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Day-ahead electricity prices in today’s competitive electric power markets
have complex features such as high frequency, high volatility, non-linearity,
non-stationarity, mean reversion, multiple periodicities, and calendar effects.
These complicated features make price forecasting difficult. To address this,
this research examines the application of functional data analysis to forecasting
day-ahead electric power prices. Compared to classical time series forecasting
approaches, functional data analysis is more appealing since it anticipates
the daily profile, allowing for short-term projections. This technique uses a
functional autoregressive (𝔽AR) and a functional autoregressive with exogenous
predictors (𝔽AR𝕏) model to predict the next-day electric power prices. In
addition, standard time-series forecasting models, including autoregressive
(AR) AR𝕏, autoregressive integrated moving average (ARIMA), and ARIMA𝕏
are also utilized for comparison. The model’s prediction performance was
evaluated using data on electricity prices from the British electricity market,
considering forecast error indicators and the same forecast statistical test. The
results show that the proposed functional models (𝔽AR and 𝔽AR𝕏) outperform
standard time series models. In comparison to the benchmark models (AR,
AR𝕏, ARIMA, ARIMA𝕏, and the proposed 𝔽AR model), the 𝔽AR𝕏 model
reduces: the day-ahead forecasting average MAPE by ranges of 5.02%–45.77%,
4.07%–40.63%, 3.80%–38.99%, 1.90%–24.22%, and 0.95%–13.78%; MAE
by ranges of 9.43%–69.32%, 5.17%–65.48%, 6.04%–59.16%, 3.02%–42.01%,
and 1.51%–26.59%; RMSE by ranges of 8.98%–40.97%, 6.68%–34.03%,
4.22%–24.58%, 3.91%–23.20%, and 2.30%–15.11%. Furthermore, compared
with the literature-proposed best models, the 𝔽AR𝕏 model produces a
significantly higher accuracy and efficient day-ahead forecast based on
forecasting error indicators and an equal forecast statistical test. Furthermore,
compared with the best models proposed in the literature, the 𝔽AR𝕏 model
demonstrates significantly higher accuracy and efficiency in day-ahead
forecasting, as evidenced by forecasting error indicators and an equal forecast
statistical test.

KEYWORDS

electric power market, functional data analysis, day-ahead electricity price forecasting,
classical time series models, functional time series models

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2025.1477248
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2025.1477248&domain=pdf&date_stamp=2025-03-27
mailto:hasnain@stat.qau.edu.pk
mailto:hasnain@stat.qau.edu.pk
mailto:mehakkhan3@hotmail.com
mailto:mehakkhan3@hotmail.com
https://doi.org/10.3389/fenrg.2025.1477248
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1477248/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1477248/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1477248/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jan et al. 10.3389/fenrg.2025.1477248

1 Introduction

Electricity is an essential requirement for all aspects of modern
life. However, large-scale energy storage remains a problem,
complicating operating plans in the electricity sector. As a result,
energy pricing in supply and demand is an issue since it is directly
related to the quantity of consumed load. This connection serves as
the foundation for all utility economic planning and administration.
Furthermore, trustworthy and committed policies in development
plans are essential. For example, generation units must prioritize
reliability alongside other policies, such as environmental protection
and renewable energy infrastructure development. These policies
significantly affect the quality of delivered energy (Lago et al., 2021).

Efficient planning in reorganized power systems is separated
into four time periods: long-term (more than 10 years), medium-
term (1 year), short-term (1 week to 1 month), and immediate
planning. These plans must consider load usage, electricity pricing,
economic conditions, and yearly electricity prices. Furthermore,
the demand load quantity, a time-dependent nonlinear function,
must be evaluated daily (day or night), seasonally (hot or cold),
and considering local weather conditions (Inglada-Pérez and
Gil, 2024; Iftikhar et al., 2023a).

As a result, differing electricity demand patterns and levels
vary significantly over time (at least hourly). As mentioned
earlier, each phase has significant characteristics that improve
managerial performance. During these periods, 1-day forecasting
has the most significant impact on power prices. The most crucial
advantage of short-term forecasting is that it enhances supply
and demand. Therefore, selecting the most accurate and rapid
approach for estimating electric power costs is critical and vital
(Gonzales et al., 2024; Iftikhar et al., 2023b).

To obtain efficient and accurate one-day-ahead electric power
demand and prices, many studies have used classical time series
forecasting models, including exponential smoothing, regression
analysis, and various machine-learning models such as neural
networks, fuzzy neural networks, and support vector machines
(Pinhão et al., 2022; Shah et al., 2019). For example, Dudek (2015)
employed stochastic models for short-term price forecasting. They
utilized the regression trees method to forecast electricity prices and
compared the results with those of alternative approaches such as
ARIMA, exponential smoothing, and neural networks. Empirical
findings indicated that their proposed method outperformed other
benchmark techniques regarding predictive accuracy. Li et al.
(2020) proposed a new hybrid short-term load forecasting method
that combined multivariate linear regression (MLR) and long-
short-term memory (LSTM) neural networks. Taheri et al. (2021)
suggested forecasting the electricity demand time series employing a
hybrid prediction model that combined LSTM with empirical mode
decomposition (EMD). Recurrent neural networks (RNNs) can be
preferable as they implicitly capture the temporal context available in
the time series or sequential data (Gers et al., 2001; Karim et al., 2019;
Talebjedi et al., 2024; Baruah andOrganero, 2023). A gated recurrent
unit (GRU) and LSTM networks have demonstrated efficiency in
modeling and forecasting time series data (Coelho et al., 2024).
GRU networks are mainly used in classification and are seldom
applied in regression problems (Liu et al., 2017; Ugurlu et al., 2018).
Fargalla et al. (2024) employed combined neural networks (GRU
+ MLP, CNN + bidirectional GRU (BiGRU)) for predicting gas

