
(Callas et al., 2022). A fundamental aspect of ensuring the effectiveness
and safety of these storage methods is understanding the dynamics of
capillary pressure, which significantly influences CO2 containment
within these geological formations (Hu et al., 2017). Capillary
pressure affects the movement of fluids within porous media,
determining how CO2 interacts with brine and other fluids present
in the formations (Al-Menhali and Krevor, 2016). Understanding these
interactions is crucial for predicting the long-term stability of stored
CO2 and assessing potential leakage risks, which can undermine the
effectiveness of CCS as a climatemitigation strategy (Shojai Kaveh et al.,
2016). The importance of capillary threshold pressure in the context of
CO2 storage cannot be overstated, as it fundamentally influences the
containment and structural integrity of geological storage sites (Song
and Zhang, 2013). Capillary threshold pressure is the minimum
pressure required to allow the non-wetting phase (CO2 in the case
of sequestration) to enter the pore spaces of a caprock, overcoming the
capillary forces that favor the wetting phase (typically brine) (Krevor
et al., 2015). This parameter is critical in determining the effectiveness of
caprock as a seal to prevent the upward migration of stored CO2,
thereby ensuring the long-term security of the storage site (Naylor et al.,
2011). Understanding and accurately measuring capillary threshold
pressure are essential for predicting CO2 storage capacity and
containment security (Iglauer, 2017). If the threshold pressure is too
low, there is a risk that CO2 could leak through the caprock,
compromising the integrity of the storage system and potentially
leading to environmental concerns (Ostrowski and Uelker, 2007).
Therefore, extensive research is necessary to assess the properties of
caprocks and their ability to maintain effective seals under varying
geological conditions. On the contrary, a high threshold pressure
indicates a robust caprock that can effectively trap CO2 (Tan et al.,
2024). There are several methods on how to measure this parameter,
most commonly for fast estimation of the capillary threshold pressure
mercury intrusion porosimetry (MIP) is used (Lohr andHackley, 2018)
but that does not correspond to the actual valve due to many reservoir
paraments most significant being the confining pressure (Boulin et al.,
2013), andMIPmay not actually represent the core sample in case there
are small scale heterogeneities (Brandimarte et al., 2017). Unlike
mercury, which is a non-reactive and non-wetting fluid that does
not chemically interact with rock surfaces, CO2 exhibits distinctive
IFT and wettability traits when it encounters water/brine and rock
minerals. While some methodologies include the standard or residual
approach which record the brine/water production at the outlet,
although some studies use combination of these methods that
highlight innovative practices for measuring this pressure and its
implications for storage capacity and safety as they introduce a fast
and accurate method to measure threshold capillary pressure under
representative conditions, which is crucial for realistic assessments of
caprock performance (Egermann et al., 2006) but still there is a margin
of error that can be the delay in recording the pressure right at the
movement when the fluid starts to be displaced. Furthermore, some
studies explore how capillary threshold pressure affects the estimation
of CO2 column heights in depleted gas fields, which is vital for
maximizing storage capacity (Naylor et al., 2011). Moreover, the
wettability of the caprock, which can vary significantly under
different conditions of pressure, temperature, and salinity, also
affects the capillary threshold pressure (Al-Yaseri et al., 2016).
Studies also show that changes in wettability can lead to variations

in storage capacity and containment security, emphasizing the need for
thorough characterization of caprock properties in CO2 sequestration
projects (Alkan et al., 2010; Arif et al., 2016). In summary, capillary
threshold pressure is a key parameter in ensuring the effectiveness and
safety of CO2 geological storage. Accurate measurement and
understanding of this pressure, along with caprock wettability, are
crucial for designing and operating secure CO2 storage facilities. Thus in
this study a similar approach (Zuta et al., 2022) has been adopted but a
completely new system is designed and instead of predicting the
threshold pressure by the flow at the outlet (offset of water/brine)
the pressure is directly recorded which indicates the threshold of the
particular sample. We have also performed a comparative analysis of
these twomethods for determining threshold pressure; the conventional
mercury intrusion porosimetry (MIP) using Autopore V
9600 porosimeter, and a newly developed gas-water/brine system
using novel instrumentation which directly measures threshold
pressure in core samples. The actual intrusion of CO2 displacing
water/brine is more realistic than mercury intruding the core sample
for storage conditions. By measuring the exact point at which gas starts
to displace water from the rock pores, offers a more practical evaluation
of threshold pressure, particularly relevant for CO2 sequestration
projects. Although mercury intrusion can provide a rough
estimation of the threshold pressure, a more accurate assessment
requires using techniques that simulate real subsurface conditions,
such as the gas-water/brine system.

2 Experimental methodology

2.1 Sample preparation

Two core cuttings were procured from a proposed CO2 storage
well site in Poland, each measuring 31 mm in length and 22.3 mm in
diameter as shown in Figure 1. These dimensions were chosen to
ensure compatibility with the high-pressure vessel utilized for
capillary threshold measurements. Additionally, reserve samples
were extracted from the same core cuts for subsequent analysis

FIGURE 1
Caprock core samples.
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using mercury intrusion porosimetry (MIP). The permeability and
porosity of the core samples were also measured which is given
in Table 1.

