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United Nations Sustainable Development Goal 7 is about ensuring access to
clean and affordable energy, which is a key factor in the development of society.
The power generation sector majorly consists of thermal power plants. Cooling
towers are a significant part of any power plant to cool steam to be reused
again. Hence, the efficiency of power plants can be increased by optimizing
the performance of cooling towers. This research paper aims to increase the
efficiency of cooling towers by investigating the effect of ambient parameters
(changing with climate) on the efficiency of cooling towers for the best site
selection. Ambient parameters cannot be controlled after the installation of
power plants. Therefore, proper site selection, keeping ambient parameters
and their expected change before the installation of power plants, effectively
increases the efficiency of the cooling tower and, ultimately, the power plant.
For this purpose, data is collected from the 1140 MW combined cycle power
plant in Sheikhupura, Pakistan district. A machine learning (Ada boost regressor)
model has been used to quantify the effect of ambient parameters on cooling
tower efficiency. After tuning the hyperparameters, an R-square score of 0.983
and a root mean squared error of 0.57 are achieved. Afterwards, a sensitivity
analysis of relative humidity (%), turned out to be the most important feature,
with a contribution of 12%. The novelty of this research lies in its mathematical
model for power plant site selection, which optimizes cooling tower efficiency,
reduces pollution, and promotes environmental sustainability.
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1 Introduction

As industrialization progresses worldwide, there is an increasing
demand for energy, resulting in the issue of air pollution. This
hazard increases risks to both people’s health and the natural
world. The International Energy Agency (IEA) predicts a 25%
rise in energy demand by 2040, largely driven by the growth
of emerging economies. The developing countries make a major
contribution towards this increase in energy demand.The escalating
use of energy coupled with the use of fuels is exacerbating air
pollution. Emissions of pollutants, like Volatile organic compounds
and nitrogen oxides (NOx) interact with atmospheric oxidants
resulting in the creation of smog (Raza et al., 2021). The United
Nations introduced Sustainable Development Goals (SDGs), which
are intended to guide towards a sustainable world. This research
emphasizes SDG 6which is about “clean water and sanitation”.There
is a need for continuous water supply in cooling towers which is
sourced from rivers, ground water or lakes and a major portion
of the water is wasted due to evaporation, drift, and blowdown
which is against all the efforts to conserve the water. This research
contributes to reducing the wastage of water by improving the
water efficiency of cooling towers in the power sector. In addition,
SDG 7 seeks to promote “Clean Energy” in addition to SDG 13,
which highlights the issue of “Climate Action” requiring a reduction
in the rate of climate change and advocating for clean energy
choices. The journey to progress and protection together has led
to an increased demand for collaboration in diverse fields. Air
pollution not only affects health but also damages the ecosystems,
resulting in habitat loss and reduction of biodiversity. The financial
losses due to environmental damage highlights the importance for
transitioning to clean energy sources and adoption of sustainable
methods (Arora and Mishra, 2019). Governments, companies,
and other stakeholders are increasing attention towards renewable
energy initiatives by introducing stricter environmental regulations
to reduce emissions (Rajah et al., 2024).

Cooling towers, essential in many industrial processes, are
considered critical components in energy consumption and
environmental impact. Regarding power plants, manufacturing
facilities, and commercial buildings, cooling towers are large
structures which can play a prominent role in maintaining optimal
temperatures of machines and in various industrial processes
(Schulze et al., 2019). Cooling towers have evolved through novel
and interesting technical development and now have become
an integral part of infrastructure. Their extensive utilization has
sparked concerns regarding their footprint in terms of energy and
water usage (Suamir et al., 2018). The operation of cooling towers
is based on circulation of water to increase the heat exchange. A
cooling tower is a component which needs a source of energy input
primarily in the form of electricity. It is approximated that cooling
towers account for 20% of the worldwide electricity production
(Kılkış and Krajačić et al., 2019). When hot water is released from
condenser to back into the environment, it can disrupt the ecosystem
by raising temperatures in rivers, lakes, and other reservoirs of
water. This can affect the habitats of animals and contribute to
thermal pollution. Due to these hazards, organizations are working
to improve the performance of their cooling systems. Cooling
mechanisms, such as water evaporation cooling, can improve
energy efficiency while reducing environmental impacts. To further

minimize harm, companies can adopt water conservation and
recycling practices in cooling tower operations (Barbosa et al., 2019).