production in various reservoirs, showcasing remarkable prediction
capabilities. Hippert et al. (2001) conducted a comprehensive review
of short-term demand prediction and compared the performance
of artificial neural networks with classical TS methods. Their
results indicate that artificial neural networks outperform classical
techniques. With increasing uncertainty in electrical systems,
anticipating electricity demand, generation, and pricing becomes
challenging for actors in the electrical market (Rajabi and Estebsari,
2019). Numerous strategies and solutions have been proposed
in response to these challenges. However, each method entails
its own advantages and disadvantages. As the electricity market
integrates more renewable resources with intermittent behavior,
the system experiences additional fluctuations and volatility,
making the development of superior and efficient forecasting
models complex (Chan et al., 2012). To effectively handle complex
TS data, it is essential to develop state-of-the-art visualization,
modeling, and forecasting techniques to accommodate high- and
infinite-dimensional data. Classical methods for multivariate data
encounter difficulties when dealing with such complex data, leading
to ineffective results. Therefore, alternative approaches, such as
functional data analysis (FDA) methods, have been less explored in
the literature.

One-day-ahead price forecasting is of utmost importance
for market agents and system operators. Overproduction incurs
penalties due to the inability to store electricity and the need to
instantly meet demand. Price forecasting also facilitates efficient
resource management, optimal scheduling, and production
planning to minimize generation costs. Retailers heavily rely on
price forecasts to secure the best deals for their energy requirements.
Hence, predicting the price for the next day is a significant
concern for electricity businesses. The advent of smart metering
has increased the frequency of electricity consumption data, with
measurements now available at intervals as short as every half-
hour or even a few minutes. Consequently, forecasting prices for
the following day require predicting many price values beyond the
traditional, highlighting the need for innovativemethodologies such
as utilizing functional data methods (Chaouch, 2013; Paparoditis
and Sapatinas, 2013; Shah et al., 2022b). FDA is a statistical
framework that analyzes and models observed data as curves or
functions. Functional time series (FTS) extends this framework to
handle time-dependent functional data, enabling the analysis and
forecasting of functional observations over time.

FTS techniques have found numerous applications in electricity
markets. From a functional perspective, it is possible to generate
long-term estimates of electricity demand or day-ahead clearing
prices. The challenge of forecasting over longer horizons can
be addressed by transforming it into a series of one-step-ahead
functional forecasts. This can be achieved by segmenting the
time series into segments of equal length corresponding to the
desired forecast horizon. While various approaches exist for dealing
with discrete TS, limited contributions specifically focus on FTS
(Horváth and Kokoszka, 2012). From a univariate FTS modeling
perspective, the theory of linear FTS in Hilbert space was proposed
by Bosq (2000) and Bosq and Blanke (2008) by introducing the
functional autoregressive (𝔽AR) model. Notably, the pioneering
studies in this research area include functional Yule–Walker (YW)
estimation and Sieve estimation. Subsequently, 𝔽AR (1) was
extended to orderP through sequential testing hypothesis methods
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(Kokoszka and Reimherr, 2013). Chen and Li (2017) investigated
an adaptive functional autoregressive (AfAR) model for forecasting
electricity price curves. By employing California electricity daily
price data, their results demonstrated that the proposed AfAR
model exhibits superior forecasting accuracy compared to several
alternative approaches. Lisi and Shah (2020) forecast electricity
demand and price series by dividing the TS into deterministic
and stochastic components. The deterministic component was
modeled and forecast using the conventional time series method,
and the stochastic component was modeled and projected using the
functional models. Both parametric and nonparametric functional
models forecast electricity demand and prices. The results of the
proposed method were compared with classical models. The results
suggested that the proposed method performs relatively better than
the competitors.

As seen in the above studies, the functional time series
approach enhances the forecasting accuracy and efficacy of short-
term electric power prices better than other methods and models.
To test these studies, this research examines the application of
functional data analysis to forecasting day-ahead electric power
prices. Within the functional data analysis, this study proposes a
functional autoregressive (𝔽AR) and a functional autoregressive
with exogenous variables (𝔽AR𝕏)model to predict next-day electric
power prices. The 𝔽AR𝕏 model includes exogenous variables
describing the complex features of electricity power prices (a long-
term secular trend, daily, weekly, and annual periodicity, bank
holidays). In the past, some research captured these complex
features by components-wise estimation (Lisi and Shah, 2020;
Chen et al., 2018; Aue et al., 2015). In contrast, our research directly
uses these features in a single model (𝔽AR𝕏) and checks the
proposal’s performance in different ways. For instance, standard
time series forecasting models, including the autoregressive (AR),
the AR𝕏, the autoregressive integrated moving average (ARIMA),
and the ARIMA𝕏, are also utilized for comparison. The model’s
prediction performance was evaluated using data on electricity
prices from the British electricity market, considering forecast error
indicators and the same forecast statistical test. Thus, the key
contributions of this study are the following.

• To improve the efficiency and accuracy of day-ahead electricity
price forecasting, this work proposes novel functional
autoregressive (𝔽AR) and functional autoregressive with
exogenous variables (𝔽AR𝕏) models. The 𝔽AR𝕏 model
includes exogenous variables that describe the complex features
of electricity power prices (a long-run secular trend, daily,
weekly, and annual periodicity, and bank holidays).

• Compare the performance of the proposed functional models
with various standard time series models with and without
exogenous information.

• To evaluate the performance of the proposed functional
forecasting models, three different accuracy mean errors are
determined: mean absolute error, root mean squared error,
and mean absolute percent error; an equal forecast statistical
test—the Diebold and Marino test; a visual evaluation.

• In this study, the results of the functional autoregressive with
exogenous variables (𝔽AR𝕏) model are compared with the best
model proposed in the literature, and the comparative results
are recorded. Based on these results, this study’s proposed best

combination model is highly accurate and efficient compared
to the best models reported in the literature for day-ahead
electricity price forecasting.

• Finally, while this study is limited to the British electricity
market, it may be extended and generalized to other energy
markets to assess the efficacy of the proposed functional
forecasting model.

