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Development of the 3D SPN
transport solver KANECS for
nuclear reactor analysis

Julian Duran-Gonzalez*, Alejandro Campos-Muñoz and
Victor-Hugo Sanchez-Espinoza

Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR),
Karlsruhe, Germany

For practical reactor analysis, a low-order transport approximation such as
simplified spherical harmonics (SPN) has become widely used due to its
improved accuracy over diffusion and lower computational cost compared
to spherical harmonics (PN) and discrete-ordinate (SN) methods. This paper
introduces and verifies KANECS, a new neutronic solver that employs the
SPN approximation and continuous Galerkin finite-element method (CGFEM)
for angular and spatial discretization respectively, to solve the 3D steady-
state multigroup neutron transport equation in Cartesian geometry. For the
numerical verification, the KAIST and C5G7 benchmarks were selected. The
results show that KANECS predicts with promising accuracy the keff and power
distribution, fairly close to the ones of transport approach. Consequently,
KANECS demonstrates that it can effectively perform a pin-by-pin core analysis.
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1 Introduction

For nuclear reactor analysis, it is fundamental to determine the power distribution
throughout the whole core (not only at the fuel assembly but also at the pin level),
which is proportional to the neutron flux distribution. The Boltzmann neutron transport
equation (BTE) (Lewis and Miller, 1993) describes the neutron distribution and movement
within a reactor core. Unfortunately, reaching an analytical solution is only feasible for
academic problems.Therefore, modern numerical approaches are employed to approximate
the solution accurately. There are two main methodologies to solve BTE, each one with
advantages and drawbacks. The first one is the stochastic method, such as the Monte Carlo
approach, which has the advantage of treating very complex 3D geometries almost without
incorporating approximations. Moreover, it does not require the preparation of problem-
dependent macroscopic cross section data. Finally, the continuous treatment of neutron’s
energy, as well as space angle, does not contain phase-space discretization,making it entirely
accurate to carry a high-fidelity model, yet at high computational costs and statistical
uncertainties. Hence, the time-dependent simulations are only possible for fast transients
lasting a few seconds, even when using a massively parallel high-performance computing
environment (Ferraro et al., 2020). An alternative approach is the deterministic method,
which involves discretizing the seven independent variables and solving themnumerically as
a set of algebraic equations. Although truncation errors occur due to discretization schemes,
deterministic methods are less computationally expensive but require the generation of
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problem-dependent macroscopic cross section data, however, for
the time being, are more practical to simulate transients.

Referring to deterministic methods, they can be classified
according to their angular discretization (Azmy and Sartori, 2010).
These methods include the spherical harmonics method (PN),
discrete-ordinates method (SN), and method of characteristics
(MoC). However, each method has its own drawbacks. For instance,
the PN method can become complicated due to a significant
increase in the number of unknowns for a 3D geometry. The
SN method suffers from the ray effect, and MoC requires many
iterative transport sweeps, leading to slow convergence. In general,
to overcome the shortcomings of each method, a massively
parallel implementation and an acceleration scheme are needed.
Nevertheless, for a practical whole-core reactor analysis, low-order
approximations are popular since they significantly reduce the
computing time.

The most well-known method is the diffusion approximation,
which is generally used in coarse mesh calculations. The
fundamental assumption in diffusion is that the neutron flux varies
slowly in space and that scattering is isotropic.Therefore, it is usually
restricted to an optically thick system where scattering reactions are
dominant. As a result, the diffusion approximation is accurate in a
typical large commercial nuclear reactor corewhere spatial gradients
are not extremely large and with low-neutron absorption media. On
the other hand, diffusion may not be accurate near strong absorbers
(poison and control rods) or material interfaces, such as at the fuel
assembly boundaries of UOX andMOX. It is worth noting that new
designs, such as Small Modular Reactors (SMRs), are characterized
by a highly heterogeneous core, a harder spectrum, andhigh neutron
leakage due to their compactness.Thus, a core analysiswith diffusion
approximation may not be sufficient to describe adequately the high
heterogeneity in the radial and axial directions.

In recent years, the simplified spherical harmonics
approximation (SPN) (Hamilton and Evans, 2015) has become
widely used as an alternative to diffusion. The SPN method offers
improved accuracy over diffusion by capturing some transport
effects while also requiring less computational time than SN or
PN approximations. Initially proposed by (Gelbard, 1960), the SPN
method is obtained by extending the one-dimensional PN equations,
formally replacing the total derivatives with a divergence for the
even equations and a gradient for the odd ones. Additionally, the
SPN method for slab geometry is equivalent to the PN method, but
for 3D geometry, it is less accurate but much easier to solve than its
counterpart. It is also important to mention that the SPN method
does not converge to the exact transport solution as N→∞, unlike
the PN method. While computationally efficient, the SPN method
introduces some weaknesses to the full PN method, for example,
lower angular accuracy, as SPN eliminates certain odd-moment
terms, making it less effective at capturing neutron fluxes in regions
as voids or control rod interfaces. In addition, SPN struggles with
sharp flux gradients near absorbers and in highly heterogeneous
reactor cores, often smoothing out neutron distributions where
PN provides better resolution. Nonetheless, satisfactory accuracy
can still be achieved at low-order simplified, typically at SP3 or
SP5 (Brantley and Larsen, 2000).