This research is based on the major research gap about the
influence of ambient parameters on cooling tower efficiency.
This research is useful for the best site selection for power
plants considering optimal parameters for ambient conditions.
The primary objective is to enhance cooling tower efficiency
by leveraging conditions, thereby lowering energy consumption
and environmental impact. One more novel aspect of this
research is the use of advanced machine learning models
including Gradient Boosting, Cat Boost, and AdaBoost. The
main reason for the selection of these algorithms is their
effectiveness in handling the data with non-linear relationships
and analysis of feature importance in energy-related studies
(Tyralisand Papacharalampous, 2021). These models have shown
high predictive accuracy in previous studies for modelling
operational parameters in the powerplants. They effectively map
complex functions in high-dimensional input spaces and process
large datasets while avoiding overfitting. AdaBoost is a very
effective ensemble learning model that can combine and improve
weak learners to form a strong predictive model. In the study of
(Shah et al., 2024), AdaBoost has shown its ability to improve its
predictive accuracy in complex environmental systems. Gradient
Boosting is based on optimizing the loss function, which makes it
suitable to capture complex data patterns. It is very flexible model
which has shown its effectiveness in prior studies (Bassi et al., 2021).
Cat Boost is particularly used to handle categorical variables, and it
is effective for mitigation of overfitting in large datasets.

The “water-energy nexus” is the term referred to the
interdependence of water resources and energy production,
as thermal power plants require large amounts of water
for cooling (Das et al., 2024). Water scarcity is turning out to
be the greatest concern for power generation as global warming
due to climate change is increasing. Cooling towers play a very
significant role in dissipating heat for power plants. Dissipating
a considerable amount of heat requires enough renewable water
resources. Extreme climate conditions like extensive droughts and
heat waves severely affect the ability of cooling towers to operate
without any problem to water supply access by power plant facilities.
Areas where water scarcity takes place can be a factor in limiting
the operation of power plants, thus reducing their potential capacity
for electricity generation. For that reason, many countries today
use techniques in using less water while generating power. Using
efficient towers in cooling would tremendously minimize water
consumption, thereby increasing the power facility’s resistance to
water shortages. A cooling tower site selection should consider
ambient humidity, temperature, and water resource availability for
long-term sustainability. This research provides useful insight to all
stakeholders and decision-makers using machine-learning models
and thoroughly analyzing each contributing input factor to enhance
the effectiveness of cooling towers and performance of combined
cycle power plants. This study is, therefore, an advancement toward
establishing the correlation between cooling tower outlet water
temperature and ambient parameters. The knowledge of this
study can help technical experts to select suitable areas for the
installation of power plants that can contribute to sustainability
by saving energy and reducing emissions. This research offers
the key to unlocking the door of energy conservation by helping
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the energy sector to find ways to improve the effectiveness of
cooling towers. The goals of this study are in line with international
initiatives for a cleaner and more eco-friendly world balanced with
justice for all.

1.1 Literature review

There are different cooling towers that are classified based on
the nature of their heat transfer mechanism, the type of airflow
pattern, and their application (Dhorat et al., 2018). There are three
major categories that includewet cooling towers, dry cooling towers,
and hybrid cooling towers with different operational characteristics
that determine efficiency. Wet cooling towers rely on evaporation
of water to remove heat and thus are very efficient but sensitive
to ambient wet bulb temperature (Ali et al., 2022). These have
the following primary parameters: wet bulb temperature, relative
humidity, airflow rate, water flow rate, and efficiency of the packing
material. As wet bulb temperature is predominant in evaporative
cooling, it ranks among the factors of utmost importance for
performance prediction. Their analysis of sensitivity indicates how
sensitive the ambient humidity and airflow rates are to cooling
efficiency. Dry cooling towers are air-to-air heat exchangers, making
them suitable for areas where water is scarce. Their key parameters
are dry bulb temperature, ambient air velocity, and heat exchanger
efficiency. Their Performance mainly depends upon the ambient air
temperature and material of the heat exchanger. Sensitivity Analysis
determines the amount to which the rate of airflow and efficiency
of heat exchanger impact the drop in temperature. Hybrid Cooling
Towers hybridize wet and dry cooling for maximum performance
and minimum water consumption. Hybrid towers dynamically

switch betweenwet anddry coolingmodes and thus complex control
mechanisms must be designed for modeling (Taimoor et al., 2022).
Their sensitivity analysis assesses how thresholds for switching
between wet and dry operation impact efficiency under varying
ambient conditions.

