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Developing an accurate mathematical model for parameter extraction in
photovoltaic modules is a crucial endeavor in optimizing photovoltaic energy
systems. This study seeks to assess and compare various analytical and numerical
methods for extracting the primary five parameters of photovoltaic modules.
Specifically, six established approaches based on a single diode model (SDM) are
employed, including the methods introduced by Khan et al., Blas et al., Phang
et al., Vika, Cubas et al., and Almonacid et al. The performance of these
approaches is evaluated and compared under standard test conditions (STC)
with a focus on maximum power point current and voltage. The analytical and
numerical methods demonstrate their precision in predicting photocurrent-
voltage (I-V) and power-voltage (U-V) curves, with the exception of the
Almonacid et al. method, which tends to underestimate the I-V curve at the
module’s maximum power. Among these methods, the Phang et al. approach
stands out, displaying a strong agreement between experimental data and the
predicted curve. This is evidenced by the lower values of root mean square error
(RMSE), mean bias error (MBE), normalized RMSE (NRMSE), mean absolute
percentage error (MAPE), and absolute error (AE). These findings underscore
the high quality of results obtained through the Phang et al. method.
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1 Introduction

The escalating costs of fossil fuels and their detrimental impact on the environment,
including air pollution resulting from greenhouse gas emissions like carbon dioxide and
methane, have spurred global efforts to explore and develop clean and renewable energy
technologies (Yahya-Khotbehsara and Shahhoseini, 2018). Solar energy, with its abundant
intensity, offers a swift and straightforward means of conversion into photovoltaic (PV)
electricity. This conversion leverages the inherent properties of semiconductors, making it a
promising and effective renewable energy resource (Sheraz Khalid and Abido, 2014). In
various energy conversion systems, it is possible to represent certain electrical photovoltaic
(PV) characteristics using an equivalent electrical circuit. This approach is suitable for
accurately emulating the actual behavior of solar cells, ensuring that the simulated data
closely aligns with the measured current-voltage (I-V) data across all operational conditions
(Chin et al., 2015). Among these representation methods, some well-known equivalent
electrical circuits include the single diode model (SDM), double diode model (DDM), and
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third diode model (TDM). These models have gained popularity and
are employed by numerous researchers due to their high precision
and performance. Moreover, the utilization of an increased number
of parameters for extracting PV module characteristics within the
single diode model enhances the accuracy of predicting the I-V
behavior under varying solar radiation levels. This presents an
intriguing opportunity in the research literature.

Parameter extraction methods can be categorized based on
several factors, including the quantity of data samples involved in
the extraction process, the specific method utilized, and the
mathematical approach applied. In terms of the mathematical
approach, the extraction of parameters from photovoltaic
modules is typically classified into three main categories:
numerical, analytical, and evolutionary methods. The primary
objective of these methods is to establish a strong correlation and
achieve an optimized fit between the theoretical and experimental
I-V characteristics of solar cells (Yahya-Khotbehsara and
Shahhoseini, 2018; Appelbaum and Peled, 2014). Given that a
significant number of I-V data samples are utilized during the
parameter extraction process, these optimization methods are
considered to collectively result in substantial improvements in
obtaining the final parameter values. The relevant literature offers
a wealth of references on parameter extraction. An uncomplicated
method for extracting the five parameters was introduced by Villalva
et al. (2009), Cubas et al. is one of the most cited contributors in this
field. Their technique, aimed at reducing the gap between estimated
and experimental peak power values, involves incorporating the
series resistance as a parameter. However, a limitation of this
method is its use of a fixed ideality factor value of 1.3, which
makes it more accurate in the vicinity of the maximum power
point but less so in other regions (Cubas et al., 2014). Achouby et al.
have introduced a comprehensive approach that utilizes four
analytical formulas, along with certain approximations, to derive
the values of four parameters. Additionally, it includes an ideality
factor, which is typically defined to be around 1.3 (El Achouby et al.,
2018). Zaimi et al. have developed a highly accurate numerical
method for determining the five physical parameters of photovoltaic
modules. This method involves fine-tuning the ideality parameter
and enhancing a system of nonlinear equations. It’s worth noting
that the initial estimates for the four physical criteria in their method
need to be precise for it to work effectively (Zaimi et al., 2019).
Stornelli et al. have introduced an innovative approach that
combines both numerical and well-established methodologies. In
this method, it’s essential to have consistent initial values for the
shunt resistance and ideality factor, which are vital for its
effectiveness. This approach presents a new and promising way
to determine the five parameters of photovoltaic modules (Stornelli
et al., 2019). This condensed technique allows for the identification
of the ideal values for both the ideality parameter and the shunt
resistance. Sera et al. (2008) Finding the ideal value of the ideality
parameter and the shunt resistance is made possible by this
condensed technique. The shunt resistance (Rsh) was advised to
be disregarded by Sera et al. for the purpose of condensing the five-
parameter model to a four-parameter model, Cannizzaro et al.
(2014) proposed ignoring either Rs or Rsh. To make the
computation simpler. Other analytical techniques call for more
inputs, such as those in the Celik and Acikgoz (2007), Khan
et al. (2013), and Bai et al. (2014) models, which call for extra