The rest of this study is structured thus. Section 2 gives an
overview of the basics of the FDA. Section 3 presents an overview
of the British electricity market and the out-of-sample forecasting
results. Section 4 compares the current study’s proposed best model
and the literature’s proposed best models. Section 5 summarizes the
key conclusions drawn from our study and outlines potential future
research directions.

2 Preliminaries of functional data
analysis

This section addresses certain fundamental concepts that are
required for developing functioning models. The TS of electricity
prices (Yi) is converted into functional data using specific basis
functions. The daily electricity price for the ith day can be
stated as follows:

Yi (τ) =
J

∑
j=1

αjβi,j (τ) τ ∈K, (1)

where αj is the value of the constant parameters, and βi,j(τ) are
the Fourier basis functions. Figure 4 shows FTS curves for 1826
days, with each functional curve representing a daily price trend.
Consider {ej, j ∈ J }. The inner product of < ⋅, ⋅ > generates the
norm ‖ ⋅ ‖. Define a set of random curves {Yi(τ), i ∈ ℕ} in H with
time domain i ∈ 𝕋whereH is a real and separableHilbert spacewith
a countable and orthonormal basis. We assume L2 as a separable
Hilbert space, withYi(τ) ∈ L2([0,1]). AssumeYi(τ)has amean curve
E (Yi(τ)) = μ(τ) and the covariance operator C(π,τ):L2([0,1]) →
ℝ,π, t ∈ [0,1], supplied by

C(π,τ) = Cov(Yi(π),Yi(τ)) = E {(Yi(π) − μ(π))(Yi(τ) − μ(τ))}

The eigenfunctions of C(π,τ) are known as functional principle
components (FPCs), which are calculated by deconstructing the
covariance function of the curves with interdependence. We
establish the covariance function ϒ:L2[0,1] → L2([0,1]) with the
covariance function C and extract the FPCs that correspond to
ϕkk ≥ 1. Thus, the mathematical form is given in Equation 2

(ϒϕk) (τ) = γkϕk (τ) (2)

The combination eigenvalue of the covariance function
υ is denoted by γk. For every m ≠ k, the eigenfunctions ϕk
are assumed to be orthonormal and normalized to the unit
norm with ∫ϕk(τ)ϕm(τ)dτ = 0. Using the FPC scores at time
i as the specification, the statistical method is to find the
orthonormal functions ϕ1,ϕ2,… with the most considerable
variances of the leading scores Var(λk). However, the λk formula is
explained in Equation 3.

λk,i = ∫
[0,1]
[Yi (π) − μ (π)]ϕk (π)dπ (3)
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It follows that E (λkλm) = 0 for k ≠m since ϕk and ϕm are
orthogonal for k ≠ l. The values of E (λ2

k) = γk and E (λk) = 0 are
as follows. Subsequently, the Karhunen–Loève expansion of the
function Yi(τ) is defined in Equation 4.

Yi (τ) = μ (τ) +
∞

∑
k=1

λk,iϕk (τ) , (4)

The FPCs at time i are represented by the coefficients λk,i, which
inherit the serial dependency from Yi(τ).

2.1 Functional AutoRegressive model of
order P

The price curves are modeled and forecast through a functional
model called the 𝔽AR (P)model; mathematically, it is expressed as

Yi (τ) = μ (τ) +
P

∑
k=1

Πk ((Yi−k (τ) − μ (τ)) + ϵi (τ) (5)

where Πk(k = 1,…,P) are the 𝔽AR operators, μ(τ) is the mean
curve of Yi(τ), and Yi−k(τ) represents the kth lag of curve Yi. The
ϵi(τ) is a strong H-white noise with zero mean and finite second
moment (E‖ϵi(τ)‖2 <∞).𝔽AR(P) chooses the order and dimension
using a functional final prediction error (fFPE). For modeling and
estimating theYi(τ) in Equation 5 by the𝔽AR(P)model, Equation 1
is utilized in the following three steps.

• Fix dimension D and obtain the estimated FPC scores
as λ̂k,i = ∫ Ŷi(τ)ϕ̂k(τ).Dτ for every observation. Ŷi(τ), i =
1,…,ℕ, k = 1,…,D, and the estimated k-variate FPC scores
vectors λ̂i = (λ̂1,i,…, λ̂D,i)

′i = 1, ,…,ℕ
• For a fixed-order P , construct the vector autoregressive model

(VAR(P)) Yi = ∑Pl=1 ΠlYi−l + ϵi for eigenscore vectors to
produce forecasting λ̂ℕ+1 = (λ̂1,ℕ+1,…, λ̂D,ℕ+1)

′. The vectors
are given λ̂1,…, λ̂ℕ, where Durbin–Levinson and innovation
algorithms could be readily applied.

• The KL theorem Ŷℕ+1(t) = μ̂(τ) + λ̂1,ℕ+1ϕ̂1(τ) +⋯+
λ̂D,ℕ+1ϕ̂D(τ) is used to re-transform the multivariate time
series into a functional version in the final step. The resultant
Ŷℕ+1(τ) is then employed as the one-step-ahead forecast of
Yℕ+1(τ) in accordance with projected FPC results and sample
eigenfunctions.

2.2 Functional AutoRegressive model of
order P with deterministic part (𝔽AR𝕏)

To increase forecasting accuracy, 𝔽AR𝕏 modeling includes
lagged values of a response variable as well as additional
deterministic parts. Deterministic factors might be scalar,
vector-valued, or functional. Lisi and Shah (2020) define the
𝔽AR𝕏)(P)model in Equation 6.

Yi (τ) − μ (τ) =
P

∑
k=1

Πk (Yi−k (τ) − μ (τ))+

ρ

∑
m=1

ϕm (τ)(Y
(m)
f − μ

(m)
f ) + εi (t)

(6)

where Yi are functional variables, Y(m)f (τ) denotes the scalars or
vector explanatory variables, and εt(τ) represents white noise. Here,
μ(m)f denotes themean of the explanatory variable.The deterministic
component consists of a long-term secular trend Li, a yearly
periodicity Yi, weakly seasonality Si, bank holidays Bi, and forecast
electricity price pi+1.The dimension and order of the𝔽AR𝕏)(P) are
obtained through fFPE.The estimation approach from Section 2.1 is
updated and summarized thus.