The faults due to the complexity of air conditioner systems
(ACS) are hard to detect since the system is very complicated.
The paper (Sulaiman et al., 2020) focused on the influence of
many faults in the coefficient of performance (COP) of the ACSs,
and the machine learning algorithm was used to categorize these
flaws. The machine learning models used to classify defects are
multi-layer perceptron (MLP), deep learning, and support vector
machine (SVM). This research concluded that 99.4% accuracy was
observed by MLP as compared to deep learning and support vector
machines. An accuracy of 97% was observed by SVM after MLP,
which was the second-highest accuracy (Sulaiman et al., 2020).
Cooling towers are affected by annual climate change, particularly
by seasonal temperature variations.Mathematical models combined
with mass and energy balance equations are critical for improving
and forecasting a cooling tower’s efficiency. The hot regions have
higher values of fan slack; thus, using variable frequency drives
(VFDs) is encouraged to decrease energy consumption (Pontes et al.,
2019). A comparative analysis has been performed of this research
with current research in which it has been observed that more than
fivemachine learning regressionmodels have been used, and among
these models, the most suitable model was selected that achieved
the highest R2 score of 0.984 and mean square error (MSE) of 0.24.
In the testing phase, it was observed that the predicted points were
very close to actual points. As revealed by previous studies, the
efficiency of cooling towers can be predicted usingmachine learning
and mathematical models. Furthermore, it has also been concluded
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from the above research that usingVFDs in hot climate areas reduces
energy consumption.

The performance of cooling towers is affected by one of the
most critical ambient parameters: wet bulb temperature. Several
other factors also contribute to influence the efficiency of cooling
towers, such as dry bulb temperature, ambient pressure, mass flow
rates of water and air (Laković and Laković et al., 2012). These
factors include both ambient parameters and internal parameters
of the cooling tower. The present study identified a research gap, as
previous studies considered only ambient parameters and analyzed
their contribution towards efficient cooling towers. To address this,
artificial intelligence tools, such asmachine learning, have been used
to conduct sensitivity analysis of ambient features. First, relations
between the features have been identified to show the strong
ties between these ambient features. Second, a machine learning
model is used to perform the analysis, and the importance of
each feature is identified. Third, with well-trained machine learning
algorithms, the cooling performance is predicted under different
ambient conditions, which can be very valuable for installing cooling
towers and optimizing their efficiency. Finally, thismachine learning
model is used to analyze ambient parameters’ sensitivity to quantify
their effects on cooling tower performance. Overall, the paper fills
the research gap by applying machine learning to provide a deeper
understanding of how other ambient parameters and wet bulb
temperatures affect cooling tower performance.

For real-time optimization of multicell cooling towers,
applications of machine learning techniques represent a leap
forward. Training an artificial neural network (ANN) using
steady-state load-following data yielded an impressive R2 score
of 0.966. This method yielded an annual energy savings of 6.7%
in a year-round simulation, especially during the colder months
and periods of low electrical load (Blackburn et al., 2020). The
use of machine learning algorithms plays an important role in
the efficiency of a computerized data center. Machine learning
algorithms were used to model the COP of data centers. This paper
(Shoukourian et al., 2017) demonstrates the role of the COP model
in making data centers more efficient. Predictions of COP were
performed, and they were also validated with the real-time data of
data centers (Shoukourian et al., 2017). In current research,machine
learning models make cooling towers more energy efficient. This
research also shows the critical ambient features from which the
outlet water temperature of cooling is highly affected. This study
presents the importance of machine learning algorithms in different
industrial sectors to make them more energy efficient.

Wind power values have been predicted with the help of
machine learning using the data of wind speed (Demolli et al.,
2019). Predictive maintenance has been performed using machine
learning. In this study, previous maintenance data of hydroelectric
power plants is used for training and classification of data. High-
level decision trees and SVM have been used as the most effective
algorithms to predict failure possibilities, highlighting the feasibility
and practicality of using predictive machine learning in practical
industrial applications (Xayyasith et al., 2018). In parallel, another
study uses predictive maintenance (PDM) to reduce the vibration
intensity of cooling tower fans in a process plant. The results reveal
a significant reduction in vibration levels, which implies improved
fan reliability (Rupinder, 2009). These studies have demonstrated
the versatility of machine learning and its applicability in many

industries. It is used for forecasting and predictive maintenance,
which ultimately leads to cost and time efficiency. At the same time,
machine learning has some limitations, such as training data must
have adequate quantity and quality for accurate estimation. In the
current research, machine learning has also shown significant cost-
and time-efficient advantages. Rather than practically observing
the effect of ambient parameters on the outlet temperature of a
cooling tower, which could be time andmoney-consuming,machine
learning has been used to observe the effects of ambient parameters
on the cooling tower’s performance.