Recently, numerous neutronic solvers have been developed
using the multigroup SPN approximation, such as DYN3D
(Beckert and Grundmann, 2008), TRIVAC (Hébert, 2010),

SPNDYN (Babcsány et al., 2022), FEMFFUSION (Fontenla et al.,
2024), FENNECS (Lo Muzio and Seubert, 2024), and AZNHEX
(Muñoz-Peña et al., 2023). Most of these solvers implement
a finite-element approximation or nodal method, which
provides stability and accuracy. Thus, encouraged by these
references, a new neutronic solver known as KANECS (Karlsruhe
neutronics core simulator) has been developed using the SPN
approximation and the Continuous Galerkin Finite-Element
Method (CGFEM) (Zienkiewicz et al., 2005).

This work focuses on the detailed description, implementation,
and verification of KANECS. For the verification, challenging
benchmarks were selected to test the code’s capability and then
compared against other neutron transport approaches that have
already been verified with Monte Carlo reference results, which is
mandatory for evaluating the accuracy of any deterministic method.
The paper is structured as follows: Section 2 introduces the SPN
equations and their spatial discretization, while Section 3 focuses on
KANECS’s main features. Then, the numerical results and analysis
are presented in Section 4. Finally, the concluding remarks and
outlook are summarized in Section 5.

2 SPN equations and their spatial
discretization

The derivation of the steady-state SPN equations starts from the
one-dimensional multi-group neutron transport equation (Lewis
and Miller Jr, 1993),

μ
∂ψg (x,μ)

∂x
+Σtg (x)ψg (x,μ) =

G

∑
g′=1
∫
1

−1
Σsg′→g (x,μ0)ψg′ (x,μ

′)dμ′

+ 1
keff

χg (x)

2

G

∑
g′=1

νΣ fg′ (x)∫
1

−1
ψg′ (x,μ

′)dμ′

g = 1,…,G
(1)

whereψ is the angular neutron flux, x is the position, μ is the incident
neutrons cosine director, and G is the number of energy groups.
Additionally, Σt, Σs, and Σ f represent the total, scattering, and fission
macroscopic cross sections. Finally, keff, χ, and ν correspond to the
effective multiplication factor, the fission spectrum, and the average
number of neutrons emitted per fission, respectively.

Subsequently, the angular flux and scattering cross section can
be expanded in terms of Legendre polynomials as:

ψ(x,μ) =
N

∑
n=0

2n+ 1
4π

ϕn (x)Pn (μ) (2a)

Σs (x,μ0) =
N

∑
n=0

2n+ 1
4π

Σn
s (x)Pn (μ0) (2b)

In this case, ϕn is the nth neutron flux angular moment, Σn
s is the

nth moment of the scattering, and Pn is the Legendre polynomial of
degree n. Then, Equations 2a, 2b are employed into Equation 1, and
orthogonality properties for the Legendre polynomials are applied,
resulting in Equations 3, 4, which are expressed in matrix notation.

dΦ1

dx
+Σ0Φ0 =

1
keff

FΦ0 (3a)

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1498331
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Duran-Gonzalez et al. 10.3389/fenrg.2025.1498331

FIGURE 1
KANECS calculation scheme.

d
dx
( n
2n+ 1

Φn−1 +
n+ 1
2n+ 1

Φn+1)+ΣnΦn = 0 n = 1,…,N (3b)

where

Φn = (ϕ1n ⋯ ϕGn
)T (4a)

Σn =(

Σt1 −Σ
n
s11 −Σ

n
s12 ⋯ −Σn

s1G

⋮ ⋮ ⋱ ⋮

−Σn
sG1 −Σn

sG2 ⋯ ΣtG −Σ
n
sGG

) (4b)

F =(

χ1νΣ f1
χ1νΣ f2

⋯ χ1νΣ fG

⋮ ⋮ ⋱ ⋮

χGνΣ f1
χGνΣ f2

⋯ χGνΣ fG

) (4c)

Thus, Equations 3a, 3b compose a set of N+1 equations. For
simplification, this work considers the scattering components’
moments with N = 0 in Equation 2b, so the scattering cross section
can be considered isotropic Additionally, it is worth noting that the
closure relationship employed is to set the highest order moment to
zero d

dx
(ΦN+1) = 0.

The 3D simplified PN equations are derived by replacing the
total derivatives with the divergence operator for the even equations
and a gradient operator for the odd ones. This formulation results
in (N+1)/2 diffusion-like equations (elliptic, second-order) after
eliminating the odd moment’s terms. As a result, the set of SP7
equations is given in Equation 5:

−∇ ⋅ 1
3Σ1
∇(Φ0 + 2Φ2) +Σ0Φ0 =

1
keff

FΦ0 (5a)

−∇ ⋅ [ 2
15Σ1
∇(Φ0 + 2Φ2) +

3
35Σ3
∇ (3Φ2 + 4Φ4)] +Σ2Φ2 = 0 (5b)

−∇ ⋅ [ 4
63Σ3
∇ (3Φ2 + 4Φ4) +

5
99Σ5
∇(5Φ4 + 6Φ6)] +Σ4Φ4 = 0 (5c)

−∇ ⋅ [ 6
143Σ5
∇(5Φ4 + 6Φ6) +

7
195Σ7
∇(7Φ6)] +Σ6Φ6 = 0 (5d)

In the context of performing operations on a single unknown in
eachmoment equation, an introduced variable change𝕌 is involved,
which encloses the diffusive moments.

