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The transient overvoltage caused by faults in ultra-high-voltage direct current
(UHVDC) transmission lines and alternating current (AC) systems can adversely
affect system safety and stability. This study theoretically analyzes the transient
overvoltage generation mechanism caused by DC single-pole ground faults and
typical fault conditions in two different cases by combining the DC line and AC
systemof the transmitting side. Considering the different generationmechanisms
of the two transient overvoltages, the main factors affecting transient
overvoltages were determined to be the DC line ground fault location, DC
filter main capacitance, AC system short-circuit ratio, and DC transmission
power. Finally, through a simulation of UHVDC transmission engineering, the
relationship between various influencing factors and overvoltage was obtained,
which can provide guidance in transmission engineering UHVDC design.
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1 Introduction

The ultra-high-voltage direct current (UHVDC) power transmission system provides
the benefits of power transmission over long distances and large capacity, which can solve
the problem of resources and energy being distributed reversely in China through large-
scale energy allocation optimization (Li et al., 2015; Shen et al., 2021; Wang et al., 2014; Guo
et al., 2024). UHVDC transmission systems have complex wiring and comprise many
devices; therefore, overvoltage can occur in various ways (Zheng et al., 2012). Overvoltage
refers to the phenomenon where the voltage in electrical equipment or power systems
exceeds its normal operating voltage. Overvoltage mechanisms in DC transmission systems
can be classified into two categories: external and internal (HVDC transmission system
design, 2015). The overvoltage produced by the thunder intruded by a lightning tower or
line is the external overvoltage, and the overvoltage produced by the short-circuit fault on
the AC side or transformer, filter throwback, reclosing, and other human operations is the
internal overvoltage, which can be classified into frequency and operational overvoltages.
Overvoltage adversely affects the safe and stable operation of the UHVDC transmission
system and causes the fan to go off-grid, thereby affecting the supply reliability of the AC
system. Consequently, studying the overvoltage generation mechanism and its influencing
factors is essential to confining the overvoltage within the permissible scale.
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Domestically, research has been conducted on the overvoltage of
UHVDC transmission lines. The electromagnetic induction
characteristics of the fault pole to the health of UHVDC
transmission lines (Wang and Siye, 2015) and the distribution law
of overvoltage formation mechanism along the DC line fault (Wu et al.,
2009) have been analyzed. In Liu et al. (2017), the design scheme of the
DC filter for ± UHVDC transmission system was systematically
introduced, and the factors influencing the DC-side operating
voltage peak, including the main capacitance value, shunt resonance
frequency, filter resistance value, and filter resistance wiring were
studied. However, this article neglects the impact of factors such as
the converter station terminal impedance, transmission line length, and
line parameters on the overvoltage of the DC line. In Yang et al. (2020),
the mechanism of the DC-side overvoltage generation in the UHVDC
system in wind farms under single pole ground fault was studied.
However, the article does not clearly identify the main factors
contributing to the occurrence of overvoltage. The above research

results on DC line single-pole ground fault overvoltage calculation
are based on stage parameters from an actual engineering feasibility
study, ignoring some important parameters such as the DC filter type
and others impacting overvoltage.

For typical fault conditions such as phase change failure and DC
blocking that cause transient overvoltage, in Tu et al. (2017) the
transient reactive power characteristics at the beginning and end of
the DC transmission system were investigated during DC phase
change failure. However, the article only studied the power
conversion during the fault period and did not explore its
influencing factors in depth. In Li et al. (2014), the transient
overvoltage producing mechanism in the sending grid that
resulted in phase change failure was studied, and the connection
between transient overvoltage and the number of AC filters was
analyzed. However, the article gives insufficient consideration to
other factors that may affect overvoltage. In Krishayya et al. (1997),
the relationship between short-circuit ratio and transient

FIGURE 1
Simplified schematic diagram of DC transmission system.

FIGURE 2
Fault pole voltage and current traveling wave transmission process.
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overvoltage was analyzed, providing reference values for transient
overvoltage according to different system strengths. In Wang et al.
(2016), the influencing factors of transient overvoltage during DC
blocking by the AC system equivalence method were analyzed, and
the transient overvoltage calculation method of the converter bus
was studied for a blocked DC line. The existing literature on the
working condition transient characteristics of typical faults in DC
systems mainly focuses on the transient change of electrical
quantities, such as power and voltage, and research on the
calculation, influencing factors, and modeling of transient
overvoltage at the transmitting side is lacking (Cao et al., 2019).