inputs of estimating or computing Rsho and Rso, or the slopes at both
short-circuit (SC) and open-circuit (OC) locations. For the purpose
of determining the five parameters, Batzelis and Papathanassiou
(2016) and Saleem and Karmalkar (2009), Karmalkar and Haneefa
(2008) also added new coefficients. Another approach was set forth
by Bellia et al. (2014), Wang et al. (2017) and Hussein (2017) and is
based on obtaining a closed-form equation for Rs and then
numerically solving this expression for various ideality factor
values. Iteratively calculating Rs, Rsh, and Iph is the foundation of
Vika’s approach (Breisnes Vika, 2014).

In this study, the single diode model serves as a baseline for
extracting parameters related to photo-generated current (Iph),
diode saturation current (I0), diode ideality factor (α), series
resistance (Rs), and shunt (or parallel) resistance (Rsh) under
standard conditions (STC conditions, G = 1000 W/m2, T =
25°C). Furthermore, the extracted parameters are employed to
assess and compare six analytical/numerical methods, namely, the
Khan et al. method, Blas et al. method, Phang et al. method, Vika
method, Cubas et al. method, and Almonacid et al. method. The
performance of these methods is analyzed using data sheets
provided by the manufacturers of three main photovoltaic
modules: the S70 and SM-210W polycrystalline, SP 75 and
SPR-230 WHT-I monocrystalline, and Shell ST36 and
U-EA110W thin film. All computations are conducted using
Matlab software. The two sections of our study are as follows:
The first section outlines the methods used by each author to
extract the main five parameters of the single diode model,
followed by an assessment and comparison of the effectiveness
of each approach.

2 Theoretical base of analytical/
numerical approaches

PVmodule performance accuracy is evaluated by examining the
I-V characteristic under standard conditions. Various methods exist
for modeling PV cells, offering different degrees of approximation to
the actual device behavior. According to (Louzazni and Belmahdi,
2022), the SDM is the most commonly used approximation for PV
module modeling. The SDM enables the extraction of five main
parameters: the photo-generated current (Iph), diode saturation
current (I0), diode ideality factor (α), series resistance (Rs), and
shunt (or parallel) resistance (Rsh). These parameters are

FIGURE 1
The five-parameter model’s equivalent circuit.
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interrelated through a specific equation and are illustrated
in Figure 1.

I � Iph − I0 exp
V + IRs

αVT
( ) − 1( ) − V + IRs( )

IRsh
(1)

Where VT is the thermal voltage of the PV cell, presented by the
mathematical Equation 2:

VT � kT

q
(2)

Where k and q is the Boltzmann constant (k � 1.38E − 23 J/K)
and the elementary or electron charge (q � 1.69E − 19C)
respectively.

Concerning performance evaluation, the I-V characterization
offers valuable insights into the crucial aspects of PV cells. In this
context, the precise estimation of the parameters outlined in
Equation 1 is detailed through the application of six methods
namely, the Khan et al. method (Khan et al., 2013), Blas et al.
method (De Blas et al., 2002), Phang et al. method (Phang et al.,
1984), Vika method (Breisnes Vika, 2014), Cubas et al. method

TABLE 1 Electrical properties of three PV technologies.

PV modules Polycrystalline (p-Si) Monocrystalline (m-Si) Thin film

S70 SM-210W SP 75 SPR-230 WHT-I Shell ST36 U-EA110W

Open-circuit voltage (Voc) (V) 21.4 36.1 21.6 48.70 22.9 71

Short-circuit current (ISC) (A) 4.7 7.93 4.7 5.99 2.86 2.50

Maximum power voltage (VMPP) (V) 16.5 28.90 17.6 41.00 15.8 54.0

Maximum power current (IMPP) (A) 4.25 7.28 4.26 5.61 2.28 2.04

Maximum power (PMPP) (W) 70.125 210.4 75 230 44.6 116

Number of cells in series (Ns) 36 60 36 72 42 106

Isc temperature coefficient (μIoc) (mA/°C) 2 4 2 3.5 0.320 1.375

Voc temperature coefficient (μVoc) (mV/°C) −76 −124 −76 −160.7 −100 −276.9

TABLE 2 Comparison of statistical metrics for evaluating PV module parameter extraction methods.