1. a. Set the dimension D for i = 1,…,ℕ and utilize the
data Y1,…,Yℕ to calculate vectors λ̂i = (λ̂1,i,…, λ̂D,i)

′.
These vectors contain the first D-predicted FPC scores.

b. When dealing with functional exogenous variables with a
fixed value of ν, use the data Y1,…,YN ( f = 1,…,N ) to
compute the vector φ̂ f = (φ̂1, f ,…, φ̂ρ, f)

′, which contains
the first ν leading FPC scores. This process should be
repeated for each functional exogenous variable.

c. Next, integrate all the exogenous variable vectors into a
single vector, θ̂N = (θ̂1,N ,…, θ̂ρ,N )

′,
2. Use λ̂1,…, λ̂N and θ̂N to obtain a one-step-ahead forecast as

λ̂i+1 = (λ̂1,i+1,…, λ̂D,i+1)
′

3. Using the KL theorem, obtain

Ŷi+1(τ) = μ̂(τ) + λ̂1,y+1ϕ̂1(τ) +⋯+ λ̂D,i+1ϕ̂D(τ)

The KL expansion provides a 1-day forecast for Yi+1.

2.2.1 Order and dimension selection of 𝔽AR(P)
and 𝔽AR𝕏(P) models

This study aims to achieve accurate forecasting using 𝔽AR(P)
by selecting the appropriate order and dimension D. This decreases
theMSE of forecasting, which is asymptotically similar to Chen et al.
(2018). The fFPE is given as in Equation 7:

fFPE (P ,D) = ℕ+P ∗D
ℕ−P ∗D

tr(Δ̂𝕐) + ∑
k>D

γ̂j (7)

where γk is the k
th eigenvalue of ν(π,τ), Δ̂𝕐.The variance–covariance

matrix (𝕐1,…,𝕐D) in 7 is an unbiased estimator of Δ𝕐. The best
D and P is the minimizer of the fFPE function. For a further and
detailed study, see Aue et al. (2015).

2.3 Autoregressive model

The autoregressive (AR) algorithm is the most popular linear
model used in univariate time series forecasting. It regresses the
response variable using its P lagged values. The order of the AR
algorithm, represented by the symbol P , is the total number of lag
(past) values needed to anticipate a future value. In mathematics,
AR(P) can be expressed as

Yi = θ+Π1Yi−1 +⋯+ΨPYi−P + ϵi

where θ is the constant called intercept, Ψl(l = 1,…,P) are the
coefficients that need to be learned from the data, and ϵi is the
noise. An AR( 7) is frequently employed in the electricity price
modeling literature; this study also it takes into account. The
maximum likelihood estimation (MLE) approach determines the
model parameters. On the other hand, the AR𝕏( 7) model represents
the AR model with a deterministic part.
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2.4 Autoregressive integrated moving
average (ARIMA) model

The combination of the AR and the moving average (MA)
models is called the “autoregressive moving average” model
(ARMA) for stationary series. However, a likelihood function could
not be derived from performing ML estimation of the parameters
until 1970, when the classic Time Series Analysis (Jan et al.,
2022) was published, including the full modeling methodology for
univariate series, identification, estimations, diagnostics checking,
and forecasting. The general form of the ARMA model can be
presented thus:

Xt = c+(
r

∑
i=1

βiXt−r)+(
s

∑
j=0

ϕjϵt−s) (8)

where c represents the constant term (intercept), βi (i = 1,2,…, r),
ϕj (j = 0,1,2,…, s) are the AR and MA parameters, respectively, and
ϵt is a Gaussian white noise series with average zero and variance
of σ2

ϵ . By introducing a reverse shift operator B, Equation 8 can
be written as:

BXt = Xt−1, B2Xt = Xt−2

(1− β1B
1 − β2B

2 −⋯. − βpB
p)Xt = (1−ϕ1B

1 −ϕ2B
2 −⋯ · −ϕpB

p)ϕt

To introduce ARIMA (r, d, s), consider xt as the first difference
between Xt. Hence, Equation 8 can be written as:

(1−
p

∑
i=1

βiB
i)Xt(1−B)d = (1−

q

∑
j=0

ϕjB
j) ϵt (9)

In Equation 9, B is the back-shift operator, and d indicates the
series’ differencing. This model is written as “ARIMA (r, d, s)”, where
“r” stands for AR order, “d” stands for series differencing, and”s”
stands for MA order. The ARIMA𝕏 model represents the ARIMA
model with a deterministic part.

To finish this part of the study, Figure 1 depicts the architecture
of the proposed time series functional forecasting approach and the
pointwise explanation below:

1. The time series data is divided into two parts: validation
data and testing data set. This study uses two different
methods: the classical time series model and the functional
time series model.

2. Classical time series models such as AR, ARX, ARIMA, and
ARIMAX are applied to the data to generate forecasts.

3. The discrete-time series data is converted into functional data
using Fourier basis functions.

4. Functional time series models, such as fAR and fARX, are
applied to the functional data.

5. The optimal order and dimension of the proposed
functional models are determined using the functional final
prediction error.

6. Functional principal component analysis is utilized in the
proposed functional models.

7. A vector autoregressive model of order p is estimated and
forecast using the principal component scores. The fARX

FIGURE 1
British Electricity Market: architecture of the proposed functional data
analysis approach.

model is an extension of the fAR model that incorporates
explanatory variables, such as long-run secular trends, yearly
periodicity, weekly seasonality, bank holidays, and forecast
electricity prices.