𝕌 =(

(

𝕌1
𝕌2
𝕌3
𝕌4

)

)

=(

(

Φ0 + 2Φ2

3Φ2 + 4Φ4

5Φ4 + 6Φ6

7Φ6

)

)

(6)

Afterward, by substituting the Equation 6 into the set of SPN
equations and after an appropriate reordering, the following system
form Equation 7 is achieved:

−∇ ⋅ 𝔻n∇𝕌n +
4

∑
m=1
𝔸nm𝕌m =

1
keff

4

∑
m=1
𝔽nm𝕌m; n = 1,2,3,4 (7)

𝔻 =
((((

(

1
3Σ1

0 0 0

0 1
7Σ3

0 0

0 0 1
11Σ5

0

0 0 0 1
15Σ7

))))

)

(8)

𝔸nm =
4

∑
i=1

c(i)nmΣi (9)

𝔽nm = c
(1)
nmF (10)
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FIGURE 2
KAIST-3A benchmark geometry. (A) Fuel assembly configuration for the KAIST-3A benchmark. (B) KAIST benchmark checkerboard assembly
configuration. (C) KAIST-3A (ARO) radial core layout.

c(1) =
(((

(
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(
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TABLE 1 Deviation results of KANECS SP3 from reference codes (single-assembly KAIST).

Fuel type Code keff Δkeff [pcm] εMAX [%] εRMS [%]

UOX-1
PARAFISH (P3) 1.10023 9 0.48 0.22

AZTRAN (S16) 1.10029 13 0.20 0.09

UOX-1-CR
PARAFISH (P3) 0.65017 −782 1.30 0.53

AZTRAN (S16) 0.65959 −1724 2.07 0.95

UOX-1-BA16
PARAFISH (P3) 0.86145 −651 1.69 0.76

AZTRAN (S16) 0.86607 −1,113 4.64 1.22

MOX-1
PARAFISH (P3) 1.16868 1 1.96 0.79

AZTRAN (S16) 1.16911 −42 0.58 0.27

MOX-1-CR
PARAFISH (P3) 0.88740 −284 1.28 0.37

AZTRAN (S16) 0.89227 −771 0.97 0.40

MOX-1-BA16
PARAFISH (P3) 1.08057 −115 1.69 0.81

AZTRAN (S16) 1.08164 −222 2.47 0.60

UOX-2
PARAFISH (P3) 1.25183 20 0.68 0.30

AZTRAN (S16) 1.25187 16 0.30 0.12

UOX-2-CR
PARAFISH (P3) 0.79251 −757 1.27 0.49

AZTRAN (S16) 0.80267 −1773 1.84 0.85

UOX-2-BA16
PARAFISH (P3) 1.03059 −556 1.57 0.70

AZTRAN (S16) 1.03478 −975 4.19 1.07

TABLE 2 Deviation results of KANECS SP3 from reference codes (checkerboard KAIST).

Checkerboard type Code keff Δkeff [pcm] εMAX [%] εRMS [%]

Unpoisoned
PARAFISH (P3) 1.18057 11 1.94 0.62

AZTRAN (S16) 1.18085 −17 0.83 0.22

MOX poisoned
PARAFISH (P3) 1.10495 −62 1.89 0.58

AZTRAN (S16) 1.10596 −163 2.97 0.89

UO2 poisoned
PARAFISH (P3) 1.04438 −198 2.99 1.15

AZTRAN (S16) 1.04691 −451 6.08 2.01

Heavily poisoned
PARAFISH (P3) 0.97194 −327 2.94 1.09

AZTRAN (S16) 0.97517 −650 6.17 2.30
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TABLE 3 Deviation results of KANECS SP3 from reference codes
(KAIST 3A ARO).

Case Code keff Δkeff
[pcm]

εMAX
[%]

εRMS
[%]

2D

PARAFISH
(P3)

1.13059 −85 3.54 0.75

AZTRAN
(S16)

1.13130 −156 4.77 1.05

3D

PARAFISH
(P3)

1.12781 −214 3.56 0.77

AZTRAN
(S16)

1.12731 −164 4.77 1.07

c(3) =(

(

0 0 0 0

0 0 0 0

0 0 9
25 − 54175

0 0 − 54175
324
1225

)

)

(11c)

c(4) =(

(

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 13
49

)

)

(11d)

where 𝔻 is the effective diffusion matrix (Equation 8), 𝔸 the
absorption matrix (Equation 9), 𝔽 the fission matrix (Equation 10),
and c(m) the coefficients matrices related to the SPN approximation.