Metric Definition Purpose and key insights

RMSE Measures the square root of the average of squared differences between
experimental and predicted values

Quantifies the overall prediction error. Smaller values indicate better model
performance. Sensitive to large errors, which are given more weight due to squaring

MAPE Calculates the average of absolute percentage errors between experimental
and predicted values

Evaluates the accuracy of predictions as a percentage. Useful for comparing across
datasets with different scales
Expresses error in relative terms but can be skewed by small experimental values

MBE Computes the mean of the differences between experimental and predicted
values

Indicates whether the model tends to overestimate or underestimate predictions
Positive values suggest overestimation; negative values indicate underestimation

NRMSE Normalizes the RMSE by dividing it by the range or mean of experimental
data, often expressed as a percentage

Assesses prediction error relative to the magnitude of the data, allowing
comparisons across datasets with different units or scales
Provides scale-independent insight but depends on the normalization method used

AE Represents the absolute difference between experimental and predicted
values for individual data points

Focuses on localized deviations in the data, offering point-specific error analysis
Useful for identifying outliers but does not provide an aggregate measure of model
performance

TABLE 3 Effective normal irradiance, cell temperature, and the main electrical parameters derived from the I-V curves used for method evaluation.

G
(W/m2)

Tc
(°C)

Curve Polycrystalline (p-Si) Monocrystalline (m-Si) Thin film

S70 SM-210W SP 75 SPR-230
WHT-I

Shell
ST36

U-EA 110W

Isc
(A)

Voc

(V)
Isc
(A)

Voc

(V)
Isc
(A)

Voc

(V)
Isc
(A)

Voc

(V)
Isc (A) Voc

(V)
Isc
(A)

Voc

(V)

1,000 25 1 4.69 21.5 7.93 36.1 4.7 21.6 5.99 48.70 2.86 22.9 2.50 71
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(Cubas et al., 2014), and Femia et al. (Femia et al., 2012) method. The
performance and effectiveness of these approaches are
systematically assessed and compared under standard test
conditions (STC conditions).

2.1 Khan et al. method

The Khan et al. method is an analytical technique specifically
designed for parameter extraction from silicon solar cells. This

method focuses on obtaining parameters of PV cells under
high radiation conditions. The extraction process involves
utilizing initial values from key parameters such as
ISC,Voc, IMPP,VMPP,Rso, andRsho. The extraction is described by
the following Equations 3–7:

Io � αVT

Rso − Rs( ) exp − Voc

αVT
( ) (3)

Rs � Rso − VMPP + RsoIMPP − Voc

IMPP + ln Isc − IMPP( ) − ln Isc( )[ ]Isc (4)

TABLE 4 Parameters extraction of Polycrystalline (p-Si) module.

Methods Parameters extraction Polycrystalline (p-Si)

S70 SM-210W

Phang et al Curve 1 I0 (A) 2.8587 10−10 3.62167 10−10

Iph (A) 4.69054 7.9376

Rs (Ω) 0.368 0.237

Rsh (Ω) 134 141

α 0.989 0.984

Blas et al Curve 2 I0 (A) 4.8654 10−10 6.1067 10−10

Iph (A) 4.70425 7.93657

Rs (Ω) 0.348 0.373

Rsh (Ω) 141 144

α 1.005 1.005

Khan et al Curve 3 I0 (A) 6.095687 0.10–10 7.68517 0.10–10

Iph (A) 4.69931 7.93741

Rs (Ω) 0.293 0.309

Rsh (Ω) 145.617 139.240

α 1.015 1.015

Vika Curve 4 I0 (A) 7.54797 10−10 9.816493 10−10

Iph (A) 4.71110 7.9315

Rs (Ω) 0.396 0.187

Rsh (Ω) 116 119

α 1.027 1.026

Cubas et al Curve 5 I0 (A) 9.377404 10−10 1.151188 10−9

Iph (A) 4.7365542 7.93546

Rs (Ω) 0.416 0.216

Rsh (Ω) 144.98 147.01

α 1.035 1.031

Almonacid et al Curve 6 I0 (A) 1.45876 0.10–07 1.85651.10–07

Iph (A) 4.72087 7.93768

Rs (Ω) 0.471 0.487

Rsh (Ω) 146.98 149.15

α 1.335 1.330
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α � VMPP + RsIMPP − Voc

VT ln Isc − IMPP( ) − ln Isc( )[ ] (5)
Rsho � Rsh (6)

Iph � Io exp
Voc

αVT
− 1( ) + Voc

Rsh
(7)

2.2 Blas et al. method

The Blas et al. method is an analytical approach employed for
the extraction of parameters associated with PV cell behavior. This
method relies on a set of experimentally measured voltage-

TABLE 5 Parameters extraction of Monocrystalline (m-Si) module.