The heat transfer model for the cooling tower enables the real-
time optimization of the water-cooling system, independent of
operating condition variations, and identifies the main features of
heat transport material processing directly linked to the packing’s
heat transfer performance. Subsequently, a hybrid programming
particle swarm optimization (HP-PSO) algorithm was developed to
handle discrete and continuous changes in that system (Ma et al.,
2021). The study demonstrates the algorithm’s effectiveness in
finding optimal conditions beyond other methods. Interestingly,
this study shows that higher wet-bulb temperatures require
higher cooling tower outlet temperatures, up to 32°C sometimes.
Furthermore, the optimal return water temperature difference is
highly dependent upon ambient conditions, with a difference of 5°C
that is more energy-efficient for higher temperature values, and for
lower ones, a 7°C difference is preferred. In energy savings, the most
compelling evidence lies: the HP-PSO system achieves a remarkable
reduction of up to 15.3% as compared to traditional methods,
showing its potential for sustainable energy production (Ma et al.,
2021). It is evident from past literature that previous research
focused on single ambient parameters, whereas the present study
considers multiple ambient parameters. Furthermore, previous
research emphasized energy efficiency only, but the current study
emphasizes both energy efficiency and sustainability. Notably, the
present study addresses these issues and contributes to the selection
of power plant sites, setting it apart from its predecessors.

As a transition to digital twins, data-driven models play
an important role in optimizing cooling towers’ performance.
Combined with the Cross Industry Standard Process for Data
Mining (CRISP-DM) approach, this framework simplifies
performance forecasting, system analysis, and intensive energy
management (Pontes et al., 2019). The integration of Building
Information Modeling (BIM) and the Internet of Things (IoT)
into the framework was used for predictive maintenance in terms
of mechanical, electrical, and plumbing components (MEP).
The function to predict MEP component conditions has been
accomplished by the use of machine learning algorithms such as
support vector machines (SVM) and artificial neural networks
(ANN) (Cheng J. C. et al., 2020). The application of artificial
intelligence in both computing and production equipment is
leveraged to predict the RUL which is the remaining useful life. A
hybrid neural network, which is formed by the combination of a fully
convolutional neural network (FCN), Long Short-Term Memory
(LSTM), and Multilayer Perceptron (MLP), is used to estimate
the remaining useful life (RUL) of supercomputer cooling systems
(Lima et al., 2023). In this study, the effectiveness of air conditioning
systems (ACSs) is increased through a machine learning-based
Model Predictive Control (MLB-MPC) algorithm (Chen et al.,
2023). Previous studies have shown the effectiveness of machine
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learning models like CRISP-DM methodology, BIM, and IoT for
predictive maintenance. By taking significant ambient parameters
into consideration, current study highlights a practical and effective
approach to enhance reliability of cooling tower. Furthermore,
this study emphasizes that obtaining nearly 99% accuracy
represents a remarkable advancement in the domain, demonstrating
the potential of machine learning to enhance cooling tower
performance.

The current research is focused on improving cooling
towers’ performance using machine learning, which significantly
contributes to the field by addressing several gaps identified in
existing literature. First, in the literature, cooling parameters like
mass flow rates of air and water have been used to calculate the
effectiveness of cooling towers, but the effect of only ambient
parameters on a cooling tower’s performance has not yet been
considered. This major research gap has been covered in this
study. Second, ambient parameters can help with the site
selection of a power plant, but they must be considered before
installing a power plant. The best site selection will help improve
a cooling tower’s efficiency. Comparing ambient parameters
among the sites will help in choosing the best site. Third, this
study also plays an important role in improving sustainability.
Sustainable Development Goals (SDG) 6, 7, and 13 have been
targeted in this research, which will lead towards a sustainable
environment.

2 Methodology

2.1 Data collection

The research process map is presented in Figure 1. The selection
of variables used in the input section was made systematically
concerning the target variables. All data regarding the input features
and the target variable of the efficiency of cooling tower is obtained
from a combined cycle power plant situated at Sheikhupura,
Pakistan. Several quantitative study reports are used in the analysis
to ensure the validity of the data collected. The dataset was then
examined for missing values, and any records with unavailable data
are excluded.

Table 1 presents a summary of the utilized data. Data sourced
from the 1140 MW combined cycle power plant in Sheikhupura,
Pakistan. A total of 264 data points were left after removing any
missing values. To simulate the cooling tower and predict the
efficiency of cooling tower, 6 features are considered which can be
classified in two groups: (i) ambient features (Ambient Temperature,
Ambient. Pressure, Relative. Humidity and (ii) working parameters
(Inlet Temperature, wet. bulb Temperature, outlet. Temperature
These factors are selected based on the effect on the cooling tower’s
efficiency.