For the SPN equations, the Marshak boundary conditions are
typically employed to represent the vacuum boundary condition,
which can be expressed in Equation 12 as follows:

−n̂ ⋅ 𝔻n∇𝕌n =
4

∑
m=1
𝔹nm𝕌m (12)

where n̂ represents the normal vector at the boundary, and
the matrix 𝔹 is obtained by taking the vector product of
the b matrix and the identity matrix of dimension G×G, as
represented in Equation 13.

𝔹nm = bnm ⊗ IG; b =
((((

(

1
2
−18

1
16 − 5

128

−1
8

7
24 − 41384

1
16

1
16
− 41384

407
1920 −

233
2560

− 5
128

1
16 − 2332560

3023
17920

))))

)
(13)

Lastly, reflective boundary conditions are imposed following
(Hamilton and Evans, 2015), leading to Equation 14:

∇𝕌n = 0; n = 1,2,3,4 (14)

More detailed information on the derivation of the SPN
equations and the vacuum and reflective boundary conditions

can be found in the following references (Hamilton and
Evans, 2015; Fontenla et al., 2024).

Regarding spatial discretization, the continuos Galerkin finite-
element method (CGFEM) (Zienkiewicz et al., 2005) is employed
since it is a well-established method offering numerical stability
and straightforward implementation. In this approach, the neutron
flux Φ is estimated in Equation 15 as a sum of the product of
Lagrange polynomial basis functions N and the coefficients Φ̃ to
be determined, where Ndofs represents the number of degrees of
freedom per element.

Φ ≈
Ndofs

∑
j=1

NjΦ̃j (15)

For example, by replacing the basis functions from [−1,1]3 into
a hexahedral finite element and considering a polynomial degree of
1, the approximation results in Equation 16.

Φ (x,y,z) ≈
1

∑
i=0

1

∑
j=0

1

∑
k=0

Ni,j,k (x,y,z)Φi,j,k (16a)

Ni,j,k (x,y,z) =
(1+ (−1)ix)(1+ (−1)jy)(1+ (−1)kz)

8
(16b)

As a consequence Equation 7 can be constructed in matrix-
block form using the operators Ĥ (transport operator) and F̂ (fission
operator), as shown in Equation 17.

Ĥnn =
Nc

∑
c=1
𝔻nn∫

Ωc

∇Ni ⋅∇Nj dV−𝔻nn∫
∂Ωc

Ni ∇Nj ⋅ n̂dS

+𝔸nn∫
Ωc

Ni Nj dV (17a)

Ĥnm =
Nc

∑
c=1
𝔸nm∫

Ωc

NiNjdV m ≠ n (17b)

F̂nm =
Nc

∑
c=1
𝔽nm∫

Ωc

NiNjdV (17c)

where 𝔻, 𝔸, and 𝔽 matrices are defined in Equations 8–10
respectively. In addition, Ωc denotes the reactor core subdomain,
∂Ωc represents the subdomain surfaces of the reactor boundary, and
Nc is the total number of partitioned cells.

Finally, this weak form formulation leads to an algebraic
eigenvalue linear system Equation 18, which KANECS solves using
numerical software libraries.

Ĥu = 1
keff

F̂u (18)

3 KANECS description

KANECS (Karlsruhe Neutronics Core Simulator) is a
deterministic multigroup neutron transport solver being developed
by the Karlsruhe Institute for Technology (KIT). It is based on the
SPN transport equations and the continuous Galerkin finite-element
method (CGFEM). At present, it can only handle steady-state
calculations in Cartesian geometry with isotropic scattering. The
code is written in hybrid Modern Fortran and C++ languages.
Additionally, it incorporates various numerical libraries to assist the
iterative calculations for solving Equation 18.
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FIGURE 3
KAIST-3A Benchmark pin power distribution.

TABLE 4 2D-KAIST ARO accuracy results for SPN approximations,
comparing against AZTRAN (S16).

SPN
approx

DEG keff Δkeff
[pcm]

εMAX [%] εRMS [%]

SP1

1 1.12488 −643 18.07 4.34

2 1.12729 −402 6.46 2.01

SP3

1 1.12716 −415 18.28 3.82

2 1.12974 −156 4.77 1.05

SP5

1 1.12737 −394 17.91 3.73

2 1.13001 −130 4.29 0.91

SP7

1 1.12743 −388 17.91 3.71

2 1.13011 −120 4.21 0.89

One of the main libraries used is deal. II (Arndt et al., 2023),
an open-source finite element library, which offers a comprehensive
framework for the solving elliptic and parabolic partial differential
equations (PDEs) found in the SPN formulation. This library
provides a wide range of features, including various finite element
types such as Lagrange, Nedelec, and Raviart-Thomas elements, as
well as more advanced types like discontinuous Galerkin elements.