Methods Parameters extraction Monocrystalline (m-Si)

SP 75 SPR-230 WHT-I

Phang et al Curve 1 I0 (A) 2.5016 10−11 2.9320.25100.3214 10−11

Iph (A) 4.70 5.99

Rs (Ω) 0.350 0.251

Rsh (Ω) 335 129

α 0.981 1.001

Blas et al Curve 2 I0 (A) 2.557 10−11 2.9431 10−11

Iph (A) 4.70 5.99

Rs (Ω) 0.370 0.321

Rsh (Ω) 200 137

α 0.999 0.999

Khan et al Curve 3 I0 (A) 3.45687 0.10–11 3.71517 0.10–11

Iph (A) 4.7541 5.99

Rs (Ω) 0.390 0.390

Rsh (Ω) 290 200

α 1.005 1.005

Vika Curve 4 I0 (A) 2.6256 0.10–10 2.94517 0.10–10

Iph (A) 4.7096 5.9865

Rs (Ω) 0.308 0.217

Rsh (Ω) 298 120

α 1.015 1.019

Cubas et al Curve 5 I0 (A) 2.676229 0.10–10 2.966407 0.10–10

Iph (A) 4.75181 5.98916

Rs (Ω) 0.300 0.219

Rsh (Ω) 200.35 119.43

α 1.025 1.029

Almonacid et al Curve 6 I0 (A) 5.58467 10−09 1.698510–08

Iph (A) 4.8765 5.8951

Rs (Ω) 0.450 0.499

Rsh (Ω) 221.32 200

α 1.335 1.335
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intensity curves conducted under elevated temperature and high

radiation levels. The values obtained from these experiments are

then used to extract model parameters. Similar to the previously

described method, the extraction of parameters from Equation 1 is

performed for the specified temperature and solar radiation levels,

utilizing initial values of ISC,Voc, IMPP,VMPP,Rso, and Rsho. The

mathematical expression for this extraction process is provided

as follows (Equations 8–11):

Io � Isc 1 + Rs

Rsh
( ) − Voc

Rsh
( ) exp − Voc

αVT
( )( ) (8)

Rs �
Rso

Voc
αVT

− 1( ) + Rso 1 − Isc Rso
αVT

( )
Voc−Isc Rso

αVT

(9)

α � VMPP + RsIMPP − Voc

VT ln
Isc−IMPP( ) 1+ Rs

Rsh
( )−VMPP

Rsh

Isc 1+ Rs
Rsh

( )−Voc
Rsh

⎡⎣ ⎤⎦ (10)

TABLE 6 Parameters extraction of thin film module.

Methods Parameters extraction Thin film

Shell ST36 U-EA110W

Phang et al Curve 1 I0 (A) 1.264410–09 1.25342 10−11

Iph (A) 2.86 2.4576

Rs (Ω) 0.348 0.398

Rsh (Ω) 237 310

α 0.983 0 0.999

Blas et al Curve 2 I0 (A) 1.9564. 10–09 1.4845. 10–11

Iph (A) 2.86 2.4976

Rs (Ω) 0.415 0.572

Rsh (Ω) 254 288

α 1.005 1.005

Khan et al Curve 3 I0 (A) 2.45687 0.10–09 2.08517 0.10–11

Iph (A) 2.8612 2.5165

Rs (Ω) 0.2615 0.469

Rsh (Ω) 258.768 275.43

α 1.015 1.020

Vika Curve 4 I0 (A) 2.905128. 10–09 2.432145. 10–11

Iph (A) 2.8598 2.497765

Rs (Ω) 0.39876 0.266769

Rsh (Ω) 217 235

α 1.025 1.027

Cubas et al Curve 5 I0 (A) 3.422709 0.10–09 2.930493 0.10–11

Iph (A) 2.84986 2.5243

Rs (Ω) 0.41866 0.4376

Rsh (Ω) 246.88 246.99

α 1.033 1.035

Almonacid et al Curve 6 I0 (A) 3.65467 10−07 8.3654110–09

Iph (A) 2.8652 2.5768

Rs (Ω) 0.568 0.5791

Rsh (Ω) 286.89 294.01

α 1.335 1.335
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Rsh � Rsho − Rs (11)
The calculation of Iph is determined as per the definition in

Equation 7. The computational procedure for this method involves
several steps:

1. Initial value assignment for Rs.
2. Approximate estimation of both Rsho and α values.
3. Recalculation of Rs based on the obtained estimates.
4. Iterative repetition of step 3 until Rs converges to a stable value.

The remaining measured data has been discussed in
previous sections.

2.3 Phang et al. method

The Phang et al. method is an analytical approach designed for
the extraction of the primary five parameters from different single-
junction PV cells under standard levels of solar radiation and cell
temperature. The estimation of Rsho and Rso involves implementing
a linear fit of the I–V curve around both the short-circuit current and
open-circuit voltage, enabling the following (Equations 12, 13):

Rsho � − dV

dI
( )

I�Isc
(12)

Rso � − dV

dI
( )

V�Voc

(13)

The parameters of Equation 1 are estimated and given as follows
(Equations 14–16):

I0 � Isc − Voc

Rsh
( ) exp

Voc

αVT
( )

Iph � Isc 1 + Rs

Rsh
( ) + I0 exp

IscRs

αVT
( ) − 1( ) (14)

Rs � Rso − αVT

I0
exp − Voc

αVT
( ) (15)

α � VMPP + RSOIMPP − Voc

VT ln Isc − IMPP − VMPP
Rsh

( ) − ln Isc − Voc

Isc−IMPP
Rsh

( )[ ] (16)

The value of Rsh is estimated as previously defined in Equation 6.