8. The forecast vector is converted into functional data using the
KL transformation, resulting in the final forecast.

2.5 Quality measures

This study has computed numerous quality indicators to
compare the models. We convert the anticipated curves into half-
hourly electricity pricing data to facilitate comparison.Three average
accuracy measures are used to evaluate prediction accuracy and
efficiency: 1) mean absolute percentage error (MAPE), 2) mean
absolute error (MAE), and 3) root mean square error (RMSE),
as well as the Diebold–Mariano equal forecasts statistical test
(Quispe et al., 2024; Qureshi et al., 2024).
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FIGURE 2
Characterization of British electricity power prices (2018–2022): time diagrams (a) visualize time fluctuations using long-term linear (blue) and
non-linear (red) trend components; (b) half-hour sequence diagrams; (c) autocorrelation function diagrams analyze the correlation of price
fluctuations during various past delays; (d) partial autocorrelation function diagrams investigate the relationship between price changes after
accounting for the effects of previous delays.

2.5.1 Mean absolute error
The MAE is derived by averaging the absolute difference

between the prediction and the actual value while ensuring that
the negative value does not cancel out the positive values. It can be
stated thus:

MAE =mean(|Yi,k − Ŷi,k|)

where Yi,k is the observed data and Ŷi,k is the predicted day-ahead
electricity price for ith(i = 1,2,…,365) day and kth (k = 1,2,…,48)
price period.

2.5.2 Mean absolute percentage error
To compute the MAPE, divide the average absolute error

for each period by the observed values and multiply by 100.
The MAPE effectively measures accuracy when a prediction
variable is large (Box, 2013). It is a relative measure of forecast error
that highlights the degree of difference between the predicted and

actual values. The mathematical expression for the MAPE is

MAPE =mean(|
Yi,k − Ŷi,k

Yi,k
|) × 100

2.5.3 Root mean square error
The RMSE grows as the scale of the dependent variable

grows. It compares forecasts from many models for the same
dataset. The RMSE is the square root of the squared difference on
average between the anticipated and actual values.Themathematical
definition is:

RMSE = √mean(Yi,k − Ŷi,k)
2

2.5.4 The Diebold-Mariano test
The Diebold–Mariano (DM) test (McKenzie, 2011) is employed

to evaluate the accuracy of the proposed functional time series
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TABLE 1 Summary statistics of British Electricity Market 2018–2022.

Statistic Series Log (series)

Minimum 2.20 0.79

1st Qu 37.28 3.62

Median 43.96 3.78

Mean 45.51 3.79

Mode 37.81 3.63

3rd Qu 51.28 3.94

SD 12.45 0.25

CV 27.36 6.56

Max 326.09 5.79

FIGURE 3
British Electricity Market: figure represents the discrete half-hourly
data of 5 years.

forecasting models. This statistical test is commonly used in time
series analysis to compare the accuracy of two forecasting models.
It evaluates whether the errors generated by one model statistically
differ from the errors of another (Carbo-Bustinza et al., 2023). To
perform theDM test, the forecast errors of eachmodel are calculated
using a loss function. These errors are the differences between the
observed values (vm) and the forecast values (v̂m). The test statistic
is then calculated by comparing the mean squared errors of the two
models. Suppose the test statistic is greater than a certain threshold
and the p-value is lower than a pre-determined significance level
(e.g., α=0.05); in that case, we conclude that the forecasts from one
model are statistically significantly better than the other.

The null and alternative hypotheses of the DM test are

FIGURE 4
British Electricity Market: functional daily curves for British electricity
prices; Yi(τ) i = 1,…,1826, where Yi(τ) are the natural log-transformed
functional data points of half-hourly electric power pricing using 22
Fourier basis functions. The solid black curve is the mean curve.

FIGURE 5
British Electricity Market: graphic functional description of a single
week of electricity prices.

H0—there is no difference in forecast accuracy between the two
models (H0: ̄d = 0).

Ha—the two models differ in forecast accuracy (Ha: ̄d ≠ 0).
Therefore, the null hypothesis implies no statistically

significant difference in forecast accuracy between the models,
while the alternative hypothesis suggests that a significant
difference exists.
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FIGURE 6
British Electricity Market: five principal components proportion of
variation explained by each FPC.

FIGURE 7
British Electricity Market: first five FPCs.

3 Case study and results

The liberalization of the United Kingdom’s electricity industry
can be attributed to the regulatory and structural changes
implemented in the late 1980s.These reforms sought to eliminate the
state-ownedmonopoly and establish a competitive wholesale energy
market. Recognizing that transmission and distribution are natural

TABLE 2 British Electricity Market: out-of-sample forecasting error
evaluation of functional models and traditional time series models
considered.

Model MAPE MAE RMSE

AR 10.96 13.60 21.93

AR𝕏 10.01 12.09 19.62

ARIMA 9.75 10.22 17.16

ARIMA𝕏 7.85 7.19 16.85

𝔽AR 6.90 5.68 15.25

𝔽AR𝕏(P) 5.95 4.17 12.94

FIGURE 8
British Electricity Market: out-of-sample forecasting error evaluation of
the functional models and considered traditional time series models.

monopolies, the main focus of the reforms was the deregulation
of the generation and supply sectors. Consequently, in 1990 the
UK electricity market underwent reorganization, establishing the
England and Wales power pool and dividing the government
monopoly into three entities: National Power, Powergen, and
Nuclear Energy.

The power pool served as a trading platform for half-
hourly transactions. However, market power in the generation
industry became a significant concern due to National Power
and Powergen holding respective market shares of 50% and
30%. Meanwhile, Nuclear Electric, responsible for supplying
the base load of nuclear power, essentially acted as a price
taker. Market manipulation by these two corporations led to
reduced competition, resulting in the average price remaining
approximately 24 per megawatt-hour between 1994 and 1996
(Karakatsani and Bunn, 2008).

A fully liberalized bilateral contracting system replaced the
England andWales power pool with the introduction ofNewEnergy
Trading Arrangements (NETA) in 2001 (becoming the British
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TABLE 3 British Electricity Market: Diebold–Mariano results (p-value) for all forecasting models.