Then, the Portable, Extensible Toolkit for Scientific
Computation (PETSc) (Balay et al., 2024) is employed for the
linear system solution since it provides a comprehensive suite of

data structures and routines. Particularly, PETSc provides a flexible
and efficient way to handle vectors and supports multiple matrices
formats (CSR and matrix-free), which is essential for large-scale
scientific computation.Moreover, it includes awide range of iterative
solvers, such as the generalized minimal residual method (GMRES)
and the biconjugate gradient stabilized method (Bi-CGStab), along
with preconditioning techniques like incomplete LU factorization
(ILU) and Incomplete Cholesky factorization (ICC) to enhance
convergence speed.

Lastly, the Scalable Library for Eigenvalue Problem
Computations (SLEPc) (Roman et al., 2024) is used to solve
eigenvalue problems, specifically to determine the multiplication
factor (largest eigenvalue) and its corresponding eigenvector
(neutron flux) that satisfy Equation 18. SLEPc is developed on top
of the PETSc library, using its data structures and solvers to create
a comprehensive framework for eigenvalue calculations. Besides,
SLEPc provides a variety of linear eigensolvers, including the Power
and Krylov-Schur methods.

It is worth noting that the selection of these libraries offers a
powerful tool for solving the SPN equations due to their dedicated
user and developer communities, guaranteeing consistent support
and continuous ongoing enhancements. Furthermore, they are
designed to be compatible with parallel computing environments,
such as the Message Passing Interface (MPI) and the Compute
UnifiedDeviceArchitecture platform (CUDA), which are crucial for
solving large-scale simulations efficiently.

The KANECS calculation scheme is as follows: firstly, the
input file containing the geometry, neutron cross sections, and
convergence criteria is read. Subsequently, the deal. II library
handles the discretization by employing the weak form of the SPN
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TABLE 5 Convergence behavior for the 2D-KAIST ARO Benchmark.

Eigensolver Iterative solver Preconditioner Outer iteration Inner iteration CPU time (s)

Power Iteration

GMRES

JACOBI 69 16190 402

SOR 69 3,750 254

ILU 69 2,348 102

ICC 69 2,715 100

BCGS

JACOBI 69 8,967 380

SOR 69 2,614 335

ILU 69 1,566 121

ICC 69 1,589 105

Krylov-Schur

GMRES

JACOBI 1 3,880 98

SOR 1 860 58

ILU 1 553 24

ICC 1 647 24

BCGS

JACOBI 1 2,127 90

SOR 1 600 76

ILU 1 374 30

ICC 1 382 25

equations and the continuous Galerkin method. As a result, it
provides quadrature points, shape function values, and gradients.
For each cell, deal. II computes the global indices and the elemental
localmatrix, whichwill be assembled into the Ĥ and F̂ operators.The
KANECS solution implements a matrix-full allocated technique,
which involves preallocating memory with the maximum expected
number of non-zero elements to prevent reallocation and copying
of data during assignments. The data structure of PETSc is used for
assembling the operators using the CRS (Compressed Row Storage)
format and the Cuthill-McKee method provided by deal. II, which
reorders the rows and columns of sparse matrices to reduce its
bandwidth. Once the operators are fully assembled, SLEPc is used
to solve the eigenvalue problem (Equation 18) with the methods
previously selected for the linear solver (GMRES/Bi-CGStab),
preconditioner (ILU/ICC), and eigensolver (Power/Krylov-Schur).
Upon achieving convergence, an output file is generated containing
all the results (keff, radial, and axial power distribution) along with
a Visualization Toolkit (VTK) file that enables flux and power
visualization using toolkits such as Paraview (Ahrens et al., 2005).
A simplified flowchart of this procedure is shown in Figure 1.

4 Numerical results

In this section, the KAIST (Cho, 2000) and C5G7 (Lewis et al.,
2003) benchmarks are simulated to verify the KANECS’ capabilities.

For verification, the computational results are compared using other
deterministic neutron transport codes, PARAFISH (PN) (Duran-
Gonzalez et al., 2022) and AZTRAN (SN) (Duran-Gonzalez et al.,
2021) employing the same conditions (geometry, cross sections,
and convergence criteria). In order to conduct a comprehensive
code-to-code comparison, the following collective relative error
measures are used: the keff deviation is calculated in Equation 19a,
the maximum relative error for the pin power is defined in
Equation 19b, and the relative root-mean-square (RMS) disparity
is shown in Equation 19c, where Np represents the total number of
active pins.

Δkeff [pcm] = 105 (k
KANECS
eff − krefeff) (19a)

εMAX [%] =max(
|PKANECSi − Prefi |

Prefi
× 100) (19b)

εRMS [%] = √
1
Np

Np

∑
i=1
(
PKANECSi − Prefi

Prefi
× 100)

2

(19c)

Finally, all the calculations were performed with convergence
criteria set to 10−7 for the neutron flux and 10−6 for keff. All codes
were executed in a workstation with an AMD EPYC 7543 Processor
and a 200 GB RAM, using a single processor core.
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FIGURE 4
C5G7 benchmark geometry. (A) Pin cell configuration. (B) Fuel assembly configuration for the C5G7 benchmark. (C) C5G7 Benchmark radial
core layout.