2.4 Vika method

The Vika method, also known as the Vika algorithm, is employed
for the extraction of parameters from PV cells under standard solar
radiation and cell temperature conditions. This method involves
fitting the dataset adequately for a specified number of iterations,
incorporating variables such as Rs, Iph, Rsh. The initial values of
ISC,Voc, IMPP,VMPP,Rso, and Rsho are computed according to the
following mathematical expression Equations 17–20:

I0 � Isc

exp Voc
αVT
( ) − 1

(17)

Iph � Isc
Rsh + Rs

Rsh
( ) (18)

Rs � VMPP

IMPP
− αVTRsh

I0Rsh exp VMPP+IMPPRs
αVT

( ) − 1[ ] (19)

Rsh � VMPP + IMPPRs

Iph − IMPP − I0 exp VMPP+IMPPRs
αVT

( ) − 1[ ] (20)

2.5 Cubas et al. method

The Cubas et al. method is an analytical technique designed to
extract parameters for various types of PV technology under
standard levels of radiation and cell temperature. Similar to the
previously discussed methods, the extraction of parameters from
Equation 1 is estimated using initial values of
ISC,Voc, IMPP,VMPP,Rso, and Rsho. This estimation is
accomplished through the following Equations 21–23:

I0 � Isc Rsh + Rs( ) − Voc

Rsh exp
Voc
αVT
( ) (21)

Iph � Isc
Rsh + Rs

Rsh
( ) (22)

Rsh � VMPP − IMPPRs( ) VMPP − Rs Isc−IMPP( ) − αVT( )
VMPP − IMPPRs( ) Isc−IMPP( ) − αVT

(23)

2.6 Almonacid et al. Method

The Almonacid et al. (2016) method is a numerical approach
employed for the extraction of parameters from PV cells. This
method is based on a developed system with non-linear implicit
equations derived from Equation 1. Within this system, the primary
five unknown parameters are solved using the trust-region
optimization algorithm (Powell, 1968). This algorithm enhances
robustness, especially when dealing with initial values that are far
from the solution. Additionally, it can handle cases where the
Jacobian becomes singular at a specific iteration. The initial
values of ISC,Voc, IMPP,VMPP,Rso, andRsho are calculated using
the following mathematical expression Equations 24–27:

I0 � Isc − Voc − RsIsc
Rsh

( ) exp
Voc

αVT
( ) (24)

Iph � Isc 1 + Rs

Rsh
( ) (25)

Rs � Rso − αVT

Isc−Voc
Rsh

(26)

Rsh � Rsho (27)

In the Vika, Cubas et al., and Almonacid et al. methods, the
parameter α remains unidentified. To address this, multiple trials are
conducted to solve the equation system within a defined interval
[0.1, 1.5], with themm parameter changing in increments of 0.1. The
solutions obtained through these trials are then regarded as the
extracted parameters of the I-V curve.

Frontiers in Energy Research frontiersin.org07

Belmahdi 10.3389/fenrg.2025.1501335

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2025.1501335


The selected methods were chosen for their established
accuracy, reliability, and relevance to the study’s objectives.
Each method offers unique strengths that make it suitable for
analyzing PV systems. Phang et al. is renowned for accurately
modeling I-V and P-V curves near the maximum power point,
ensuring reliable performance evaluation across different PV
technologies. Blas et al. provides detailed modeling that
incorporates environmental factors, making it applicable in
diverse climatic conditions. Khan et al. focuses on
computationally efficient approaches, ideal for real-time or
large-scale applications. Vika contributes valuable insights into
system behaviors and environmental interactions, while Cubas
et al. emphasizes parameter extraction and practical
implementation for accurate and dependable results. Together,

these methods offer a comprehensive and balanced
evaluation framework.

3 Result and discussion

To examine the outcomes obtained from the analytical/
numerical methods discussed in the preceding section, MATLAB
software was employed to estimate the primary five parameters
extracted using the SDM for three distinct PV module technologies.
These technologies include polycrystalline (p-Si), monocrystalline
(m-Si), and thin film. The performance of the selected methods is
evaluated based on the electrical characteristics at STCs,
manufacturing conditions, and the temperature coefficients for

TABLE 7 Statistical metric of all proposed methods for three different technologies.

