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Introduction: With the advancement of power electronic devices toward
intelligent high-frequency operation and the widespread integration of
distributed renewable energy sources, electrical power quality issues,
particularly those arising from superharmonics, are becoming increasingly
significant. The non-stationary and wide-frequency characteristics of
superharmonic signals pose significant challenges for effective monitoring.
Traditional static time-window-based methods struggle to accurately sample
these non-smooth signals, leading to reconstruction errors and inefficiencies.
Therefore, this study proposes a novel supraharmonics monitoring approach
based on the VSSESP-DBP dynamic compressed sensing algorithm to enhance
monitoring accuracy and efficiency.

Methods: To address the limitations of static time-window-based sampling,
a dynamic time window with flexible modulation of window width is
introduced. This modulation is achieved through a scale stretch factor, reducing
reconstruction error. The study leverages the sparsity of superharmonic signals
within the time window and proves the applicability of compressed sensing
theory for dynamic compressive sampling. At the reconstruction end, the
VSSESP-DBP dynamic reconstruction algorithm is designed. The variable step-
size sparsity self-estimating subspace tracking (VSSESP) algorithm is employed
to find the initial solution, while the dynamic basis tracking (DBP) algorithm
exploits the time dependence of the signal support set. By using the solution
from the previous moment as a priori information, the proposed method
enhances reconstruction speed and efficiency.

Results: Experimental results demonstrate that the proposed method enables
dynamic monitoring and reconstruction of superharmonics with reduced
sampling data. The introduction of dynamic timewindows significantly improves
reconstruction accuracy compared to traditional methods. Furthermore, the
VSSESP-DBP algorithm exhibits superior computational efficiency and real-time
performance, effectively addressing the limitations of conventional approaches
in continuous signal reconstruction.

Discussion: The proposed approach successfully mitigates challenges
associated with non-stationary and wide-frequency superharmonic signal
monitoring. The combination of dynamic time-window sampling and VSSESP-
DBP-based reconstruction enhances both accuracy and computational
efficiency. These findings highlight the potential of the method for real-
time power quality monitoring applications. Future research could focus on
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optimizing algorithm parameters for different grid conditions and extending the
approach to broader power quality disturbances.

KEYWORDS

superharmonic, compressed sensing, dynamic sampling, sparse transform, algorithm
reconstruction

1 Introduction

The impact of superharmonics (usually referring to harmonic
components with frequencies higher than 2 kHz) on new power
systems is becoming increasingly significant, mainly in terms
of power quality, equipment operation, communication systems,
protection and control, etc. Given the introduction of dual
carbon goals, the adoption of new clean energy sources like
wind power and photovoltaics is steadily increasing each year
(Yang et al., 2022). As efforts to optimize energy infrastructure
intensify, a notable consequence is the substantial increase in
harmonic content within the distribution network. In renewable
energy systems, the problem of superharmonics is particularly
prominent, and its main source is the widespread use of power
electronic equipment (such as inverters). While these devices
realize energy conversion and control, the switching frequency is
increased from the original several thousand hertz to hundreds
of kilohertz or even higher, and the harmonics they generate are
gradually transferred from low frequency bands to high frequency
bands, thus increasing the complexity of system integration and
the difficulty of management (Leroi et al., 2017; Darmawardana,
2020). Superharmonics can cause distortion of voltage and current
waveforms, which not only reduces equipment operating efficiency
and accelerates aging, but may even cause overheating and damage.
In addition, it may interfere with power line communications, affect
the stable operation of smart grids, and cause malfunctions of
protection devices, threatening the reliability of the system.With the
development of modern power systems, superharmonic distortion
problems are becoming increasingly serious and showing a high-
frequency trend. Especially after the access of distributed power
sources, superharmonics enter the power grid through the grid
connection point, propagate between different devices, cause high-
frequency mutual interference, make power quality issues more
complicated, and bring new challenges to system operation (Barkas
et al., 2024; Wang et al., 2019a). In this paper, the above mentioned
ultra-high harmonics with frequencies ranging from 2 to 150 kHz
are defined as “superharmonics”. In order to effectively grasp its
propagation characteristics and further study effective suppression
methods, accurate detection of superharmonics is essential.

Many scholars have conducted research on the problem
of superharmonics. The literature (Espín-Delgado et al., 2021)
proposed methods and formulas for evaluating the impact
of superharmonics on audible noise, cable terminal faults,
RCD malfunctions and light flicker interference. The literature
(Barkas et al., 2022) designed and tested a superharmonic
monitoring system based on a field programmable gate array
(FPGA) that can measure currents up to 150 kHz. International
IEC committee members have proposed various methods in the
field of superharmonic monitoring: 1) IEC 61000-4-7 (Wang et al.,

2019b) proposes full sampling of superharmonic signals through
a 200 ms rectangular window. However, effective monitoring of
superharmonics necessitates a sampling frequency ( fs) that adheres
to Nyquist’s theorem, requiring it to be at least twice the highest
frequency component of the signal which significantly increases
the data volume needed for sampling, processing, and analysis
of superharmonics in the hundreds of kilohertz range, posing
substantial challenges for on-site implementation. It is difficult
for monitoring instruments to have sufficient storage space and
computing power, so implementation is difficult. 2) In IEC 61000-4-
30 (Ángela and Ronnberg, 2019), the IEC standard group proposed
to select 32 small data windows of 0.5 ms at equal intervals within
the range of 200 ms for sampling in response to the problem of large
amounts of global sampling data for superharmonics. This method
reduces the amount of sampling data to a certain extent, but the
window is too narrow, resulting in low signal resolution, and only
8% of the data is easily missed or misdetected. Therefore, there is an
urgent need to develop new methods in the field of superharmonic
monitoring. The literature (Khokhlov et al., 2020) studied the
measurement methods in the 2–150 kHz frequency band under
the above standard framework by using synthetic signals and actual
measurement signals, and found that all methods had difficulties
in processing signals with changing frequency and/or amplitude.
Since the frequency range of ultra-high harmonics is 2–150 kHz,
based on Nyquist’s law, its detection method requires a sampling
frequency of at least 300 kHz. Although modern hardware devices
can theoretically support this sampling frequency, UHHmonitoring
faces multiple challenges in practical applications. Firstly, multi-
node monitoring of distributed energy systems requires multi-
channel synchronous sampling, which leads to a significant
increase in data volume; secondly, real-time requirements place
higher demands on data processing capabilities and algorithmic
efficiency; in addition, long-term storage and transmission of
massivemonitoring data also poses a serious challenge to equipment
storage and network bandwidth. With the further expansion of the
scale of distributed energy resources, higher sampling frequency
and stronger computing power may be required in the future,
which puts forward higher requirements on the performance and
economy of hardware devices. Therefore, there is an urgent need to
develop new methods in the field of superharmonic monitoring to
reduce its impact on the reliability and equipment life of modern
power systems (Rajkumar et al., 2024).