4.1 KAIST 3A benchmark

The KAIST 3A benchmark features a simplified Pressurised
Water Reactor (PWR) with a MOX-loaded core, it is part of a series

developed by the KAIST Nuclear Reactor Analysis and Particle
Transport Laboratory (Cho, 2000). The core comprises two types
of fuel assemblies: UOX (UOX-1 with 2.0% enrichment and UOX-
2 with 3.3% enrichment) and MOX. A reflector and a steel baffle
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TABLE 6 Deviation results of KANECS SP3 from reference codes (single-assembly C5G7).

Fuel type Code keff Δkeff [pcm] εMAX [%] εRMS [%]

UO2 (Fully)
PARAFISH (P3) 1.33355 77 0.75 0.45

AZTRAN (S16) 1.33423 9 0.75 0.49

UO2 (Partially)
PARAFISH (P3) 0.96935 −211 2.46 0.89

AZTRAN (S16) 0.97066 −342 2.56 0.97

MOX (Fully)
PARAFISH (P3) 1.17481 59 1.07 0.56

AZTRAN (S16) 1.18233 −693 1.16 0.54

MOX (Partially)
PARAFISH (P3) 0.88336 −15 1.44 0.68

AZTRAN (S16) 0.88912 −591 1.20 0.60

TABLE 7 Deviation Results of KANECS SP3 from Reference Codes (C3
minicore).

Code keff Δkeff [pcm] εMAX [%] εRMS [%]

PARAFISH (P3) 1.25711 53 1.34 0.64

AZTRAN (S16) 1.26068 −304 1.63 0.77

TABLE 8 Deviation results of KANECS SP3 from reference codes (C5G7
benchmark).

Case Code keff Δkeff
[pcm]

εMAX
[%]

εRMS
[%]

2D

PARAFISH
(P3)

1.18371 6 3.24 0.95

AZTRAN
(S16)

1.18638 −261 3.77 1.05

3D

PARAFISH
(P3)

1.18097 13 3.50 0.98

AZTRAN
(S16)

1.18385 −275 3.78 1.10

surround the fuel assemblies. Each assembly constitutes a 17 ×
17 lattice design with a width of 21.42 cm and a pin-cell pitch of
1.26 cm. This benchmark provides 7-group pin-cell homogenized
cross sections (Cho, 2000) based on the HELIOS 34 group structure,
including UOX, MOX, guide tubes, fuel rods, control rods, poison
rods, a baffle, and a reflector. The core layout of the KAIST 3A
benchmark is illustrated in Figure 2.

4.1.1 KAIST 3A assembly cases
As a first verification exercise, the different fuel assembly types

(Figure 2A) were analyzed, consisting of 6 UOX and 3 MOX
assemblies, with variations in the number of burnable absorbers
and control rods. The results obtained for all the different fuel

types are summarized in Table 1. First, it could be observed that
KANECS demonstrated excellent agreement for assemblies without
control rods or burnable absorbers, with RMS errors of less than
0.79% and keff deviation below 42 pcm compared to other transport
codes. However, notable differences arose as heterogeneity increased
(burnable absorbers and control rods), obtaining RMS errors of up
to 1.22% (UOX-1-BA16) and keff deviation around 1773 pcm (UOX-
2-CR). In addition, as expected, the highest differences are observed
when compared with AZTRAN in heterogeneous models since it
can accurately model the sharp gradients introduced by burnable
absorbers and control rods using higher angular approximation. In
contrast, the SPN method may not capture these details accurately
since it assumes smoother flux distributions, making it struggle with
steep flux gradients as produced for these models where the high
absorption cross section leads to steep neutron flux depressions in
their vicinity. Although the RMS error differences remained within
an acceptable range from 0.40% to 1.22%.

4.1.2 KAIST 3A checkerboard cases
For the next verification, four different (UOX/MOX)

checkerboard arrangements were investigated to provide a more
realistic assessment. As shown in Figure 2B, the configurations have
different amounts of absorbers, making them more challenging
since the spectrum interface among the fuel assemblies is very
strong. The checkerboard calculation results are shown in Table 2.
As foreseen, the most significant discrepancies from the references
occur in the poisoned cases, with RMS error differences up
to 1.15% (PARAFISH) and 2.30% (AZTRAN), respectively. In
addition, the highest keff deviations were found in the Heavily
poisoned assembly with 327 (PARAFISH) and 650 (AZTRAN)
pcm. This is consistent with previous results, where the error
increases for assemblies with strong absorbers. Despite this, the
results are in reasonable agreement, with RMS error variances
ranging from 0.22% to 2.30%. It is noteworthy that in some works
(Yu et al., 2014; Zhang et al., 2017), the SP3 approximation has
been tested in the KAIST checkerboard benchmark, where the
authors have employed approaches such as super homogenization
(SPH) factors and discontinuity factors (DF) to enhance their
results notably.
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FIGURE 5
C5G7 Benchmark pin power distribution.