2.2 Experimental procedure

The initial experiments were conducted using the designed
apparatus shown in the Figure 2, which consist of high pressure
vessel made up of stainless steel pipe where the core is placed and is
subjected to a confining pressure using an injection system consist of
a piston that is responsible for maintaining the confining pressure
using water and also injecting CO2 in the core sample. The inlet and
outlet is connected to pressure transducers. The pressure at the inlet
and outlet of the sample is measured using pressure transducers S-10
(WIKA) with a measuring range of 1.6 MPa and a measuring error

of 0.25% of the full scale. At first the core is saturated with water and
a confining pressure is applied that represent in situ conditions, here
the pressure was set to 15 MPa. As Threshold pressure can be
defined as the minimum pressure required to instigate fluid
displacement in the caprock, a low pressure is applied at the inlet
and is left for a period of time and the pressure is increased until any
change at the outlet is observed signifying its corresponding
threshold pressure. The capillary threshold pressure was
determined for these core samples. Later the same rock samples
were used to evaluate the capillary threshold pressure using a
mercury intrusion porosimeter where the mercury intrusion data
was scaled to obtain CO2 drainage curves using the equation. The
threshold pressure was extracted by drawing a tangent through the
drainage curve when the saturation is 100% (Vespo et al., 2024). The
values from both these methods have been reported.

3 Results

3.1 Original equipment measurements

The graphs in the Figures 3, 4 show the capillary threshold
pressure values which are marked in red (the outlet) while the

TABLE 1 Porosity and permeability of caprock samples.

Caprock sample Porosity % Permeability mD

Sample 1 7.30 0.036404

Sample 2 2.09 0.007668

FIGURE 2
Original Capillary threshold pressure measuring equipment; (A) high-pressure chamber; (B) actuator for water/brine, CO2 injection and confining
pressure; (C) schematics of the original apparatus.
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blue line indicates the pressure increments over time (the inlet),
until the threshold pressure is reached. For Sample 1 the
threshold pressure is recorded between 0.3 MPa and 0.4 MPa,
while for Sample 2 it can be seen that there is a slight rise at the
outlet pressure at 0.2 MPa even the porosity and permeability of
this sample is lower than Sample 1, so we continue to analyze it
for more pressure points over time to avoid uncertainty until
there was a significant rise at the outlet. As there was a continuous
rise at the outlet, so the initial pressure value between 0.2 MPa
and 0.3 MPa was regarded as the capillary threshold pressure of
this sample.

3.2 Mercury intrusion porosimetry
measurements

The same rock cuttings of the Sample 1 and Sample 2 were
subjected to Mercury intrusion porosimeter as it the quickest way to
determine the threshold pressure. Autopore V 9600 which is a
mercury intrusion porosimeter was used to measure the cumulative
intrusion vs. pressure. This mercury intrusion data was scaled to
obtain CO2 drainage curves which represent how water/brine
displaces CO2 from the caprock using Equation 1, Where P(CO2)

is the CO2 capillary pressure, P(Hg) is the mercury intrusion
pressure, γ (CO2) is the water/brine-CO2 interfacial tension
(72 mN/m), γ (Hg) is the mercury-air interfacial tension
(480 mN/m), while cos θ for the initial value is taken as
0 considering fully water wet for initial capillary threshold
measurements. From these capillary pressure curve we can
extract the threshold pressure which correspond to
percolation threshold.

P CO2( ) � P Hg( )γ CO2( ) cos θ CO2( )
γ Hg( ) cos θ Hg( )

(1)

Figure 5 shows the CO2 drainage curves for Sample 1 and 2, the
threshold pressure was extracted from these curves using tangent
method where a tangent through the drainage curve plateau is
extrapolated to pressure axis when the saturation is 100% (Vespo
et al., 2024). The tangent method shows the threshold pressure for
Sample 1 to be 0.1MPa, however the direct measured value using the
original equipment for this sample was 0.4 MPa under confining
pressure of 15 MPa which is 4 times higher than the mercury
intrusion value. For Sample 2 the threshold pressure was estimated
to be 0.05 MPa while the direct measured value using the original
equipment was 0.24 MPa which is 5 times higher than the mercury
intrusion value.

4 Conclusion and implications

This study highlights the critical role of capillary threshold
pressure in evaluating the sealing capacity of caprocks for CO2

geological storage. Through a comparative analysis of two
measurement techniques, traditional mercury intrusion
porosimetry (MIP) and a new gas-water system. we
demonstrated significant discrepancies in threshold pressure
values. The direct measurements obtained using our new
apparatus revealed threshold pressures that were substantially
higher than those estimated by MIP, indicating that reliance on
mercury intrusion data may underestimate the sealing efficiency of
caprocks. The results from Sample 1 showed a threshold pressure of

FIGURE 3
Inlet and outlet pressure change for Sample 1.

FIGURE 4
Inlet and outlet pressure change for Sample 2.

FIGURE 5
CO2 drainage capillary pressure curves for Sample 1 and
Sample 2.
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0.4 MPa compared to 0.1 MPa from MIP, while Sample 2 exhibited
values of 0.24 MPa versus 0.05 MPa. These findings underscore the
limitations of MIP in accurately representing CO2-brine interactions
and emphasize the necessity for more reliable measurement
methods in CO2 sequestration projects.

The implications of these findings extend beyond mere
measurement accuracy; they directly impact the CO2 height
column in geological storage scenarios. A higher capillary
threshold pressure indicates a more effective seal, which is
crucial for preventing the upward migration of CO2. If the
threshold pressure is underestimated, there is a risk that CO2

could leak through caprocks, thereby compromising storage
integrity and safety. Conversely, accurate assessments suggest
that a robust caprock can support a taller CO2 column, thereby
maximizing storage capacity. Furthermore, understanding the
wettability characteristics of caprocks is essential, as variations
can significantly impact capillary threshold pressure and,
consequently, the safety and effectiveness of CO2 storage sites.
This research not only contributes to the field by providing a
more accurate assessment technique but also highlights the need
for ongoing studies to refine methodologies for evaluating
caprock integrity under realistic subsurface conditions. In
conclusion, ensuring robust caprock performance is vital for
the long-term security of CO2 storage, and our findings
advocate for adopting advanced measurement techniques to
enhance the reliability of threshold pressure assessments in
future geological storage projects.
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