Compressed sensing, as a new signal acquisition method,
can break through the Nyquist theory. For signals that are
sparse in themselves or in a certain transform domain, the
measurement matrix can be used to perform low-dimensional
projection of high-density data and perform compressed sampling
(Candes et al., 2006; Donoho, 2006), which provides a new
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idea for superharmonic signal monitoring. Due to the high-
frequency data dimension characteristics in superharmonic
analysis, combined with the unique low data volume characteristics
of compressed sensing technology, it has broad application prospects
in the field of superharmonic monitoring. Many scholars are
committed to exploring the application of compressed sensing
technology in the field of superharmonic monitoring. The literature
(Mishra et al., 2018) proposed a harmonic analysis framework
based on compressed sensing, which successfully realized the
accurate detection of high-frequency harmonic components in the
power system. Literature (Yang et al., 2016) proposes a harmonic
detection method based on compressed sensing, which successfully
reconstructs the original signal with a lower measurement value,
and mathematically proves the feasibility of compressed sensing
technology in the field of harmonic monitoring, but does not
involve high-order harmonics. The literature (Palczynska et al.,
2020) proposed a compressed sensing technology based on discrete
Radon transform to effectively monitor the harmonic signals
of ship power grids. Its data processing algorithm is simple,
and the burden of memory usage and data processing load is
low; the literature (Carta et al., 2021) proposed a harmonic
source identification scheme based on compressed sensing (CS),
which reduces the measurement error of harmonic estimation
through quadratic constraints. The literature (Li et al., 2020)
further optimized the compressed sensing algorithm so that it
can maintain high reconstruction accuracy in complex noisy
environments. However, none of the above literatures involve ultra-
high harmonics, and do not consider the impact of spectrum
leakage on algorithm reconstruction. In view of the wide-band
characteristics of superharmonics, literature (Mendes et al., 2019)
proposes to use analog filter banks to segment superharmonic
frequencies to improve signal frequency resolution, but at the
same time increases the requirements for analog components.
Literature (Zhuang et al., 2019) introduces interpolation factors
based on compressed sensing technology to improve the frequency
resolution of superharmonic signals, but the signal reconstruction
uses the traditional orthogonal matching pursuit algorithm, which
does not consider the limitation of unknown signal sparsity. In
addition, some scholars have proposed superharmonic multi-vector
measurement algorithms based on the block Bayesian compressed
sensing model (Mendes et al., 2020), but they do not consider
the non-stationary characteristics of superharmonics and cannot
meet the dynamic monitoring requirements. To mitigate spectral
leakage in superharmonic signal acquisition, window functions
can be applied to enhance the accuracy of spectral analysis.
However, traditional windowing methods use a fixed window
width, which struggles to adapt to the fluctuating characteristics
of superharmonic signals, thereby affecting the accuracy of signal
monitoring (Zhong et al., 2024). Moreover, in terms of signal
reconstruction, studies (Yin et al., 2024; Amaya and Inga, 2022)
have proposed reconstruction methods based on transmission line
signals and power signals. However, these methods fail to fully
consider the correlation between signals at different time instants
during the reconstruction process, leading to low reconstruction
efficiency and difficulty in meeting real-time requirements. In
complex power systems, the non-stationarity and randomness of
signals further increase the difficulty of reconstruction, limiting
their practical engineering applications. Therefore, designing a

method that can effectively suppress spectral leakage, adapt to signal
fluctuations, and improve reconstruction efficiency remains a key
research challenge.

In summary, in the field of superharmonic monitoring, if the
traditional Nyquist sampling theorem is still used, the sudden
increase in the amount of sampled data and the problem of data
storage compression will inevitably occur, therefore, the compressed
sensing technique, with its low-dimensional projection advantage
of high-density data, has a broad application prospect in the field
of superharmonic monitoring; moreover, how to realize the rapid
reconstruction of data and improve the reconstruction accuracy of
data for sampled superharmonic data is also a key issue that needs
to be solved. In addition, how to realize fast reconstruction and
improve the reconstruction accuracy of the sampled superharmonic
data is also a key issue that needs to be solved urgently. At
present, few studies have been conducted to improve the compressed
sensing on the sampling and reconstruction sides with respect
to the two major characteristics of superharmonics, namely, wide
bandwidth and nonsmoothness. Therefore, in this paper, from
the above difficulties, we carry out research on superharmonic
signals, establish a framework for superharmonic monitoring
based on dynamic sampling and compressed sensing, and propose
a new method for dynamic low-speed sampling and accurate
reconstruction of superharmonic signals. The primary innovations
are outlined as follows:

1) Aiming at the wide-frequency domain and non-stationary
characteristics of superharmonics, the traditional static
sampling and fixed-window-width sampling are unable to
capture the rapid time-frequency changes of superharmonics,
and a flexible time-window-based dynamic sampling method
is proposed, which controls the window’s sliding in the time
axis through the displacement factor and introduces the
scale expansion factor to adjust the window width in time
according to the dynamic characteristics of superharmonics
and realizes the feedback-type flexible modulation on the
width of the window.

2) Based on the signal sparsity, a superharmonic signal
monitoringmodel based on compressed sensing is established,
and the superharmonic dynamic monitoring model is
constructed by introducing the compressed sensing technique,
the frequency domain sparsity of the superharmonic signals
in the flexible time window is mathematically deduced and
proved and the superharmonic short-time Fourier transform
(STFT) sparsity basis is given.

3) A dynamic reconstruction algorithm of VSSESP-DBP is
proposed for the characteristics of superharmonic signals,
in which the sparsity of superharmonic signals is predicted
by the variable step-size sparsity self-estimating subspace
tracking algorithm (VSSESP), and then the initial solution
of the reconstruction is obtained, and in order to reduce
the redundancy of successive reconstruction calculations, the
dynamic basis tracking (DBP) algorithm is further proposed,
inwhich the support set of the solution in the previousmoment
is taken as the a priori information of the signal recovery in
the current moment. The support set of the previous moment
solution is used as the a priori information of the current
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FIGURE 1
The compressed sensing framework.

moment signal recovery, which improves the accuracy and
speed of the signal reconstruction.