4.1.3 2D/3D KAIST 3A ARO case
Finally, the 2D/3D KAIST 3A benchmark problems under the

ARO (all control rods out) condition have been simulated. The
2D case is illustrated in the core layout depicted in Figure 2C,
while the 3D case extends the same 2D radial configuration by
365.76 cm and includes axial reflectors at the top and bottom of the
core, each with a width of 21.42 cm. The results of the calculation
are outlined in Table 3, and the detailed pin power distribution
from the KAIST 3A is illustrated in Figure 3. The results show
that the keff deviations are less than 156 and 214 pcm for the
2D and 3D cases, respectively. Furthermore, the maximum RMS
discrepancy is approximately 1.07% against AZTRAN and 0.77%
for PARAFISH. It is worth noting that the differences between
2D and 3D cases are minimal due to the high axial homogeneity
of the core. Overall, the results align well with the transport
references, especially considering that the ARO configuration is
less heterogeneous than previous examples, leading to minor
discrepancies. Table 4 presents the results for the 2D case compared
with AZTRAN (S16) for different angular approximations and finite
element polynomial degree (DEG). As it can be appreciated, the
accuracy improves as the angular approximation and polynomial
degree increase. In this particular case, the polynomial degree plays

a crucial role in reducing discrepancies, as demonstrated by the
substantial reduction in the maximum relative error from 18.28%
to 4.77% when moving from SP3 with DEG 1 to SP3 with DEG 2.
Another notable observation is the enhancement in results from
diffusion (SP1) to higher angular approximations, with the RMS
error reducing from 2.01% to 0.89% with an SP7. Lastly, Table 5
shows the convergence behavior for the 2D-KAIST case with an
SP3 approximation. A noteworthy aspect is the significant difference
in computing time between the eigensolvers Power iteration (PI)
and Krylov-Schur. Krylov was observed to be almost four times
faster than PI. Concerning the iterative solvers, GMRES and BCGS
exhibited similar computing times, with GMRES requiring more
inner iterations to converge but being slightly faster than BCGS.
Ultimately, related to the preconditioners, the efficiency of ILU and
ICC surpassed that of JACOBI and SOR, being approximately three
times faster on average.

4.2 C5G7 benchmark

The C5G7 benchmark (Lewis et al., 2003), proposed by the
OECD/NEA, is designed to assess the capability of modern
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TABLE 9 2D-C5G7 accuracy results for SPN approximations, comparing
against AZTRAN (S16).

SPN
approx

DEG keff Δkeff
[pcm]

εMAX [%] εRMS [%]

SP1

1 1.18492 −146 8.50 2.27

2 1.18401 −237 6.02 1.70

SP3

1 1.18519 −119 5.15 1.47

2 1.18377 −261 3.77 1.05

SP5

1 1.18463 −175 4.87 1.43

2 1.18320 −318 3.72 0.94

SP7

1 1.18437 −201 4.87 1.42

2 1.18316 −322 3.64 0.88

deterministic neutron transport codes in simulating heterogeneous
reactor cores with strong transport gradients and without spatial
homogenization. The C5G7 configuration, represented in Figure 4,
includes two types of fuel assemblies (UO2 and MOX). Each
assembly consists of a 17 × 17 pin-cell containing materials such
as UO2, 4.3% MOX, 7.0% MOX, 8.7% MOX, a fission chamber, a
guided tube, and a moderator. The side length of each assembly
is 21.42 cm, and the pin-cell pitch is 1.26 cm. A noteworthy
aspect, as the KANECS code deals with Cartesian geometry and
cannot handle circular shapes, a rectangular mesh discretization
displayed in Figure 4A is employed, preserving the circular area.
Further details and specifications, including the geometry and the
isotropic transport corrected cross sections with 7 energy groups,
can be found in (Lewis et al., 2003).

4.2.1 Assembly cases
The first exercise verification simulates the UO2 and MOX

fuel assemblies illustrated in Figure 4B. Two configurations were
considered: “fully reflected” (reflective boundary conditions applied
to all faces) and “partially reflected” (vacuum boundary conditions
on the right and bottom and reflective boundary conditions on the
top and left). Table 6 provides the calculation results. As it can be
observed, the fully reflected results showed excellent concordance,
the highest difference was found in the MOX assembly with an
RMS error difference below 0.56% and keff deviation less than 693
pcm. In contrast, there were significant discrepancies in the partially
reflected models, especially in the UO2 assembly, in which the
maximum relative differences found were nearly 2.56%, mainly in
the regions close to vacuum boundaries, although the RMS errors
were below 0.97%. These differences may be caused by the Marshak
Boundary Conditions applied in the SP3 approximation, which are
better suited for “diffuse boundaries” rather than fuel assemblies.
Under this situation, the Marshak Boundary Conditions can lead
to different flux distributions near the boundaries compared to
vacuum (zero incoming flux) boundary conditions provided by
the SN method. It is worth mentioning that even though the P3

approximation also applies the Marshak Boundary Conditions, it is
still accurate since it considers more angular moments. Thus, it can
better represent the flux gradients.

4.2.2 C3 mini-core configuration
The following exercise involves modeling the C3 benchmark,

which features a 2 × 2 mini-core configuration. This model
is essentially the C5G7 model shown in Figure 4C, except
that the moderator does not surround it, and the reflective
boundary conditions are applied to all four faces. The results,
displayed in Table 7, again showcase the consistency with the
previous results. The solution produced a good agreement with
the references. KANECS closely aligns with PARAFISH, obtaining
differences of approximately 53 pcm for the keff and 0.64% for the
RMS error. Additionally, compared with AZTRAN, KANECS show
differences of 304 pcm and 0.77%.