Model AR AR𝕏 ARIMA ARIMA𝕏 𝔽AR 𝔽AR𝕏(P)

AR - 0.08 0.09 0.04 0.04 0.05

AR𝕏 0.92 - 0.10 0.03 0.03 0.05

ARIMA 0.91 0.90 - 0.06 0.01 0.02

ARIMA𝕏 0.96 0.97 0.94 - 0.07 0.09

𝔽AR 0.96 0.97 0.99 0.93 - 0.11

𝔽AR𝕏(P) 0.95 0.95 0.98 0.91 0.89 -

TABLE 4 British Electricity Market: weekly forecasting accuracy metrics evaluation of functional models and traditional time series models considered.

Error Model Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MAE

AR 10.35 12.84 15.61 19.38 9.22 12.12 15.67

AR𝕏 9.20 11.41 13.88 17.23 8.19 10.77 13.93

ARIMA 7.78 9.65 11.73 14.56 6.92 9.10 11.77

ARIMA𝕏 5.48 6.79 8.26 10.26 4.88 6.41 8.29

𝔽AR 4.32 5.36 6.52 8.10 3.85 5.06 6.54

𝔽AR𝕏(P) 3.17 3.94 4.79 5.94 2.83 3.72 4.80

MAPE

AR 11.79 9.96 11.53 7.36 8.53 9.65 17.91

AR𝕏 10.77 9.10 10.53 6.73 7.79 8.81 16.36

ARIMA 10.48 8.86 10.25 6.55 7.58 8.58 15.93

ARIMA𝕏 8.44 7.13 8.25 5.27 6.10 6.90 12.82

𝔽AR 7.42 6.27 7.25 4.63 5.36 6.07 11.27

𝔽AR𝕏(P) 6.39 5.40 6.26 3.99 4.62 5.23 9.72

RMSE

AR 18.62 20.35 23.75 21.98 23.72 26.59 18.46

AR𝕏 16.66 18.21 21.25 19.67 21.23 23.79 16.52

ARIMA 14.57 15.93 18.59 17.21 18.57 20.81 14.45

ARIMA𝕏 14.31 15.64 18.25 16.90 18.23 20.44 14.19

𝔽AR 12.95 14.15 16.52 15.29 16.50 18.49 12.84

𝔽AR𝕏(P) 10.99 12.01 14.02 12.98 14.00 15.70 10.90

Electricity Trading Transmission Arrangements—BETTA—in
2005). This transition established a more stable market share
for electricity companies in the generation and retail sectors.
Additionally, the reforms resulted in the creation of three
distinct power exchanges: the United Kingdom Power Exchange
(UKPX), the UK Automated Power Exchange (APX UK),
and the International Exchange (IE, formerly known as the

International Petroleum Exchange—IPE). Subsequently, the
amalgamation of APX and UKPX into APX Group in 2004,
followed by the inclusion of Scotland in the UK power
market in 2005, further enhanced market dynamics. This
highly competitive and well-developed market exhibits a robust
correlation between market price and market fundamentals
(Lisi and Pelagatti, 2018).
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3.1 Data description and forecasting results

This study aims to accurately and efficiently forecast half-
hourly electricity pricing data from APX from January 2018 to
December 2022. To achieve this objective, we implemented an
FDA to model and forecast the electricity price-time series in the
APX. To understand the complex characteristics of electricity price
dynamics over time, these characteristics are expected to include
missing values, a nonlinear long-run secular trend, pronounced
seasonality, high volatility, non-normality, and non-stationarity. A
non-stationary process can be defined as one in which statistical
features such as mean, variance, and autocorrelation vary with time.
This indicates that the data lacks a steadymeanor variance,making it
difficult to examine using typical statistical approaches that presume
stationarity. Thus, the key characteristics of non-stationary data
are: a) trends: non-stationary data may show long-term trends in
which values grow or decrease with time; b) seasonality: refers to
recurrent patterns or cycles that occur at regular periods, such as
seasonal influences in sales statistics; c) changing variability: the
variability of the data may alter with time, resulting in periods of
volatility followed by stability. For instance, Figure 2A shows the
half-hourly electricity price time series with a red-line linear and
blue-line nonlinear trend component. Figure 2B shows a boxplot for
the half-hourly over 6 years, indicating high variations among the
24 hours (48 half hours). Figure 2C shows the autocorrelation plot
of the original electricity prices at 336 lags, and Figure 2D shows
the partial autocorrelation plot of original electricity prices at 336.
These figures clearly illustrate a discernible long-term trend, as well
as annual and weak seasonality. Furthermore, non-normality and
non-stationarity are also evident from these visual representations.

On the other hand, Table 1 summarizes the characteristics of
the data before and after data transformations, such as taking
the natural logarithm (addressing variance and standard deviation
stabilization). For instance, for the electric power time series before
and after data transformations, the minimum values: are 2.20 and
0.79, first quartile (37.28 and 3.62); median (43.96 and 3.78); mean
(45.51 and 3.79); mode (37.81 and 3.63); third quartile (51.28 and
3.94); standard deviation (12.45 and 0.25); coefficient of variation
(27.36 and 6.56); maximum (326.09 and 5.79). It is confirmed from
this analysis that the log transformation attained normality in the
data since the mean, median, and mode are approximately the
same. However, the standard deviation is also much lower than the
original series. To this end, further analysis proceeds with the log-
transformed electric power price series formodeling and forecasting
purposes. Thus, for modeling and forecasting, the log-transformed
data are divided into two parts:

• validation data: from 1st January 2018 to 31st December 2021
(70,128 observations, covering i = 1461 days)

• testing data: from 1st January 2022 until 1st December 2022
(17,520 data points (hours), with i = 365 (days).

The models were estimated using an extension window
approach derived from an annual 1-day out-of-sample forecast. As
indicated in Figure 3, the discrete half-hourly electricity price is
from 1st January 2018 to 31st December 2022. The Fourier base
function transforms the discrete electricity power price data into a

TABLE 6 British Electricity Market (pound/MWh): comparison of
one-day-ahead average accuracy metrics between proposed functional
best models and literature best models.