2 Compressed sensing framework

The sparse signal α is subjected to a measurement matrix
Φ∈RM×N that satisfies the restricted isometry property (RIP), so
that the procedure involves projecting high-density data into a
low-dimensional space. This process involves the application of
signal compression during sampling, followed by the reconstruction
of the original signal through the use of an optimization
algorithm. This entire process is commonly referred to as
compressed sensing (Donoho, 2006).

The transformation process of the superharmonic signal x under
the sparse basis can be expressed as:

y =Φx =ΦΨα = Aα (1)

where x∈RN×1 represents the superharmonic signal, Ψ∈RN×N
represents a kind of basis function, and Φ∈RM×N represents an
observation matrix that is uncorrelated with the basis functions Ψ .
x = Ψα represents the sparse transformation of the superharmonic
time domain signal x through a specific sparse basis Ψ , this is
because the superharmonic signal is a superposition of different
cosine signals in the time domain. Plus, it does not have sparsity.
When only k elements (k << N) in the transformed signal α are
nonzero or large, the signal α is k sparse. A = ΦΨ represents the
sensing matrix, A ∈RM×N.

According to Equation 1, the compressed signal y∈RM×1 can be
obtained. The dimension of the measured data M is much smaller
than the original signal dimension N (M << N), thus realizing the
dimensionality reduction compression sampling of the signal x. The
compressed sensing framework is shown in Figure 1.

The compressed signal y contains enough information about
the original signal x. The original signal is restored by inverse
transformation of the Equation 1. However, the formula is an ill-
posed equation and has infinite solutions. Therefore, the original
signal can be solved using an optimization problem in the sense of
the l0 norm, as shown as Equation 2.

{
{
{

α̃ = argmin
α
‖α‖0, s.t.y = Aα

x = ψα
(2)

In conclusion, within the framework of compressed sensing,
three crucial steps are identified: sparse transformation, the
construction of a measurement matrix, and the design of the
recovery algorithm.

3 Superharmonic dynamic monitoring
method

A superharmonic dynamic monitoring framework is proposed
as shown in Figure 2. On the sampling node, to overcome the
limitations of traditional static sampling, which hinders the
monitoring of the non-stationary characteristics of superharmonics,
dynamic compressed sampling is employed.This approach utilizes a
feedback-based flexible timewindowapplied to the superharmonics,
in conjunction with sparse transformation. The compressed
measurement data is then transmitted to the reconstruction node
with rich computing resources. On the reconstruction node,
the VSSESP-DBP algorithm is designed to quickly reconstruct
the signal.

3.1 Superharmonic dynamic sampling

With the increasing number of nonlinear devices in
power systems, superharmonics often have significant dynamic
characteristics (Michalec et al., 2023; Ritzmann et al., 2021),
such as superposition, resonance, etc. Thus the traditional static
monitoring or fixed window width methods cannot capture the
rapid changes of superharmonics over time. The dynamic response
speed remains fixed and cannot adapt to the temporal fluctuations of
the signal, resulting in disadvantages such as excessive monitoring
errors. Therefore, this paper applies a window cut function to
the signal, controls its sliding sampling on the time axis, and
introduces a scale expansion factor λ to flexibly modulate the
window function W(t) to extract the local characteristics of the
signal. In order to suppress spectrum leakage, the Gaussian window
function W(t) with excellent local properties is selected as the time
window. According to Equation 3, the Gaussian window function is
expressed as:

W(t) = 1
2√π

e−t
2/4 (3)

Then the flexible time window function Wλ(t) is
expressed as Equation 4:

S(τ, f) = ∫
+∞

−∞
x(t)Wλ(τ− t)e−j2πftdt

= ∫
+∞

−∞
x(t) 1

2√πλ
e−(τ−t)

2/(4λ2)e−j2πftdt
(4)

Where τ represents the displacement factor, which is used to control
the sliding position of the window on the time axis.

Let σt be the effective window radius of W(t), for a certain
Gaussian window function, σt is a constant value. Added that σt
is shown as Equation 5.

σλt =

√∫
+∞

−∞
t2|Wλ(t)|

2dt

‖Wλ(t)‖2
= λσt (5)
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FIGURE 2
Dynamic monitoring framework of supra harmonics.

Therefore, the effective window radius ofWλ(t) can be expressed
as 2λσt. Let D be the time window width, then D = 2λσt and the
parameter λ plays an adjusting role in the window width D.

In distributed energy grid-connected systems, superharmonic
emission is related to the power electronic switching frequency,
circuit topology, PWMmodulationmethod, etc (Daubechies, 1990).
The corresponding frequency fsh can be expressed as Equation 6:

fsh = [a∗ fs ± b∗ f0] (6)

where fsh represents the switching frequency, f0 represents the
fundamental frequency, a∗fs represents the switching frequency
integer multiples of super harmonics, b∗f0 represents the
secondary sideband superharmonic, a,b = 0,1,2, …,h. Therefore,
the spectrogram of the superharmonic frequency component
fsh exhibits double-peak characteristics, with f0 as the interval.
Therefore, in order to effectivelymonitor superharmonic signals, the
frequency interval (resolution) after the discrete Fourier transform
must satisfy kanaly ≤ f0. Let fs be the sampling frequency, N be
the length of the sampling sequence, and Ts be the sampling time
interval, then the kanaly is shown as Equation 7:

kanaly =
fs
N
= 1
TsN

(7)

The time window width D = T sN, combining Equation (8),
we can get the time window width D ≥ 1/f0. At the same
time, according to the IEC 61000-4-7 standard, the 2–150 kHz
superharmonic sampling time width is a rectangular window of 10
power frequency cycles. Taking into account the accuracy and real-
time requirements of superharmonicmonitoring, the windowwidth
is constrained toD ≤ 10 (1/f0).Therefore, the value range of the scale
expansion factor λ is:

0.5 1
σt ⋅ f0
≤ λ ≤ 5 1

σt ⋅ f0
(8)

The neighborhood reconstructed error (NRE) obtained by
comparing the superharmonic adjacent time window reconstructed
signals is expressed as Equation 9:

NRE =
‖xh−1 − xh‖2
‖xh−1‖2

(9)

where h is the h-th frame time window (h = 1,2,3, …,N), xh-1 and xh
represent the superharmonic signals of the h-1 and h-th frame time
windows respectively, ||·||2 is the L2 norm of the vector.