2.2 Data visualization and pre-processing

Data visualization is very important in the development and
training of ML models, as it offers insight into data density and
distribution in terms of its inputs and outputs features. An ideal
feature set ensures comprehensive data representation across the

full range of variable values within the system’s operational scope,
ensuring that the model possesses complete knowledge about the
system which is under investigation. For this purpose, box plots are
generated from the data to obtain necessary graphical representation
of the variables while the heat maps are generated to assess the
correlations in the input variables.

It is important to note that there are many methods in
literature to characterize linear interdependence of two variables
and one such method is the Pearson correlation coefficient (PCC)
(Shoukourian et al., 2017). Computing the Pearson Correlation
Coefficient (PCC) for selected variables in an input-output model
is essential to understand their linear relationships. This is a
critical step in conducting machine learning tasks. Also, the
possibility of analyzing nonlinear or interactive effects of the
variables can be analyzed usingMLmodels.This research calculated
the Pearson Correlation Coefficient (PCC) between the input
and target variables using the cooling tower data set to evaluate
their linear relationship. The PCC is mathematically expressed
as shown in Equation 1:

Rxy =

N

∑
i
(xi − x)(yi − y)

√
N

∑
i
(xi − x)

2√
N

∑
i
(yi − y)

2

(1)

where Rxy denotes the Pearson Correlation Coefficient (PCC)
describing the relationship between the independent variable, X, and
the dependent variable, Y. This therefore means that PCC takes the
value from −1 up to 1. In other words, if Rxy = 1 in this model, it
means that the variables underlying the model are perfectly linearly
related to each other, and it also If Rxy > 0, then the relationship is
positive If Rxy < 0, then, the relationship is negative. However, it is
possible to have the case of Rxy = 0 which ascertains that there is no
correlation among all variables.

2.3 Training and development of machine
learning models

To estimate the performance of a cooling tower under various
simulated conditions and environmental factors, three tree-based
predictive modeling approaches are utilized: AdaBoost, Gradient
Boost, and Cat Boost. These models are widely recognized in
machine learning for their ability to interpret complex nonlinear
relationships and interactions between numerous input variables.
They adeptlymap complex functionswithin high-dimensional input
spaces and handle sizable datasets without falling prey to overfitting,
unlike the challenges sometimes seen with multilayer perceptron.
Notably, these methods have demonstrated strong results when
applied to datasets with 200–1,000 data points and dimensions
ranging from five to fifteen in the input space (Demolli et al.,
2019). Thus, these algorithmic features benefit in building
the process model for the cooling tower efficiency with
accommodation of the dataset containing robust conditions of the
input variables.

AdaBoost functions as an adaptive boosting technique
utilized with decision trees for classification and regression
tasks. This method tends to prioritize those trees that exhibit
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FIGURE 1
Machine learning project life cycle for modelling.

TABLE 1 Description of input features along with ranges.

Input feature Unit Data range No of
samples

1 Ambient
Temperature

°C 10.9–43.3 264

2 Ambient Pressure kPa 973.3–1,026.9 264

3 Relative Humidity % 18.5–80.1 264

4 Inlet Temperature °C 30.4–41.5 264

5 Wet Bulb
Temperature

°C 10.2–31 264

6 Outlet Temperature °C 21.8–34.6 264

greater predictive errors, utilize them for modeling (referred to as
decision stumps), and iteratively adjusts these errors throughout
the modeling phase to optimize prediction accuracy for the
given dataset.

For accurate and reliable forecasts with a high capacity
to generalize across various scenarios using machine learning
algorithms, it is important to carefully select several factors. Each
algorithm data flow has a distinct parameter space, and the literature
offers a variety of methods to ascertain the optimal values for
hyper-parameters.Different techniques such as greedy optimization,
grid search, random search, and particularly Bayesian optimization
play roles in tuning hyperparameters (Xayyasith et al., 2018). Of
these, grid search is well-regarded for its systematic exploration
of parameter spaces to pinpoint the optimal combination of
hyperparameters yielding superior performance in each ML model.
In this study, by considering the importance of hyperparameter

tuning, the grid search technique has been utilized. In ML,
overfitting is a big problem when the models are not well trained
in the approximation of the function space. To address this error,
we use k-fold cross-validation which helps reduce overfitting. By
evaluating the results of the trained machine learning model against
models trained with k-fold cross-validation, we can identify any
overfitting issues.