4.2.3 2D/3D C5G7 benchmark
At last, the 2D/3D C5G7 benchmarks were analyzed. The

2D configuration is shown in Figure 4C. Regarding the 3D
configuration, the fuel assemblies are extended 192.78 cm in the z-
direction with an additional 21.42 cm of moderator material axially
added at the top and bottom. The numerical results are illustrated
in Table 8, with maximum eigenvalue errors of about 261 and
275 pcm for the 2D and 3D cases, respectively. Furthermore, the
maximum RMS errors are found to be less than 1.10%, indicating
that the results of simulating a core without spatial homogenization
agree with the transport references. Lastly, Figure 5 illustrates
the corresponding pin power distribution for each configuration.
Concerning the sensitivity analysis of the 2D-C5G7 Benchmark’s
accuracy, Table 9 displays the results obtained by varying the angular
approximation and the polynomial degree compared to AZTRAN
(S16). As expected, the accuracy increases as the parameters grow,
moving from the lowest approximation, SP1 with DEG 1 (εMAX =
8.50% and εRMS = 2.27%), to the highest approximation, SP7 with
DEG 2 (εMAX = 3.64% and εRMS = 0.88%). To conclude, Table 10
depicts the convergence behavior for the 2D-C5G7 with an SP3
approximation. As the previous results, the Krylov-Schur proved
to be the most efficient eigensolver, being almost 3 times faster
than the Power Iteration method. Among the iterative solvers,
GMRES and BCGS demonstrated similar computational times
(although GMRES required more iterations), while the ILU and
ICC preconditioners achieved faster convergence compared to
JACOBI and SOR.

5 Conclusion and outlook

The Karlsruhe Neutronics Core Simulator (KANECS) was
recently developed and verified using the well-known benchmark
problems KAIST 3A and C5G7. KANECS is based on the SPN
approximation and continuous Galerkin finite-element method
(CGFEM). Furthermore, it was founded on three powerful libraries
deal. ii, PETSc, and SLEPc,which together offer advanced simulation
software for solving large-scale problems like the neutronic pin-by-
pin analysis.The results of theKAIST-3Aproblems usually exhibited
good concordancewith respect to the transport references.However,
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TABLE 10 Convergence behavior for the 2D-C5G7 Benchmark.

Eigensolver Iterative solver Preconditioner Outer iteration Inner iteration CPU time (min)

Power Iteration

GMRES

JACOBI 48 31860 54

SOR 48 7,993 34

ILU 48 4,204 12

ICC 48 4,224 9

BCGS

JACOBI 48 11457 33

SOR 48 4,123 32

ILU 48 2,629 14

ICC 48 2,462 10

Krylov-Schur

GMRES

JACOBI 1 10308 17

SOR 1 2,712 11

ILU 1 1,403 4

ICC 1 1,437 3

BCGS

JACOBI 1 4,223 12

SOR 1 1,552 12

ILU 1 925 5

ICC 1 907 4

when analyzing the checkerboard arrangements, which are very
heterogeneous configurations, significant differences were found
since the SPN approximation might struggle in regions with strong
flux gradients (like fuel pins adjacent to control rods or gadolinium
rods). Consequently, super homogenization or discontinuity factors
approaches need to be implemented as in other similar tools
to enhance the results. Regarding the C5G7 benchmarks, the
results show good agreement with the references despite being
a more challenging problem without spatial homogenization. To
summarize, KANECS was shown to provide good overall accuracy
in predicting the keff and pin power distribution fairly close to the
transport approaches, withminor localized errors that do not detract
significantly from the solver’s effectiveness for practical reactor
simulations with a low computational cost. Moreover, the results
clearly show that KANECS (SP3) is closer to PARAFISH (P3) than
AZTRAN (S16) as it was theoretically expected. Additionally, the
more accurate results are obtained as the angular approximation
and polynomial degree increase. This is particularly noticeable in
the transition from the diffusion approximation (SP1) to the SP3
approximation. However, with higher-order approximations, such
as SP5 and SP7, the accuracy only improves slightly compared to
SP3. Finally, when selecting the iterative solvers, the computing
time results demonstrated that the Krylov-Schur eigensolver is
much more powerful than the Power Iteration method. Meanwhile,

GMRES or BCGS solvers yield similar results, with GMRES
being slightly faster while using either ILU or ICC preconditioner
converging more rapidly than SOR and JACOBI. Future efforts will
be devoted to implement the matrix-free method, which will reduce
computational memory usage by iteratively forming the matrix
without explicitly forming it. Furthermore, an unstructured mesh
implementation is also ongoing, taking advantage of the deal. II
library capability to handle flexible grids. Lastly, KANECS will be
extended to perform time-dependent calculations coupled with in-
house core thermal-hydraulic code, such as SUBCHANFLOW and
TWOPORFLOW.
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