Compare NRE with the preset deviation Threshold to obtain the
feedback signal, and then adjust the scale expansion factor λ to
achieve feedback-type flexible modulation of the window width.
For example: when the signal fluctuates violently, the reconstruction
deviation of adjacent time windows increases, that is, when NRE >
Threshold occurs, the feedback signal γ < 1 is output, and the sampling
end adjusts λ to reduce the sliding window time width to γ·D to
improve dynamic response speed to superharmonic signals. On the
contrary, if the feedback signal γ > 1, the sampling end adjusts λ
to increase the sliding window time width to γ·D and improve the
frequency resolution.

3.2 Sparse transform of superharmonic

Superharmonic signals are different from low-order harmonics
in that they have stronger volatility (Sefl and Prochazka, 2022;
Mariscotti, 2021), and high frequencies are prone to oscillation,
attenuation, and other phenomena (Sandrolini andMariscotti, 2020;
Alfieri et al., 2017). Therefore, the superharmonic current signal is
expressed as Equation 10:

x(t) = ∑
sh
ashe
−βsht cos(2πksht+ θsh) + e(t) (10)
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where ash represents the amplitude of the superharmonic, ksh
represents the frequency of the superharmonic, θsh represents the
phase of the superharmonic, βsh represents the attenuation factor,
and e(t) represents the noise signal.

The signal within time t is divided into {t0, 2t0, …, nt0}
by adding windows, where t0 is approximately an instantaneous
time period, and t0<<t. In actual information systems, all types of
sampling signals are processed in discrete form, taking the sh-th
superharmonic in time t0, the sampling interval is Ts, the signal
discrete form xsh[n] and its discrete Fourier transforms Xsh[k] are
shown in Equations 11, 12, respectively.

xsh[n] = ashe−βshnTs cos(2πkshnTs + θsh) + e(nTs) (11)

Xsh[k] = A
t0
sh
N
2
[δ(k− ksh) + δ(k+ ksh)] + e(k) (12)

where k represents the signal index in the frequency domain,
At0
sh represents the amplitude of the sh-th superharmonic signal

in time t0, δ(k) represents the impulse function; e(k) represents
the frequency domain signal of random noise after Fourier
transformation, and its distribution at any time has random and
extremely small amplitude (Nguyen and Hong, 2012).

After applying a flexible time window to the finite-length signal
xsh [n]∈RN×1, its Fourier transform W [k] can be expressed as
Equation 13:

W(k) =
N−1

∑
n=0
(xsh[n]Wλ[n])e

−j2πnk
N

=WTFT(xsh[n]Wλ[n])
(13)

where Wλ[n] represents the flexible window function, WTFT
represents Short-time Fourier transform, its frequency domain
expressionWλ[k] is shown in Equation 14:

Wλ[k] = e−4π
2λ2k2 (14)

Thewindowed Fourier transform of the signal is mathematically
equivalent to first multiplying the time-domain signal xsh [n] by
the window function Wλ[n], followed by performing the Fourier
transform on the resulting product. According to the corresponding
relationship between signal time and frequency domain (Roberts
and Mulis, 1987), it is further equivalent to the convolution
operation of frequency domain signalsXsh [k] andWλ[k].When any
function is convolved with the impulse function δ(k), the function
will move to the position where the δ(k) impulse occurs, that
is shown as Equation 15:

W[k] = Fsh[δ(k− ksh) + δ(k+ ksh)]e
−4πλ2k2sh (15)

where Fsh is the spectrum peak of the sh-th superharmonic signal,
Fsh = (N/2)A

t0
sh.

According to the properties of the impulse function δ(k): when
k = ±ksh, the signal exists, and when k≠±ksh, the signal is zero.
Therefore, the continuous superharmonic signal in the time domain
can be converted into the frequency domain signalW with sparsity
K, and the set of superharmonicW is expressed as Equation 16:

∑
K
{W:‖W‖0 = K} (16)

Therefore, the superharmonic signal in the flexible time window
has sparsity under the WTFT basis, and the sparse transformation
expression is shown in Equation 17:

W(k) =WTFT(x
W
sh [n]) (17)

The specific expansion form is shown in Equation 18:

[W(0)W(1)⋯W(N− 1)]T = 1
N
⋅

[[[[[[[[[[[

[

1 1 1

ej
2π
N
⋅1⋅1 ej

2π
N
⋅1⋅2 ⋯ ej

2π
N
⋅1⋅N

ej
2π
N
⋅2⋅1 ej

2π
N
⋅2⋅2 ej

2π
N
⋅2⋅N

⋮ ⋱ ⋮

ej
2π
N
⋅(N−1)⋅1 ej

2π
N
(N−1)⋅2 ⋯ ej

2π
N
⋅(N−1)⋅N

]]]]]]]]]]]

]

[[[[[[[

[

xWsh (0)

xWsh (1)

⋮

xWsh (N− 1)

]]]]]]]

]

(18)

whereW[k] represents the superharmonic sparse signal afterWTFT
basis transformation, k = 0,1,2,…N-1, xWsh [n] represents the product
of the superharmonic signal and the window function in the time
domain, and xWsh [n] = xsh[n] ⋅Wλ[n], n = 0,1,2, …, N-1.

The dynamic sparse transformation of the superharmonic signal
is shown in Figure 3.

3.3 Construction of measurement matrix

Accurate signal reconstruction relies on a crucial step: the
creation of a measurement matrix. Frequently employed standard
measurement matrices encompass the Gaussian random matrix,
Bernoulli matrix, sparse random matrix, and others, all designed
to adhere to the finite isometric property (Salari et al., 2018).
Nevertheless, Gaussian random matrices, Bernoulli matrices,
and similar options are dense measurement matrices, and
generating their elements is a complex and challenging task,
especially when implementing them with hardware. From
an engineering applicability perspective, this study employs
a binary sparse random matrix as the measurement matrix,
consisting solely of elements with values of 0 or 1. An M ×
N dimensional binary sparse random matrix is 1 (p<<1) only
in pM positions, and the rest are 0. This switching value of
0 and 1 is conducive to hardware implementation, such as
through analog signal conversion technology, 0/1 two-potential
transformation rectangular wave is implemented using switching
tubes, as shown in Figure 4.The hardware implementation structure
is simple, the error rate is low, and it is suitable for engineering
implementation.