In this study, for the internal overvoltage of a DC transmission
system, the different generation mechanisms of both transient
overvoltages were considered in combination with the DC line
and transmitting AC system. As the analysis of overvoltage
influencing factors is not sufficiently comprehensive in existing
research (Bai et al., 2023), this study analyzes the relationship
between each influencing factor and transient overvoltage,
thereby proposing a feasible plan to limit the coincident
overvoltage amplitude, which has certain guiding significance for
the parameter design of DC transmission project-related equipment.

2 Mechanism of DC transmission
overvoltage generation under fault
conditions

Under normal conditions, the equipment in the system operates
at the rated voltage, but faults can still occur. A fault on one pole of
the DC transmission line will cause an operational overvoltage on
the other pole. Pressurizing the line under no-load conditions can
lead to an open-circuit overvoltage, which may damage the electrical
equipment (Lu et al., 2023).

2.1 DC line overvoltage
generation mechanism

The normal operating state of the DC system is bipolar, such
that in case of a positive pole ground fault, a transient overvoltage is
induced by the transmission line electromagnetic coupling
phenomenon in the health pole. A fault in the middle point of
the line causes a secondary superposition of voltage jumps on the
health line, triggering the most serious overvoltage. The following
section analyzes the mechanism of DC-line overvoltage generation
based on the characteristics and processes of traveling wave
transmission.

A simplified schematic of the bipolar operation of the DC
transmission system is shown in Figure 1 (Zhang et al., 2019).
The main components are the AC system equivalent power supply,
converter bus, converter station, flat-wave reactor, DC filter,
and DC line.

When a DC system ground fault occurs at one pole, the voltage
on the fault pole drops to zero, which is equivalent to a traveling
voltage wave of amplitude U0 propagating along the fault pole line
and generating a current wave propagating to both ends of the
converter station, as shown in Figure 2 (Xing et al., 2019).

When the voltage wave reaches both sides of the converter
station, the DC filter main capacitor generates a larger sudden pulse
current, together with a sudden pulse of current at the fault point.
This is because the electromagnetic coupling between the poles
induces a reverse pulse current at the health pole, and the health pole
capacitance to ground continues to charge, thus increasing the
voltage, which corresponds to the primary and secondary voltage
jumps superimposed on the normal operating voltage, generating a
serious overvoltage phenomenon at the health pole.

Let the forward voltage wave be uf. The reverse wave reflected at
the converter station is ub, and the overvoltage on the pole without a
fault is as shown in Formula 1.

U � uf + ub (1)

Depending on the nature of the impedance at the converter
station, the reflected wave can be expressed as Formulas 2–4:

uRb � R − Z

Z + R
E (2)

uCb � E − 2Ee−t/TC (3)
uLb � −E + 2Et/TL (4)

In the formulas, uRb, uCb, and uLb are the reflected waves when
the impedance is resistive, capacitive and inductive, respectively.
The time constants TC � CZ and TL � L/Z.

2.2 Phase change failure causes transient
overvoltage at the sending end of the grid

When the inverter side of the DC system fails to suppress the
rapidly rising DC current, the rectifier increases the trigger angle.
The reactive power consumed by the rectifier also increases, and the
voltage of the sending grid temporarily decreases (Peng Zhen et al.,
2020). As the trigger angle of the rectifier increases, the DC current
decreases to zero (Ouyang et al., 2024); the reactive power used by

FIGURE 3
AC line voltage phase diagram Transient overvoltage caused by
DC blocking.
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the converter decreases; and the reactive power compensation
provided by the filter returns to the transmission grid in large
quantities, causing a transient overvoltage in the transmission
grid. Figure 3 shows the voltage phase diagram of the AC line.
The DC current continues to drop; the AC current phase changes;
the active power drops; and the excess reactive power from the
rectifier station is transferred to the sending grid, resulting in a

lower-voltage transverse component and a higher-voltage
longitudinal component. Thus, a transient overvoltage is
generated on the converter bus. In the figure, δUL indicates the
transverse component of the commutator bus voltage; ΔUL indicates
the vertical component;UL