A Polycrystalline (P-Si)

S-70 SM-210W

RMSE MBE MAPE NRMSE RMSE MBE MAPE NRMSE

Phang et al 0.05897 −1.37639 0.03150 0.11794 0.04209 −1.44328 0.03071 0.08418

Blas et al 0.06378 −1.33871 0.04644 0.12756 0.04186 −1.34239 0.04524 0.08372

Khan et al 0.07078 −1.06739 0.05660 0.14156 0.05967 −1.15508 0.05564 0.11934

Vika 0.07946 −0.91824 0.07406 0.15892 0.06806 −0.93922 0.07157 0.13612

Cubas et al 0.08093 −0.57138 0.09201 0.16186 0.14563 −0.57800 0.09101 0.29126

Almonacid et al 0.12953 −0.43996 0.13264 0.25906 0.24452 −0.45431 0.13196 0.48904

B Monocrystalline (M-Si)

SP-75 SPR-230 WHT-I

RMSE MBE MAPE NRMSE RMSE MBE MAPE NRMSE

Phang et al 0.03874 −1,54,819 0.02752 0.07748 0.02378 −1,55,512 0.02050 0.04756

Blas et al 0.03772 −1,34,497 0.04502 0.07544 0.02148 −1,3596 0.04450 0.04296

Khan et al 0.03592 −1,16,796 0.05384 0.07184 0.02017 −1,1951 0.04958 0.04034

Vika 0.03144 −0,96,205 0.07117 0.06288 0.01958 −0,97,487 0.07049 0.03916

Cubas et al 0.13093 −0,58,957 0.08897 0.26186 0.19033 −0,65,874 0.08502 0.38066

Almonacid et al 0.23043 −0,46,891 0.12966 0.46086 0.20169 −0,48,499 0.11671 0.40338

C Thin film

ST36 U-EA110W

RMSE MBE MAPE NRMSE RMSE MBE MAPE NRMSE

Phang et al 0.07432 −1.36033 0.03990 0.14864 0.06558 −1.36903 0.03814 0.13116

Blas et al 0.07975 −1.23238 0.04955 0.1595 0.06986 −1.24420 0.04903 0.13972

Khan et al 0.08107 −0.99686 0.06973 0.16214 0.07571 −1.00057 0.06781 0.15142

Vika 0.07979 −0.84197 0.08017 0.15958 0.07885 −0.89227 0.07777 0.1577

Cubas et al 0.09337 −0.52920 0.10790 0.18674 0.12930 −0.54946 0.10551 0.2586

Almonacid et al 0.16369 −0.40241 0.13899 0.32738 0.28078 −0.41910 0.13691 0.56156
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the maximum power point (MPP) of the utilized photovoltaic
modules, as outlined in Table 1.

To evaluate and compare the selected methods, various
statistical metrics are employed to gauge the precision of our
analytical/numerical approaches for extracting parameters from
PV modules operating under STCs and manufacturing
conditions. The primary statistical metrics include root mean
square error (RMSE), mean bias error (MBE), mean absolute
percentage error (MAPE), normalized root mean square error
(NRMSE), and Absolute error (AE). The mathematical
expressions (Equations 28–32) for these statistical metrics are
provided as follows:

RMSE �

������������������������
1
N

∑N
i�1

IExpirimental − IComputed( )2√√
(28)

MBE � 1
N

∑N
i�1

IExpirimental − IComputed( )
IExpirimental

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ (29)

MAPE � 1
N

∑N
i�1

IExpirimental − IComputed( )∣∣∣∣∣ ∣∣∣∣∣ (30)

NRMSE �

������������������������
1
N

∑N
i�1

IExpirimental − IComputed( )2
∑N
i�1

IExpirimental( )
√√√√√

(31)

AE � IExpirimental − IComputed

∣∣∣∣ ∣∣∣∣ (32)

Where IExpirimental, and IComputed are the experimental and
computed current, respectively. N is the number of
experimental/computed currents. Table 2 below explaining the
main differences between the selected statistical metrics (RMSE,
MBE, MAPE, NRMSE, and AE) in the context of photovoltaic
(PV) module analysis. It is noted that a lower value of
these statistical indicator metrics indicates that the
selected methods are suitable for extracting parameters from
PV modules.

FIGURE 2
Model curves vs experimental data of the (A–B) S-70 and (C–D) SM-210W Polycrystalline PV modules under STCs.
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In this section, the analysis of the results obtained from the
methods described in the previous section is presented. To facilitate
this analysis, several I-V curves spanning the full operational range
of the PV technologies were selected. Initially, the recorded I-V
curves were analyzed as a function of cell temperature and effective
irradiance.

Based on this analysis, the I-V curves presented in Table 3 were
identified as a representative dataset for the various photovoltaic
(PV) technologies under real operating conditions. Specifically,
Curve 1 corresponds to I-V curves near the peak of the data
distribution, representing typical working conditions for the PV
modules. Further details on these representative I-V curves can be
found in Table 3. The criteria above, as well as the I-V curves shown
in Table 3, are the same previously considered by the authors to
validate the models analyzed in (Almonacid et al., 2016).