3.4 VSSESP-DBP dynamic reconstruc]tion
algorithm

The significant dynamic characteristics of superharmonics not
only cause difficulties at the sampling node but also present
continuous recovery problems at the reconstruction node. To
overcome this problem, this paper designs the VSSESP-DBP
dynamic reconstruction algorithm. First, the VSSESP is used to
obtain the initial reconstruction solution. In order to reduce
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FIGURE 3
The dynamic sparse transformation of the superharmonic signal.

FIGURE 4
Measurement matrix sampling node.

the redundancy of continuous reconstruction calculations, the
proposed dynamic basis pursuit (DBP) algorithm is further used.
The support set of the time solution serves as prior information
for signal recovery at the current time, accelerating reconstruction.
At the same time, the reconstruction error only exists within the
variation range of the support set, and the reconstruction accuracy
is improved.

3.4.1 Signal initial reconstruction
In the field of signal reconstruction, the Subspace Pursuit

(SP) algorithm is widely utilized due to its benefits, such as
high robustness and low computational complexity. However, a
drawback of the SP algorithm is its requirement to ascertain
the sparsity of the signal beforehand, a challenging task in
practical engineering where the true sparsity is often unknown.
Therefore, this paper presents a innovative approach aimed at

resolving the issues of over-estimation and under-estimation arising
from the unknown superharmonic sparsity during the initial
deconstruction phase.

Under conditions of blind sparsity, theVSSESP algorithm adopts
an adaptive sparsity strategy by initially employing a larger step
size ρ during the early iteration stages. This approach enables
rapid detection of the true sparsity of superharmonic signals,
significantly reducing iteration time. As the iteration progresses, the
step size ρ gradually decreases, thereby enhancing reconstruction
accuracy and preventing issues of sparse overestimation. This
method ensures reconstruction accuracy while quickly estimating
sparsity. According to the characteristics of the step size growth rate
being fast first and then slowing down, the power function form g(μ)
= 0.5μ(μ = 1,2,3, …) is selected for step size adjustment. When μ
becomes large enough, the step size becomes 1. The length of the
support set is expanded in the formofL=L+1 andfinally approaches
the true sparsity.

To ensure accurate estimation of blind sparsity, the VSSESP
algorithm employs a dual-threshold criterion: the step size
adjustment condition is the residual threshold ε1, the iteration
termination condition is the residual threshold ε2, and ε2<< ε1.
When ||rk||2 ≤ ε1, the step size changes; when ||rk||2 ≤ ε2, the iteration
stops. The specific algorithm flow is shown in Figure 5.

3.4.2 Dynamic signal reconstruction
As superharmonic signals are continuously compressed and

sampled, the signal reconstruction end also needs to be continuously
restored based on the initial solution.
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FIGURE 5
VSSESP algorithm.

According to Equation 19, themeasurement signal yt is obtained
by superharmonic dynamic compression sampling:

yt =Φxt + et = Aαt + et (19)

where yt = [y0, y1, …,yt-1]T, et is the measurement error, αt
is the superharmonic sparse signal, t = 0,1,2,3, …,t-1. In the
reconstruction node, it is necessary to find the sparsest solution of
αt by measuring the signal yt .

From the analysis in Sections 3.2, it can be seen that αt is
the N-dimensional sparse vector obtained by performing WTFT
on the superharmonic signal xt at time t. The sparsity of the

superharmonic sparse signal αt is K. Let lt represent the support set in
the reconstruction process of the signal lt is shown in Equation 20. αt :

It: = supp(αt) = {k:(αt)k ≠ 0} (20)

If it is reconstructed independently after each sampling, it
will bring serious computational redundancy. In practice, the
superharmonic signal support sets at adjacent time instants exhibit
strong temporal correlation, with signal overlap occurring within
the sliding time window. Therefore, This paper introduces a
Dynamic Basis Tracking Reconstruction (DBP) method. The DBP
algorithm leverages the support set solution It-1 from the initial
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solution (last moment) as prior knowledge, facilitating the update of
the current moment’s solution It with reduced computational effort.
It∩It-1≠ø, and It-1 is known, so the support set It at the current
moment is obtained by the union of the support set It-1 at the
previous moment and the minimum increment Δmin of the support
set, that is shown in Equation 21:

{
{
{

It = It−1 ∪Δmin

Δmin ⊂ I
c
t−1

(21)

where the minimum increment Δmin of the support set is indexed in
the complement of It-1.

Therefore, the expression of using theDBP algorithm to solve the
sparsest solution of the superharmonic signal at the currentmoment
is expressed as Equation 22:

{
{
{

minst ‖(αt)Ict−1‖1
s.t.‖yt −Aαt‖ ≤ ϵ

(22)

where the solution set index range ofαt is I
c
t−1, which is not the full set

range during independent reconstruction. Since the selection range
of the index support set becomes smaller, the signal reconstruction
speed and reconstruction accuracy are improved.

To sum up, the dynamic base tracking reconstruction algorithm
flow is shown in Figure 6.

4 Algorithm simulation and
performance test analysis

To evaluate the monitoring effectiveness of the method proposed
in this paper for superharmonic signals, simulation verification
is conducted using superharmonic signals generated by a wind
power grid-connected system, with a direct-drive permanent magnet
synchronous wind turbine unit connected to the grid via a back-to-
back IGBTconverter as an example.The inverter is controlled through
space vector pulse width modulation (SVPWM), and the 1070 V DC
power output by the machine-side converter is converted into 690 V
power frequencyACpower, which is then connected to the grid to the
system side. Its working principle is as follows as shown in Figure 7.

One of the sources of superharmonics is the high-frequency
switching of power electronic devices. Configure the SVPWM to
regulate the switching frequency of the IGBT at 10 kHz. Then,
acquire peak current data from the point of common coupling
(PCC), specifically near the switching frequency and its harmonics.
The components of superharmonics are shown in Table 1.

From the analysis in Table 1, it can be seen that the
superharmonic frequency band mainly appears near integer
multiples of the switching frequency, which is closely related to the
on-off characteristics of IGBT, and is easily affected by changes in
PWM modulation methods, load switching, etc., showing time-
varying characteristics. In order to test the dynamic recovery
effect of the reconstruction algorithm proposed in this article,
the time period during which each superharmonic component
appears was simulated in the experiment according to the timing
sequence in Table 2, and the attenuation factor was set.

This article selects CR (compression ratio), MSE (mean
square error) and SNR (signal-to-noise ratio) as evaluation

FIGURE 6
DBP algorithm.

indicators to quantitatively evaluate the reconstruction accuracy of
superharmonics by different methods (Shi et al., 2014).