·
is the commutator bus voltage phase;U

·
S

is the equivalent potential; and I
·
ac is the current flowing through the

equivalent reactance.
When single-stage or bipolar blocking occurs in a DC system,

as in the case of phase-change failure, the active power delivered
by the DC decreases, resulting in a corresponding decrease in the
reactive power consumed by the converter station (Fu et al., 2019;
Zhang et al., 2021). The delayed action of the reactive power
compensation device causes a large surplus reactive power to
surge into the sending or receiving end of the grid, causing a
transient voltage rise in the converter bus, with a standard value
expressed as Formula 5:

ΔU*
L �

ΔQ
SC

(5)

where ΔQ is the amount of reactive power reduction, and SC is the
short-circuit capacity on the AC side (Zhang et al., 2017).

3 Factors affecting transient
overvoltage under fault conditions

The overvoltage caused by grounding or short-circuit faults on
the DC and AC sides of a UHVDC transmission system and typical
operating conditions caused by the faults are affected by various
factors, including the location of the ground fault, main capacitance
of the DC filter (Peng Long et al., 2020), short-circuit ratio of the AC
system, equivalent potential, and DC transmission power. The
effects of these factors on the transient overvoltage are
analyzed below.

FIGURE 4
AC/DC system equivalent circuit at the sending end.

FIGURE 5
Phase diagram of AC line voltage during DC blocking.
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3.1 Factors affecting overvoltage of single-
pole ground fault in DC lines

3.1.1 Ground fault location
The severity of the overvoltage caused by a ground fault depends

on the location of the fault pole. DC-line ground fault generation can
be divided into two stages:

1) Line fault is instantaneously generated when fault pole
amplitude suddenly changes in the pulse-voltage traveling

wave, but with opposite polarity, propagated to both sides
of the converter station; the fault occurs when the
voltage is zero.

2) When the voltage wave reaches the beginning and end of the
converter station, the main capacitor of the DC filter returns to
the discharge state and excites the pulse current.

Assuming that the fault occurs in the middle of the line, the
impulse current wave in the health pole back propagates to
induce the same reverse pulse current and charge the main

FIGURE 6
Schematic diagram of the structure of Zhaqin UHVDC transmission.

TABLE 1 Rated operating parameters.

Transmitting-end AC
voltage

Receiving-end station AC
voltage

DC
voltage

DC
current

Trigger
angle

Extinguished arc
angle

530 kV 515 kV 700 kV 6,250 A 15° 17°

TABLE 2 Steady-state operating parameters for bipolar full-pressure operation mode.

Parameters Inverter side Rectifier side

AC system voltage Uac/kV 591 502

DC Current I/A 6,250 6,250

Double 12 pulsating commutator voltage Ud/kV 800 800

6 Pulsating converter no-load voltage Udio/kV 230 216.6

Converter valve side line voltage Uv/kV 170.3 160.4
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capacitor; both ends of the pole line causing overvoltage are
superimposed in the middle of the line, where the amplitude of
the overvoltage is the highest.

3.1.2 DC filter main capacitor
The generation of a healthy full overvoltage results from the

charging of the DC filter ground capacitor (Liu et al., 2020);

FIGURE 7
DC pole line current and voltage for bipolar full voltage operation.
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therefore, the main capacitance parameters of the DC filter
also has an impact on the overvoltage caused by the DC
line ground fault, which is subsequently analyzed and

discussed in conjunction with the voltage jump
generation mechanism.

3.2 Factors influencing the transient
overvoltage caused by typical operating
conditions

Phase change failure and DC blocking have similar overvoltage
generation mechanisms, and the factors affecting the transient
overvoltage are the same. The DC transmission system on the
transmitting side is illustrated in Figure 4;

where, Sac � Pac + jQac is the AC line transmission power;
Pac and Qac are the active and reactive powers conveyed by the
AC system at the transmitting end, respectively; XS is the
equivalent reactance; QC is the reactive power produced by
the filter and other reactive power compensation equipment;
Sd � Pd + jQd is the DC line transmission power; Pd and Qd are
the active and reactive powers transmitted on the DC line,
respectively; Id is the DC current; and Ud is the DC voltage
(Liu et al., 2018; Aragüés-Peñalba et al., 2012). The equivalent
potential is obtained from the tidal equation in Krishayya et al.
(1997) as Formula 6:

US �

�����������������������
UL + QacXS

3UL
( )2

+ PacXS

3UL
( )2

√√
(6)

where the equivalent reactance is shown in Equation 7:

XS � 3U2
L

Ssc
(7)

FIGURE 8
Different ground fault location sound pole line along the overvoltage.