2.4 Error metrics

Performance criteria are established to evaluate the efficacy of
the suggested machine-learning algorithm. It is essential to include
both the coefficient of determination (R2) and mean-square-error
(MSE) in the list of performance metrics. Both performance metrics
are shown in Equations 2, 3.

R2 = 1−

N

∑
i
(yi − ̂yi)

2

N

∑
i
(yi − yi)

2

(2)

MSE = 1
N

N

∑
i=1
( ̂yi − yi)

2 (3)

where yi represents the actual target variable values and ̂yi represents
the modeled target variable values apart from yi = actual target
variable values, yi = average of target variable values and i Total
number of observation = N, constituted by i = 1, 2, 3, 4, …. R2 is
a metric for evaluating the accuracy of a machine learning model’s
predictions, with zero indicating a low capability to match input
features with target variables, and one signifying perfect correlation
between inputs and targets. Meanwhile, Mean Squared Error (MSE)
measures the variance between the actual data points in a dataset
and those predicted by a model.
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2.5 SHAP evaluation of the developed
machine learning model

The next and implicitly consecutive step in building a high-
performing ML model is to determine the importance of the input
variables relative to the target variable. Hence, different approaches
have been described in the previous section in undertaking feature
importance analysis (Ma et al., 2021). When calculating SHAP
(SHapley Additive Explanations) values for input variables, a
model-agnostic methodology is applied that constructs cooperative
games with the input variables to evaluate their impact on the
output variable (Cheng J. C. et al., 2020). In SHAPmethods analysis,
sensitivity can be evaluated for individual data points or the whole
dataset. This yields SHAP values for input variables, ranking their
importance. Understanding key variables’ impact on the outcome
is crucial for designing lab experiments and enhancing industrial
procedures.

3 Results and discussion

3.1 Data description

After formatting the data for the target variables, box plots are
generated to show their distribution. Box plots are another method
that effectively depicts the variation within a data set (Lima et al.,
2023). The second illustration presents how the input variables are
distributed within the input space concerning the target variables,
Out, as depicted in Figure 2. Most of the variables are concentrated
in the 25 percent – 75 percent range, or inter-quartile range (IQR).
Some variables have more than one observation, that is, there are
data points whose values are greater than 1 for some of the variables.
Outliers may be calculated as 1.5∗IQR times the distance from the
higher quartiles or the lower quartiles. The distribution profiles
derived from literature demonstrate a broad operational range for
both input and target variables typically used in the design and
function of cooling tower simulations. Owing to the great operating
range of the various variables, techniques ofML can be implemented
to predict efficiency of the fluid when certain inputs are applied.

PCC is employed to establish the extent of the linear relationship
between the input and target features. Figure 3 displays heat maps
generated from the PCC analysis, illustrating in its columns the
correlation between the input variables and the output. Temp
(represented in blue and green as shown in the figure). The scores
that are less than PCC reveal the lack of a direct relationship
between two factorswith a supposition of the presence of a nonlinear
and intricate relationship between two variables. Consequently, the
current techniques for developing and training ML models can
recognize complex relationships and patterns within a dataset to
precisely construct a functional representation of the connection
between the input and target variables in the system under
investigation.

The Pearson correlation coefficient (PCC) map is created for the
input variables, as well as between the input variables and the target
variable. Some variables show high PCC values. However, most
variables display low PCC values, indicating a nonlinear relationship
among the variables within the collected dataset.

3.2 Model performance

Three tree-based machine learning algorithms—Cat Boost,
Gradient Boosting, and AdaBoost—are developed to estimate
the outdoor temperature from the dataset identified during data
collection, visualization, and processing stages of the research.
The division of data into training and testing sets followed
a consistent split-ratio of 80/20. Overall, the fine-tuning of
hyperparameters across these machine learning models is key to
achieving reliable predictive performance. For the Cat Boost model,
tuned hyperparameters include learning rate, loss function, depth,
number of iterations, L2 regularization, and maximum bin number;
for the Gradient Boosting model, adjustments are made to learning
rate, maximum depth, sub-sample, col sample by tree, and number
of estimators; in the AdaBoost models, learning rate, loss function,
and number of estimators are the hyperparameters that are tweaked.