1) The compression ratio CR is expressed as the compression
sampling ratio of the number of compressed measurements
M to the original signal length N, shown in Equation 23. A
lower compression ratio means that the amount of data after
compression is greatly reduced, the compression effect is better,
thedata transmission speed is faster, and the storage cost is lower.

CR =
M
N
× 100% (23)

where M represents the compression measurement number M, N
represents the original signal length N.

2) The mean square error MSE reflects the relative mean
square error between the original signal X(i) and the
reconstructed signal x(i) to quantify the gap between themodel
prediction value and the actual value. Added that MSE is
expressed as Equation 24.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1502652
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Yan et al. 10.3389/fenrg.2025.1502652

FIGURE 7
Working principle of wind power grid.

TABLE 1 Components of supraharmonics.

Switching
frequency

Characteristic frequency

Frequency/kHz Amplitude/A Phase/(°)

1 time the
frequency

09.900 14.62 74.20

10.100 14.49 38.70

2 times the
frequency

19.950 4.71 206.9

20.050 4.51 85.10

3 times the
frequency

29.900 0.90 76.30

30.100 0.83 190.9

4 times the
frequency

39.950 1.23 191.2

40.050 1.20 66.80

5 times the
frequency

49.900 0.42 79.30

50.100 0.40 190.7

6 times the
frequency

59.950 0.85 203.1

60.050 0.84 78.90

MSE = 1
N

N

∑
i=1
[X(i) − x(i)]2 (24)

where X(i) represents original signal, x(i) represents reconstruction
signal.

3) The signal-to-noise ratio SNR reflects the reconstruction
quality of the superharmonic signal, as shown in Equation
25. The higher the SNR of the reconstructed signal,
the better the algorithm filters the superharmonic
signal noise.

SNR = 10 ⋅ lg(
N

∑
i=1

X2(i)/
N

∑
i=1
[X(i) − x(i)]2) (25)

4.1 Performance analysis of dynamic
feedback flexible time window

In order to test the dynamic monitoring effect of the feedback-
type flexible time window proposed in this article, a fixed
time window length and a feedback time window were set
as a control experiment. In accordance with the IEC-61000-4-
7 standard, and considering factors such as mode resolution,
dynamic response speed, and computational cost in superharmonic
monitoring, the maximum width of a single sampling time window
is set to 10 power frequency cycles, equivalent to 200 ms. At
the same time, it can be seen from Table 3 that in order to
accurately identify the different frequencies of the superharmonic
signal, its frequency must be able to resolve at least 50 Hz,
and the corresponding sampling time window length is 20 ms.
In addition, a fixed length of 300 ms time window is added.
Therefore, the dynamic monitoring effect of the fixed time window
length of 20, 200, 300 ms and the flexible time window with
feedback mechanism (initial time window length of 200 ms) was
tested at the same time.

The original sampling frequency is set to 128 kHz, the signal
compression ratio is 0.2, the window overlap ratio is 0.5, and the
noise interference and communication band interference in the
actual working conditions are considered. Gaussian white noise is
superimposed on the measurement noise, and the signal-to-noise
ratio is 10 dB. For intuitive comparison, the error value is set to be
output every 200 ms, and the average error of different time window
monitoring after 50 repeated tests is recorded, as shown in the
Figure 8.

From the analysis of Figure 8, it can be seen that the monitoring
error is generally large when using a fixed-length 50 ms time
window.This is because the theoretical resolution of the 50 ms time
window is 50 Hz, and the actual frequency resolution is higher than
the theoretical value, resulting in inaccurate frequency identification
and poor monitoring effect. The overall mean square error MSE of
the 200 ms time window is relatively lower than that of the 20 ms
timewindow.However, there is a sharp increase in error at the signal
transition point, which is caused by the slow dynamic response
speed caused by the large time window length. The feedback-type
flexible time window proposed can flexibly adjust the time window
length according to the feedback signal. The average monitoring
error is only 6.62 × 10−3, which is completely lower than the fixed-
length time windowmonitoring error, and there is no sharp increase
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TABLE 2 Superharmonic components in each period.

Characteristic
harmonics/kHz

Attenuation
factors β

Time periods/s

1 times the frequency 0.1 0–9

2 times the frequency 0.2 1–7

3 times the frequency 0.3 1–4, 6–8

4 times the frequency 0.3 4–4, 7–10

5 times the frequency 0.3 2–4, 6–8

6 times the frequency 0.4 1–2, 3–4, 6–7

TABLE 3 Monitoring mean square error in different time windows.

Type 20 ms 200 ms 300 ms Feedback
window

MSE(×10-3) 24.31747 12.10058 10.97221 6.61795

in error. While taking into account the frequency resolution, it has a
good dynamic response speed.

4.2 Performance analysis of VSSESP-DBP
dynamic reconfiguration algorithm

To test the performance of the proposed VSSESP-DBP dynamic
reconstruction algorithm, we compare it with the SP compressed
sensing reconstruction algorithm (Dai and Milenkovic, 2009), the
SAMP compressed sensing reconstruction algorithm (Qiu S et al.,
2017), and the BCS compressed sensing reconstruction algorithm
(Wang et al., 2022) to achieve simultaneous reconstruction of
superharmonic signals in different scenarios. Specifically, the
SP method uses sparse representation for compressed signal
recovery, SAMP uses signal adaptive matching pursuit method
for compressed signal reconstruction, and BCS applies Bayesian
compressed sensing to improve the reconstruction accuracy in noisy
environments. This comparison aims to evaluate the reconstruction
accuracy and robustness of the VSSESP-DBP algorithm with other
harmonic compression and detection algorithms. Set the window
sliding overlap ratio to 0.2, the initial iteration step size s = 10,
establish the step size adjustment convergence threshold as ε1 =
10–2, define the iteration termination convergence threshold as
ε2 = 10–6, and set the signal-to-noise ratio to 10 dB. Gradually
decrease the compression ratio in steps of 0.1, ranging from 0.9
to 0.1. Record the monitoring errors of various algorithms after
conducting 20 repeated tests. The reconstruction outcomes under
different compression ratios are depicted in Figure 9.