The main findings of the analytical/numerical methods are
presented in Tables 4–6, respectively. It is evident from Tables
4–6 that the predictions of all selected methods are approximately
the same for the assessment of Iph. Regarding I0, Phang et al., Vika,
Cubas et al., Khan et al., and Blas et al. methods tend to predict the
highest and lowest values. The range values of the considered
methods are between 1.264410–09 A and 4.266407 0.10–11 A

respectively, and are appropriate for p-Si, m-Si, and thin film
technologies. Phang et al. indicates that the prediction results are
approximately closer, while the previous methods still lead to
showing the highest values (The range value is between
8.3654110–09 A and 3.65467 10−07 A).

In terms of the ideality factor, the estimated value of α is
technology-dependent (p-Si, m-Pi, and thin film). It is clear
from the three technologies of PV modules that all proposed
methods predict a significant value of the ideality factor except
for the last (Almonacid et al.) method. The range values of Phang
et al., Vika, Cubas et al., Khan et al., and Blas et al. methods are
between 0.983 and 1.335 for the three technologies. The
Almonacid et al. method presents almost the same prediction
values with a slight variation, which is higher compared to the
other methods.

According to Tables 4–6, Phang et al., Vika, Cubas et al., Khan
et al., and Blas et al. methods surpass the Almonacid et al. methods
in terms of Rs and Rsh. The range value of Rs and Rsh for appropriate
methods are respectively between 0.187 Ω and 0.510 Ω, 116 Ω and
275 Ω for the three technology.

To evaluate the performance accuracy of each method under
standard conditions (GNI = 1000W/m2, T = 25°C), the figures below

FIGURE 3
Model curves vs experimental data of the (A–B) SP-75 and (C–D) SPR-230 WHT-I Monocrystalline PV modules under STCs.
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depict both I-V and P-V curves for three technologies
(polycrystalline, monocrystalline, and thin film). As evident from
the figures, all the proposed methods exhibit well-fitted curves,
indicating good agreement with experimental data at standard
conditions. Notably, the Almonacid et al. method for the three
technologies demonstrates the least favorable curve compared to the
preceding methods.

Figures 2A–D depicts the I-V and P-V curves of S-70 and SM-
210W p-Si PV modules generated by six methods under STC
conditions. The predictive methods exhibit high performance
across all methods, excluding the Almonacid et al. method.
Considering both Table 7 and Figures 2A–D, Phang et al., Blas
et al., Khan et al., and Vika methods are deemed appropriate, closely
aligning with experimental data. The range values of RMSE (%),
MBE (%), and MAPE are 0.080575, −0.95201166, and 0.0722083 for
S-70, and 0.20266, 0.98897, and 0.10125 for SM-210W
polycrystalline PV modules, respectively. In terms of I-V and
P-V curves, the Cubas et al. method exhibits a slight variation
compared to the preceding methods. The Almonacid et al. method
records the highest value of NRMSE, approximately 0.25906 and
0.48904 for S-70 and SM-210W, respectively. The results obtained
from the single diode model for polycrystalline modules indicate

that the SM-210W module is more accurate compared to the S-
70 PV module.

Figures 3A–D provides a comparative analysis of six proposed
methods for SP-75 (A-B) and SPR-230 WHT-I (C-D)
monocrystalline PV modules under STCs. This figure illustrates
the I-V and P-V curves for each method, highlighting the
relationship between the prediction methods and experimental
data. Referring to Table 7 and Figures 3A–D, the maximum and
minimum values of RMSE (%) vary between 0.23043 and
0.03144 for SP-75 monocrystalline silicon and 0.20169 and
0.01958 for SPR-230 WHT-I monocrystalline silicon, respectively.
The range values of RMSE (%) suggest that the Phang et al., Blas
et al., Khan et al., Vika, and Cubas et al. methods exhibit smaller
values than the Almonacid et al. method. In terms of I-V and P-V
curves for SP-75 and SPR-230WHT-I monocrystalline PVmodules,
the methods depicted in Figures 3A–D closely align with the
experimental data, earning recognition as “the most accurate
prediction methods” compared to the S-70 and SM-210W
polycrystalline PV modules.

Figures 4A–D and Table 7 present the prediction accuracy of
Phang et al., Blas et al., Khan et al., Vika, Cubas et al., and Almonacid
et al. methods under STCs for (A-B) ST36 and (C-D) U-EA110W

FIGURE 4
Model curves vs experimental data of the Shell (A–B) ST36 and (C–D) U-EA110W Thin film PV modules under STCs.
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thin film PV modules. Among the six methods, Phang et al., Blas
et al., Khan et al., Vika, and Cubas et al. exhibit the lowest values of
MBE (%), MBE (%), MAPE, and RMSE. In terms of I-V and P-V
curves, all five methods curve well compared to the Almonacid et al.
method and closely align with the experimental data. It is evident
from the table that the U-EA110W thin film PV module is more
accurate compared to the ST36 thin film PV module. Similarly,
consistent with the previous prediction methods, thin film PV
modules are recognized as “the least accurate prediction
methods” compared to monocrystalline and polycrystalline
PV modules.