In summary, the side-by-side scatter plots for actual versus
predicted responses from the training and testing data sets
corresponding to Cat Boost, AdaBoost, and Gradient Boost
algorithms are illustrated in Figure 4. Statistical analysis revealed
that AdaBoost exhibited superior performance compared to Cat
Boost and Gradient Boost. Specifically, for the training set, the R-
squared values, which reflect the model’s accuracy, were reported as
0.991, 0.997, and 0.999 forAdaBoost, Cat Boost, andGradient Boost,
respectively. For the testing set, these values are 0.991, 0.988, and
0.880 from three used algorithms, AdaBoost emerged as the most
effective, also demonstrating the smallest root mean square error
(RMSE) with a value of 0.11.

The AdaBoost algorithm was notably effective in both training
and testing stages, showing superior R2 values of 0.991, as compared
to Gradient Boost and LG Boost.

Given the strong performance of the models during training
and on test data, there could have been an issue with overfitting.
Overfitting occurs when models fit too closely to a specific dataset
and pick up noise, along with random fluctuations that negatively
impact their predictive ability on new data. This reduces the
models’ capacity to generalize from the underlying process. The
current study used k-fold cross-validation (CV) to assess potential
overfitting in the machine learning (ML) models. With k-fold CV,
one divides the dataset into k parts (k = 5 was chosen for this study),
then checks the model’s effectiveness on 1 part after training on the
remaining k-1 parts. By averaging results across the k iterations,
more generalized training is achieved, and it addresses bias-variance
concerns. As presented in Table 2, the overfitting issue for the
AdaBoost, Gradient Boost, and Cat Boost models appears well-
managed based on the closeness of the R2 values from the k-fold
method the R2 values from testing data, as shown in Figure 4. This
illustrates that the AdaBoost models demonstrate strong predictive
capabilities and robust performance outside of the sample set. The
AdaBoost loose curve performance is shown in Figure 5.

3.3 The impact of identified input factors
on output temperature

The machine learning model developed from the provided
dataset acts as a practical surrogate of the systembeing analyzed.The
choice hinges on selecting a thoroughly trained model with strong
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FIGURE 2
The data visualization employs box plots for the input variables, revealing a well-distributed spread across their operating ranges.

FIGURE 3
Pearson correlation coefficient map.

predictive power to uncover the system’s inherent mechanics and
to determine which input variables are more important. To attain
this, a feature-important analysis based on the SHAP analysis is
conducted. The results obtained from the AdaBoost model indicate
that the model made precise predictions for the output Temperature
when considering the input variables within the framework of the
SHAP analytical method. This analysis highlighted the key input
features of the process under investigation. Figure 6 illustrates the
ranked importance of input variables as determined by SHAP.

Remarkably, these findings constitute the existing knowledge about
the mechanism of the cooling tower.

SHAP analysis reveals that Relative Humidity is the most
vital factor in the cooling tower’s performance amid changes in
ambient temperature. The waterfall SHAP plot in Figure 7 shows
how individual characteristics of a model affect the predictions for
a given instance. Starting with a base value, it gradually adds or
removes SHAP values to illustrate the impact of each attribute on
the final prediction, highlighting how they increase or decrease the
predicted value and the extent of their effect.

4 Research contribution

This research is focused on addressing key gaps by examining
how well ambient parameters can improve cooling tower efficiency.
This study investigates the impact these parameters have on a cooling
tower’s outlet temperature, as illustrated in Figure 6. By analyzing
the relationship between dependent and independent variables, this
study highlights the importance of considering ambient factors
when designing power plants to maximize efficiency. Additionally,
this research contributes to optimal site selection for cooling towers
and power plants by comparing ambient conditions across potential
locations. Figure 4 shows that the cooling outlet temperature drops
as the wet bulb temperature decreases and vice versa. Thus,
selecting a cooling tower site often involves choosing locations
with lower wet bulb temperatures. Similarly, understanding how
the outlet temperature correlates with other ambient factors like
pressure and relative humidity can help in best site selection. This
research underscores sustainability as a key contribution, aiming
at Sustainable Development Goals 6, 7 and 13 to enhance human
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FIGURE 4
Comparative scatter plots showing the actual vs predicted values using Gradient Boost, Cat Boost, and AdaBoost models.

FIGURE 5
Adaboost loss curve performance. Curve indicates no overfitting.

TABLE 2 Machine learning models’ effectiveness with CV.

Parameters AdaBoost CatBoost GradientBoost

Training R2 0.991 0.999 0.999

Testing R2 0.991 0.988 0.988

CV-R2 0.983 0.983 0.983

MSE 0.11 0.15 0.16

and environmental health. Increasing the efficiency of cooling
towers improves power plant performance, reduces emissions, and
promotes environmental sustainability. This work not only fills
knowledge gaps regarding ambient factors but also offers actionable
guidance for cooling tower and power plant site planning, support
achieving the Sustainable Development Goals.