From the analysis of the experimental data in Figure 9, it
can be seen that the reconstruction mean square error (MSE) of
the proposed VSSESP-DBP algorithm is reduced by about 8.81%,
55.96%, and 71.18% for the low compression ratio of 0.9 compared
to SAMP, SP, and BCS, respectively. The MSEs are also reduced

by 70.72%, 85.42%, and 90.33% for high compression ratios of
0.2, respectively. The stability of the reconstruction algorithm is
further analyzed, i.e., the variation of signal reconstruction error
with compression ratio. As shown in Figure 9, with the compression
ratio M/N decreasing from 0.9 to 0.2, the signal reconstruction
errors of the SAMP, SP, and BCS algorithms significantly increased
by 72.12%, 71.26%, and 70.87%, respectively, whereas the error of the
VSSESP-DBP algorithm proposed in this paper remained basically
stable, with an increase of only 13.17%. This reflects the stability
of the reconstruction algorithm proposed in this paper. This is
because the compared methods use static monitoring or give fixed
window width, while the superharmonic signals often show some
degree of local changes in different time domains, the same time
window length is easy to ignore the characteristics of the signals
in different time periods, and its monitoring effect can not reach
the optimum, resulting in excessive monitoring error. The flexible
time window proposed in this paper can track the monitoring
error of dynamic signals through the feedback mechanism in
time and adaptively adjust the window width, which effectively
reduces the reconstruction error, and can effectively improve the
accuracy of signal reconstruction under different compression
ratio scenarios.

Comparing the reconstruction SNR of the VSSESP-DBP
algorithm proposed in this paper with other algorithms,
as shown in Figure 10, the SNR value of the proposed algorithm
is significantly higher than the other algorithms. For example, in the
case of a high compression ratio (M/N = 0.2), the SNR values of the
SAMP, BCS, and SP algorithms are 95.02 dB, 48.61 dB, and 64.81 dB.
The reconstruction SNR of the proposed algorithm can still be
maintained at 97.207 dB, which is improved by 2.30%, 99.98%, and
49.99% compared to the previous algorithms. This is because this
paper adopts the dynamic basis tracking (DBP) algorithm, which
reconstructs the signal of the next moment by using the support set
of the previous moment as the a priori knowledge, and effectively
captures the continuity characteristics of the superharmonic signals
in both time and frequency domains, which makes full use of the
correlation of the adjacentmoments of the superharmonics, whereas
the compared methods result in the loss of information due to
the neglect of the temporal correlation between before and after
the signals.

To assess the algorithm’s robustness in a complex environment,
the compression ratio is fixed at 0.2 (maximum compression). The
signal-to-noise ratio of the superharmonic signal incrementally rises
from 20 dB to 100 dB in intervals of 10 dB. Figure 11 shows the
different degrees of signal application reconstruction error in the
case of Gaussian white noise.

Analyzing the experimental data in Figure 11, it can be seen that
when the signal-to-noise ratio (SNR) in the superharmonic signal is
higher than 80 dB (right side of the image), several reconstruction
algorithms can reconstruct the signal better. However, with an
increase in noise in the signal, the reconstruction errors of the three
comparison algorithms, SAMP, SP, and BCS, increase significantly
as the signal-to-noise ratio decreases. From an SNR of 80 dB–20 dB,
their reconstruction errors rise by 2.3 × 10−2, 3.7 × 10−2, 4.3
× 10−2, respectively. Meanwhile, the proposed algorithm in this
paper shows better performance in scenarios with decreasing signal-
to-noise ratios. The reconstruction error increases from an SNR
of 80 dB–20 dB by only 1.8 × 10−2, which is lower than the
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FIGURE 8
Recovery square error of different windows.

FIGURE 9
Algorithm reconstruction results under different compression ratios.

comparison algorithms. Even when the SNR is 20 dB, the signal
reconstruction relative error (MSE) remains lower than 2.0 ×
10−2, which is 20.87%, 50.32%, and 57.79% lower than those of
the SAMP, BCS, and SP algorithms, respectively. Therefore, the
proposed algorithm in this paper has a smaller reconstruction
error under the same noise perturbation and exhibits higher
robustness.The reason is that this paper adopts flexible timewindow
and dynamic basis tracking algorithm to effectively improve the
reconstruction accuracy, and further adopts the variable step size
strategy to realize the sparsity self-estimation, which improves the
reconstruction accuracy by continuously shrinking the step size
during the iteration process of the blind sparsity, and solves the over-
estimation problem due to the unknown superharmonic sparsity
during the initial decomposition, and the algorithm is more robust
than the three comparisons for the environmentswith different SNR.
algorithms.

FIGURE 10
Algorithm reconstruction signal-to-noise ratio under different
compression ratios.

4.3 Analysis of non-stationary signals of
high-order harmonics

In order to realize non-stationary signal analysis of high-
order harmonics, this article provides a comparative analysis
of the spectrum obtained through IEC-61000-4-30 and the 3D
spectrum recovered by our method, as shown in Figures 12,
13.

According to Figure 12, it can be observed that there are
approximately 15 significant frequency components at the switching
frequency and its integer multiples. With an increase in frequency,
the amplitudes of these components gradually decrease, yet no
discernible fluctuation characteristics in amplitude over time are
observed. The IEC full-sampling method is suitable for steady
waveforms, but due to the fluctuating nature of higher harmonic
components, it results in excessive spectral leakage. From Figure 13,
it can be seen that our proposedmethod is also capable of accurately
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FIGURE 11
Reconstruction errors of various algorithms with different
signal-to-noise ratios.

FIGURE 12
The spectrum obtained through IEC-61000-4-30.

detecting these 15 higher harmonic components. Simultaneously,
the three-dimensional plots generated by dynamic sampling
reveal that the amplitudes of the superharmonic components
exhibit distinct non-stationary features. This phenomenon may be
attributed to resonance in the low-frequency filtering of the inverter
output unit in wind turbine generators can potentially induce
voltage oscillations and cause damage to equipment. Through the
introduced dynamic monitoring method for superharmonics, the
dynamic characteristics of the signal can be analyzed, facilitating
further investigation into the causes of accidents and the handling of
superharmonics.

FIGURE 13
The 3D spectrum recovered by our method.

FIGURE 14
Reconstruction time of different algorithms.

TABLE 4 Phase detection results (M/N = 0.2).

Characteristic
Frequency

(kHz)

Phase error (°)

VSSESP-DBP SAMP SP BCS

9.90 0.0358 0.0415 0.0402 0.0425

10.10 0.0343 0.0332 0.0496 0.0417

29.90 0.0498 0.0558 0.0671 0.0533

30.10 0.0387 0.0530 0.0730 0.0576

49.90 0.0432 0.0545 0.0568 0.0548

50.10 0.0475 0.0529 0.0684 0.0486
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TABLE 5 Amplitude test results (M/N = 0.2).