Model MAPE MAE RMSE

𝔽AR𝕏(P) 5.95 4.17 12.94

Stochastic-AR Lisi and Pelagatti (2018) 9.81 11.29 18.12

FAR(P) Jan et al. (2022) 6.50 5.18 14.55

4RSD4
3 Iftikhar et al. (2023c) 6.21 5.04 14.24

Ensemble Bibi et al. (2021) 6.26 5.14 14.38

NPVARE Shah et al. (2022a) 6.58 5.32 14.39

functional form (Figure 4). The mean curve can be represented with
a solid black curve.

Figure 5 illustrates that the functional representation of
electricity prices exhibits lower values during weekends than
weekdays, indicating less electricity use over weekends. Figure 6
shows the first five FPCs, which account for a large number of data
variations. Figure 7 shows the proportion of variation explained by
each FPC. The graphic shows that the first PC accounts for about
60% of all data volatility. Accordingly, the second, third, fourth, and
fifth FPCs account for 13%, 8%, 6%, and 5% of total variation.

The day-ahead forecasting accuracy of the models is measured
using the MAE, MAPE, and RMSE. For instance, Table 2
summarizes the models’ overall accuracy, showing that the
functional models outperform the classical time series models
(AR, AR𝕏, ARIMA, and ARIMA𝕏models). Within the functional
models,𝔽AR𝕏)(P) demonstrates superior forecasting performance
compared to 𝔽AR(P). For instance, 𝔽AR𝕏)(P) achieves the
lowest mean error—MAPE = 5.95, MAE = 4.17, and RMSE =
12.94—comparatively lower than the 𝔽AR(P) model. On the
other hand, the functional models (𝔽AR(P) and 𝔽AR𝕏)(P))
compared to the classical time series models (AR, AR𝕏, ARIMA,
and ARIMA𝕏) obtain highly accurate forecasting mean errors. For
example, 𝔽AR𝕏)(P) improves the forecasting mean errors ranging
from 32.96%–84.41%, 36.22%–225.93%, and 17.81%–69.40%, for
the MAPE, MAE, and RMSE, respectively. Therefore, the relatively
least accurate mean error values across the board demonstrate the
usefulness of the 𝔽AR𝕏)(P) forecasting model.

On the other hand, a graphical comparison (Figure 8) shows
the original and predicted values for each of the forecasting
models that were taken into account in Table 2. The figure
demonstrates how well the forecast from the proposed functional
model (𝔽AR𝕏(P) matches the actual pricing. However, the 𝔽AR𝕏
and 𝔽AR show competitive results. The classic AR model shows the
worst forecasting results among allmodels considered.Therefore, we
can determine that the 𝔽AR𝕏(P model outperformed the rest of
the models.

After calculating the accuracy measures (MAPE, MAE, and
RMSE), the Diebold–Mariano (DM) test was used to statistically
assess the superiority of the proposed functional time series
models (see Table 3 for the DM statistic p-values). The outcome of
this table revealed that the proposed functional time series model
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TABLE 7 Table of nomenclature.

Abbreviations/Symbols Meaning

FDA Functional data analysis

FTS Functional time series

𝔽AR Functional autoregressive

𝔽AR𝕏 Functional autoregressive with exogenous
predictors

AR Autoregressive

AR𝕏 Autoregressive with exogenous predictors

MAPE Mean absolute percentage error

MAE Mean absolute error

RMSE Rooted mean square error

TS Time series

fFPE Functional final prediction error

Yi Electricity prices

αj Constant parameter

βi,j(τ) Fourier basis functions

γk Eigenvalues

ϕk Eigenfunctions

λk Eigenscores

μ(π) Mean function

Πk 𝔽AR operators

(𝔽AR𝕏)(P)) achieved statistically superior performance across all
models; the 𝔽AR(P) model showed the second-best results. These
findings confirm 𝔽AR𝕏)(P) as the most reliable model for day-
ahead electricity price forecasting within the scope of this study.

Table 4 displays the weekly forecasting errors for the models
under investigation. Monday, Wednesday, Saturday, and Sunday
are typically associated with larger weekly errors than Tuesday,
Thursday and Friday. Among the models, 𝔽AR𝕏(P) achieves the
lowest MAPE value of 3.99 on Thursday—a day with a relatively
stable electricity load. Conversely, Sunday exhibits a higher MAPE
score of 9.72. Consistent with the previous tables, the functional
model with the deterministic component, 𝔽AR𝕏(P), outperforms
the partial functional method, 𝔽AR (P). In contrast, the classical
univariate time series models (AR, AR𝕏, ARIMA, and ARIMA𝕏)
perform relatively poorly compared to the other models considered
in this study.

Table 5 presents the monthly forecasting errors for each model
considered in this study. It is evident that December, January, and
February exhibit relatively higher errors than other months. This
can be attributed to increased electricity demand during these

months. Nevertheless, the functional models perform better than
the standard traditional time series models. Specifically, the direct
functional model 𝔽AR𝕏)(P) exhibits lower forecasting errors than
the other methods discussed here. The MAPE values for𝔽AR𝕏)(P)
range 3.034–6.486, indicating the effectiveness of this model.

As is evident from the average accuracy errors (MAE, MAPE,
and RMSE) and equal forecasting accuracy statistical test (DM test)
and graphical results (line plots), the𝔽AR𝕏)(P)model outperforms
its counterpart, the 𝔽AR model, and the standard classical time
series models (AR, AR𝕏, ARIMA, and ARIMA𝕏). However, the
effect of modifying the function models by incorporating the
deterministic part was clearly seen, where the exogenous variables
are denoted by long trend, yearly periodicity, seasonal periodicity,
bank holidays, and electricity demand. Using these exogenous
variables, the functional model is modified to 𝔽AR𝕏(P). The
optimal dimension and order are chosen through fFPE. The vector
AR model uses a scores vector and then a 1-day forecast of the
aforementioned model.