FIGURE 6
SHAP analysis.

Furthermore, this research provides a quantitative assessment
of different input parameters to impact the performance of cooling
towers, providing optimization strategies based on data-driven
solutions. By combining machine learning algorithms, this study
provides proactive techniques in the operations of cooling towers
based on real-time data for environmental conditions. Moreover,
the findings suggest that smarter AI-driven cooling systems can
be developed which can be self-regulated according to fluctuating
environmental conditions. The research is useful for industry
professionals and policymakers to formulate guidelines and policies
to develop infrastructure of energy-efficient systems. Also, by
incorporating the metrics for sustainability, this research presents
not only the approach to improve energy efficiency but also
environmental sustainability to ensure the long terms benefits for
industries as well as climate resilience. Another contribution is the
use of SHAP based analysis of feature importance which helps
to understand the influence of parameters. This important insight
can be used in other thermal management systems in industrial
units to optimize their performance. This research adds valuable
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FIGURE 7
Waterfall SHAP plot.

knowledge by highlighting the economic, technical and policy
related implications.

5 Conclusion

• The study presents a method to assess how environmental
factors influence the efficacy of cooling towers (CT) for optimal
site selection. An AdaBoost regression model, chosen for its
superior R2 score and minimal MSE compared to other ML
models, was employed for analysis. The method’s robustness
was confirmed using data from an 1140 MW combined cycle
power plant in Sheikhupura, Pakistan. The findings outline
methods for enhancing CT efficiency by considering ambient
conditions prior to the installation of power plants.The research
also contributes to SustainableDevelopmentGoals such as SDG
6which is about cleanwater and sanitation for all, SDG 7, which
is about ensuring access to “Affordable and Clean Energy,” and
SDG 13, which addresses “Climate Action,” thereby supporting
a sustainable environment.

• The accuracy of the AdaBoost regression is tested using Mean
Square Error (MSE) and R2 score, with the AdaBoost model
achieving an impressive R2 score of 0.984 on the testing dataset
and an MSE of 0.11. Heatmaps illustrate various correlations
among variables with minimal discrepancies between original
andnoise-addeddata.TheSHAPvalue graphdemonstrates how
each feature affects the dependent variable. The actual versus
predicted outlet temperatures of a CT are compared, indicating
that the predicted values closely match the test dataset.

• The efficiency of power plants hinges on their CTs performance.
Higher efficiency in CTs translates to higher overall plant
efficiency. This is largely influenced by the CT’s outlet
temperature, which according to machine learning (ML)
analyses, directly correlates with the CT’s inlet temperature,
the ambience temperature, and the wet bulb temperature, but
inversely with relative humidity and ambient pressure.The data
suggests that considering these ambient factors when installing
CTs can boost their efficiency, resulting in reduced energy use
and emissions, thereby promoting sustainability.

• TheAdaBoostmodelmight not entirely sustain its performance
on power plants if it is deployed in climatic regions with quite
different climatic conditions (such as arid, humid, or polar).
This inconsistency results from various aspects, which are data
dependency, feature sensitivity and adaptability. The training
data can greatly influence the performance of AdaBoost. So, if
trained on temperate climate data, it may fail to generalize well
to any other climate that has very different ambient conditions
unless fine-tuned with new data or retrained. Climatic variables
are also nonlinear in interaction and may dramatically differ
across regions. Hence, transfer learning techniques or including
diversified climate data during training may be helpful for
consistency in model performance.

• The study is confined to pre-installation factors for power
plants since ambient conditions cannot be adjusted post-
installation. The aim is to identify optimal sites for cooling
towers (CTs) to ensure efficiency. Additionally, forecasting the
outlet temperature by considering external ambient factors and
internal factors such as water and air flow rates, alongside
variable frequency drive speeds, can aid in enhancing cooling
efficiency.

• Internal factors including water quality, variability in airflow,
and practices regarding maintenance do impact the cooling
tower’s efficiency significantly. Thus, it might enhance the
prediction ability of the model if such internal parameters
are considered. Future studies can incorporate these internal
factors by expanding the dataset to include operational and
maintenance-related variables

It is also important to analyze the combined effect of these
external and internal parameters using high-end machine learning
techniques. More importantly, multivariate sensitivity analysis will
be important to understand more about the nature of interrelations
between these factors, which then leads to making more robust,
generalizable, and reliable prediction models for estimating CT
efficiency.
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