Table 7 provides numerical values for the selected methods,
employing computational performance analysis to compare and
evaluate their accuracy in predicting experimental data for
monocrystalline, polycrystalline, and thin film PV modules. The
results show that all methods, except for Almonacid et al., exhibit

lower prediction errors for the three PV technologies at the
maximum power point. It is important to note that there is no
specific criterion for determining which method is more
appropriate, as no technique consistently outperforms the others
under all conditions. Nevertheless, the Phang et al. method
demonstrated a strong alignment with experimental I-V and P-V
curves, particularly near the maximum power point, based on lower
RMSE, MAPE, and AE values across all PV technologies. Thus, it
can be regarded as a suitable approach for all three technologies. It is
worth mentioning that our findings align with those studied in
(Phang et al., 1984; Chan et al., 1986), where analytical methods are
highlighted for their strong performance, closely matching fitting
curves and numerical methods under standard STC conditions.

In this section, the optimal technology for a SDM is illustrated in
Figures 5A,B. The figures depict the AE versus PV module voltage
for both SP-75 and SPR-230 WHT-I monocrystalline PV modules

FIGURE 5
Absolute Error vs PV module voltage of SDM for (A) SP-75 and (B) SPR-230 WHT-I monocrystalline at STCs.
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using various methods. The maximum AE values are 0.004238 for
Phang et al., 0.015832 for Almonacid et al., 0.005772 for Vika,
0.001702 for Khan et al., 0.003988 for Blas et al., and 0.004598 for
Cubas et al. in the case of SP-75. Similarly, for SPR-230 WHT-I, the
maximum AE values are 0.004958 for Phang et al., 0.015381 for
Almonacid et al., 0.004286 for Vika, 0.000151 for Khan et al.,
0.00204 for Blas et al., and 0.003514 for Cubas et al. method.

The parameter extraction for the SDM of three different
photovoltaic modules has been presented, with the first five
analytical/numerical methods identified as suitable models based on
their lower values of several statistical metrics, particularly the Phang
et al. and Blas et al. methods. The Phang et al. method, in particular,
achieves high accuracy through its use of a linear fit near critical points,
such as the short-circuit current and open-circuit voltage. This
approach enhances its robustness in minimizing errors across
different PV technologies and demonstrates strong agreement
between experimental data and the predicted curves. These
attributes underscore the high quality and reliability of the results
obtained using the Phang et al. method for the proposed technologies.

4 Conclusion

This paper provides a comparative study of various analytical/
numerical methods for estimating parameter extraction in different
technologies of PV modules. The simulations were conducted under
STCs using a single diode model implemented in the Matlab
Environment software. Each method was introduced and
modeled, and their appropriateness was assessed based on
statistical metrics such as RMSE, NRMSE, MAPE, MBE, and AE.

The performance analysis of the six methods was tested across
different manufacturers of monocrystalline, polycrystalline, and thin
film modules. The I-V and P-V curves of all selected methods
exhibited a strong relationship between experimental and predicted
values, except for the Almonacid et al. method. Notably, the Phang
et al., Blas et al., Khan et al., and Vika methods demonstrated lower
error values for various PV modules, including S-70 and SM-210W
polycrystalline, SP 75 SPR-230 WHT-I Monocrystalline, and Shell
ST36 and U-EA110W thin film modules. Conversely, the
Almonacid et al. method yielded the highest error values
compared to the other methods.

In conclusion, the Phang et al. method is identified as the most
effective for both technologies, providing high-quality results with a
strong agreement between experimental and predicted values.
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Nomenclature

Abbreviations

SDM Single diode model

STC Standard tests conditions

RMSE Root mean square error

MBE Mean bias error

NRMSE Mean absolute percentage error

MAPE Normalized root mean square error

AE Absolute error

DDM Double diode model

TDM Third diode model

p-Si Polycrystalline

m-Si Monocrystalline

MPP Maximum power point

GNI Global normal irradiation (W/m2)

Symbols

I-V Photocurrent–voltage

U-V Power-voltage

Rsh Shunt resistance (Ω)

Rs Series resistance (Ω)

Iph Photo-generated current (A)

I0 Diode saturation current

α Diode ideality factor

VT Thermal voltage

k Boltzmann constant (1.3806503 × 10−23 J/K)

q Electron charge (1.60217646 × 10−19C)

ISC Short circuit current at STC (A)

Voc Open circuit voltage at STC (V)

IMPP Maximum power current of PV module (A)

VMPP Maximum power voltage (V)

VT Thermal voltage
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