Characteristic
Frequency

(kHz)

Amplitude error (%)

VSSESP-DBP SAMP SP BCS

9.90 0.2594 0.5095 0.6348 0.4736

10.10 0.4875 0.5134 1.1318 0.6727

29.90 0.7105 0.7167 0.7354 0.7453

30.10 0.7297 0.7753 0.7836 0.7826

49.90 0.2346 0.2389 0.2502 0.2437

50.10 0.2423 0.2509 0.2891 0.2521

4.4 Algorithm computational efficiency
analysis

Computational efficiency determines the real-time performance
of superharmonic monitoring. To test the computational efficiency
of the VSSESP-DBP reconstruction algorithm proposed, a high
compression ratio (compression ratio M/N = 0.2) was selected, the
initial time window width was 100 ms, the sliding window overlap
ratio was 0.1, and the number of continuous dynamic sampling
was increased from single to 100 in steps of 10. As the number
of sampling times increases, the amount of data calculated by
the reconstruction algorithm also increases. The average running
time of continuous reconstruction of different algorithms after 10
repeated tests is recorded, and the results are shown in Figure 14.

As shown in Figure 14, in single sampling, the calculation time
of the VSSESP-DBP algorithm is 12.29 ms, which is slightly higher
than the SAMP algorithm, but 18.51% lower than the SP algorithm
and 49.17% lower than the BCS algorithm. The reason is that the
proposed algorithm approaches the sparsity of the superharmonic
signal with a variable step size, avoiding the drawbacks of inaccurate
sparsity estimation and increased calculation. In the continuous
sampling scenario, the running time of the proposed VSSESP-DBP
algorithm is significantly lower than that of the three comparison
algorithms. Specific analysis shows thatwhen sampling continuously
for 100 times, the running time of VSSESP-DBP is 35.56 ms, which
is 42.12% lower than SP, 23.30% lower than SAMP, and 48.85%
lower than BCS algorithm. The reason for the analysis is that BCS
algorithm uses linear dynamic model to describe the change of
support set, while superharmonic is nonlinear, so its solution takes
the most time. SP and SAMP adopt greedy iteration strategy. As
the amount of data increases, the reconstruction time will increase
significantly. The proposed method makes full use of the time
correlation of the superharmonic signal and takes the support set
of the previous moment as prior knowledge. It only needs to track
the change value of the support set Δ = It−It−1. Its computational
complexity is reduced from O (n3) of the basis pursuit algorithm to
O (Δ3).Therefore, with the increase of the number of sampling times,
the running time of continuous reconstruction is significantly lower
than that of other algorithms, and the efficiency of the algorithm
is improved.

4.5 Quality analysis of superharmonic
signal reconstruction

In order to further highlight the novelty advantage of the
proposed method in this paper and to test the detection effect
of the proposed method on each component parameter of
superharmonics, the signal is recovered after the compression
measurement and the superharmonic components are detected.
The compression ratio is set to 0.2, and the VSSESP-DBP, SAMP,
SP, and BCS algorithms are used to reconstruct the signals,
respectively, to analyze the amplitude and phase error detection
results corresponding to the superharmonics in each frequency band
as shown in Tables 4, 5.

From Tables 4, 5, the detection accuracy of the algorithm
proposed in this paper is further improved, and when the
compression ratio is 0.2, the phase error and amplitude error of
each frequency component are within 0.3°and 0.8%, respectively,
which meets the requirements of the power quality signal detection
accuracy in the IEC 61000-4-30 standard.

Specifically analyzing the phase error, when the compression
ratio is 0.2, the maximum phase error of the proposed algorithm is
0.0498°, which is lower than that of SAMP, SP andBCS algorithms by
10.75%, 31.78% and 13.54%, respectively. Further, the average phase
detection error of each component is calculated, where the average
phase error of the proposed algorithm is 0.0415°, the average phase
error of the SAMP algorithm is 0.0485°, SP is 0.0592°, and BCS is
0.0498°, and the proposed algorithm is 14.30%, 29.79%, and 16.48%
lower than the SAMP, SP, and BCS algorithms, respectively.

Further, the amplitude error is analyzed and the detection error
is derived by calculating the amplitude mean value and comparing
it with the reconstructed signal amplitude. When the compression
ratio is 0.2, themaximumamplitude error of the proposed algorithm
is 0.7297%, which is 5.88%, 35.53%, and 6.76% lower than that of
SAMP, SP and BCS algorithms, respectively. The average magnitude
detection error of each component is further calculated, where
the average magnitude error of the proposed algorithm is 0.44%,
the average phase error of the SAMP algorithm is 0.50%, SP is
0.64% and BCS is 0.53%. By comparison, it can be obtained that
the algorithm proposed in this paper is lower than the SAMP, SP
and BCS algorithms by 11.34%, 30.35% and 15.96%, respectively,
with the optimal restoration effect, which further reflects the novel
advantages of the flexible time-window acquisition and VSSESP-
DBP reconstruction algorithms used in this paper.

5 Conclusion

This paper proposes a new method for high-order harmonic
monitoring based on theVSSESP-DBPdynamic compressed sensing
algorithm. This method has made significant progress in accurately
monitoring superharmonics, which is crucial for understanding
their propagation mechanism and dynamic characteristics. On
the sampling side, the scale expansion factor is introduced
to achieve feedback-type flexible modulation of the window
width, which effectively solves the problem that traditional static
sampling and fixed window width sampling cannot capture
the rapid time-frequency changes of superharmonics. And the
frequency domain sparsity of superharmonic signals in flexible
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time windows is theoretically derived. On the reconstruction
side, through the variable step sparsity self-estimating subspace
tracking-dynamic basis tracking reconstruction algorithm, the time
correlation of superharmonics is used under blind sparsity to
improve the speed and accuracy of reconstruction. Finally, the
test is carried out on the wind power grid-connected system.
The results show that the method proposed can still quickly
recovery time-varying superharmonic signals with low error even
under high compression rates, and its dynamic characteristics are
significantly better than the comparative algorithms. The work in
this paper provides a new measurement idea for in-depth research
on the propagation mechanism and dynamic characteristics of
superharmonics, and provides theoretical support and technical
guarantee for the safe, stable and efficient operation of new power
systems. In the future, we can study the generation mechanism
and characteristic differences of superharmonics in multiple
scenarios, formulate targeted governance strategies for them; study
the distributed compressed sensing dynamic monitoring method
suitable for high-dimensional signals, and develop dedicated
hardware detection equipment; study the design methods of
new filters and active compensation devices to achieve effective
suppression of superharmonics.
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