To sum up this section, we can say that the suggested functional
forecasting model with exogenous variables has a high degree of
accuracy and efficiency for day-ahead for British electricity prices
based on the accuracy mean errors (MAE, MAPE, and RMSE) and
equal forecast statistical test (the DM test).

4 Discussion

This section compares the best proposed functional (𝔽AR𝕏(P))
forecasting model in this study with the proposed best models in
the literature. A detailed comparison of this study’s best forecasting
functional model with the literature’s best models is listed in Table 6.
This confirms that the proposed (Stochastic-AR) best model from
Lisi and Pelagatti (2018) has been applied to the database utilized
in the current work, and the average accuracy metrics have been
calculated. The average accuracy metrics values reported for the
proposed (Stochastic-AR) best model of Lisi and Pelagatti (2018)
are MAPE = 9.81 (65.01%), MAE = 11.29 (170.61%), and RMSE
= 18.12 (40.00%), which are significantly higher than our accuracy
mean error values: MAPE = 5.95, MAE = 4.17, and RMSE = 12.94.
The proposed (the FAR(P) model) best model in Jan et al. (2022)
has been compared to the current research dataset and produced
performance metrics comparatively higher than our proposal (the
𝔽AR𝕏(P) model). For example, the computed forecasting average
errors using the proposed (the FAR(P) model) best model in Jan
et al. (2022) are 6.50, 5.18, and 14.55—significantly higher than
our proposed (𝔽AR𝕏(P)) best model forecasting average accuracy
errors. Additionally, in Iftikhar et al. (2023c), the proposed (the
best model 4RSD4

3) was used in our dataset obtained mean accuracy
metrics also comparatively greater than the 𝔽AR𝕏(P) model at
4.46%, 20.81%, and 10.02% for the MAPE, MAE, and RMSE,
respectively. Furthermore, the developed best model (Ensemble) of
Bibi et al. (2021) was used in the current research database and
the average metric errors computed, such as MAPE, MAE, and
RMSE—comparatively higher (5.30%, 23.20%, and 11.10%) than
our best functionalmodel. In Shah et al. (2022a), the best forecasting
model (NPVARE) was applied to our database and the average mean
errors computed. However, in comparison, the computed mean
errors in the NPVARE forecasting model were 10.68%, 27.52%, and
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11.18% for the MAPE, MAE, and RMSE, respectively—higher than
our best functional model. In summary, it is evident that the best
functionalmodel of thiswork achieved higher accuracy than the best
models found in the literature.

The proposed functional time seriesmodel used in this study has
proven to be very accurate and effective in predicting the next-day
power price in the British electricity market. These precise forecasts
can help sellers (buyers and suppliers) optimize their bid planning,
maximize revenue, and better use the resources required to generate
electricity. Offering a stable and cost-effective energy system benefits
end users. Furthermore, the accurate projection and understanding
of energy prices in developing countries can help traders makemore
effective commercial and trade plans and better asset allocations.
Finally, sellers (buyers and suppliers) can create more robust trading
strategies based on the proposed 𝔽AR𝕏(P) model and choose
models with the most remarkable risk reward ration.

The statistical computing language programming environment
R-studio implements analysis models. In comparison, all
computations were performed with Intel(R) Core(TM) i7-6600
@ 2.80 GHz CPU. R uses GAM, tsDyn, and forecast libraries to
model and predict standard time series forecast models. We wrote
our own source code to model and forecast 𝔽AR𝕏 and 𝔽AR𝕏(P)
models, which also use R’s fda library. The documentation of the
packages provides detailed information on the algorithms used in
the estimation.

5 Conclusion

Forecasting electricity prices in a deregulated power market
is complex and crucial. The price time series of electric power
exhibits features such as high frequency, long-term trends,
multiple seasonal patterns, spikes or jumps, and the effects of
bank holidays. Addressing these features is essential for accurate
price forecasting. This study has focused on the problem of day-
ahead electricity price forecasting using functional data analysis.
The electricity prices were modeled and forecast through two
functional models, employing four classical time series models
(AR, AR𝕏, ARIMA, and ARIMA𝕏) for this purpose. The price
series was transformed into a functional form, and 𝔽AR(P)
was utilized for modeling and forecasting. The functional model
was further modified by introducing some essential exogenous
information (specific features): 𝔽AR𝕏(P). Meanwhile, the AR,
AR𝕏, ARIMA, and ARIMA𝕏 models employed conventional
time series models for modeling and forecasting electricity prices.
In comparison to the benchmark models (AR, AR𝕏, ARIMA,
ARIMA𝕏, and the proposed 𝔽AR model), the 𝔽AR𝕏 model
reduces the day-ahead forecasting average MAPE by a range of
5.02%–45.77%, 4.07%–40.63%, 3.80%–38.99%, 1.90%–24.22%, and
0.95%–13.78%; MAE by a range of 9.43%–69.32%, 5.17%–65.48%,
6.04%–59.16%, 3.02%–42.01%, and 1.51%–26.59%; RMSE
by a range of 8.98%–40.97%, 6.68%–34.03%, 4.22%–24.58%,
3.91%–23.20%, and 2.30%–15.11%. Furthermore, compared with
the literature’s proposed best models, the 𝔽AR𝕏 model produces
a significantly higher accuracy and efficient day-ahead forecast
based on forecasting error indicators and an equal forecast
statistical test. Compared with the best models proposed in the
literature, the 𝔽AR𝕏 model demonstrates significantly higher

accuracy and efficiency in day-ahead forecasting, as evidenced by
forecasting error indicators and an equal forecast statistical test.

This study focuses entirely on the British electricity market.
The idea should include additional electrical markets, such
as the European, American, and Chinese markets. Other
energy market factors are electricity demand, production,
consumption, curves, natural gas pricing, wind speed, and
crude oil prices. This will enable a more in-depth assessment
of the upgraded functional model’s performance. There are
various approaches to broaden the field of future study. Other
functional factors, such as temperature, consumer load, fuel,
carbon dioxide emission costs, average solar radiation, and wind
speed, can be included in the model to improve electricity price
forecasting accuracy.
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