FIGURE 9
Three-tuned passive filter.
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The AC system short-circuit capacity is shown in Equation 8:

Ssc � PdNKscr (8)
PdN is the DC system transmission power rating, and Kscr is the AC
system short-circuit ratio.

After a phase-change failure on the inverter side or a DC blocking
fault on the transmitting side, the DC transmission power decreases; the
reactive power consumed by the converter decreases; and the excess
reactive power provided by the reactive power compensation device is
returned to the AC system. This causes the converter bus voltage to

FIGURE 10
Effect of DC filter capacitance on overvoltage (Overvoltage at C3 = 1 μF).

FIGURE 11
Effect of DC filter capacitance on overvoltage (Overvoltage at C2 = 1 μF).
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increase, and a transient overvoltageU′
L is generated. The voltage -phase

diagram of the AC system is provided in Figure 5.
Concurrently, the reactive power compensation capacity also

increases with an increase in voltage. The relationship between the

two is (U′
L

UL
)2

ΔQC
3 , and the transient overvoltage of the commutation

bus is expressed as Formula 9:

U′
L �

����������������
US − ΔUS( )2 + δU2

S

√
ΔUS � U′

LΔQCXS/3 U2
LUS( )

δUS � PacXS/3US

⎧⎪⎪⎨⎪⎪⎩ (9)

As the transverse component of the system voltage has a small
effect on the overvoltage amplitude, it is ignored, thereby solving for
Formula 10.

U′
L �

U2
LUS − ULUS

����������
U2

L − 4 ΔQCXS
3

√
2ΔQCXS

3

(10)

In this expression, the transient overvoltage U′
L of the

commutation bus is related to the equivalent potential US,
equivalent reactance XS, and residual reactive power compensation
capacity ΔQC. According to Equations 7, 8, XS is inversely
proportional to the short-circuit ratio Kscr; thus the change in Kscr

affects themagnitude ofU′
L. Because the reactive power compensation

capacity QC is generally 40%–50% of the steady-state transmitted
active power Pac of the AC system, the DC transmitted power is also
an important factor influencing the transient overvoltage QC.

4 Simulation and analysis

4.1 The simulation model

In this study, power systems computer-aided design/
electromagnetic transients including DC (PSCAD/EMTDC)

simulation software was used to build a simulation model in the
context of the ±800 kV UHVDC transmission project (Yuan et al.,
2024). Figure 6 shows the schematic diagram of the
principal structure of the ±800 kV UHVDC transmission system
with the rated operating parameters shown in Table 1 (Luo
et al., 2019).

The built simulation model was tested for bipolar full-voltage
operation, and the voltage and current conditions on the rectifier
and inverter sides were simulated. Table 2 lists the steady-state
operating parameters for the bipolar full-voltage operation mode.

Figure 7 shows that the voltages and currents on both the
rectifier and inverter sides are 1 p.u. in the bipolar full-voltage
operation mode, indicating that the proposed model conforms to
actual operations and provides a basis for the subsequent
simulation study.

4.2 DC line overvoltage influence
factor analysis

4.2.1 Impact of ground fault location
To explore the impact of the ground fault location on

the overvoltage amplitude of the fault pole line, a single
pole ground fault was set at 0, 25%, 50%, 75% and 100%
along the line from the rectifier to the inverter side of a pole
line, and the fault time lasted 0.1 s. The different ground fault
locations on the sound pole line along the overvoltage is shown
in Figure 8.

According to the simulation results, when a single-pole
ground fault occurs, the health pole generates two voltage
jumps at the instant of the fault and 5 ms after fault
occurrence. When the location of the single-pole ground fault
is at 50% of the line from the rectifier to the inverter side, i.e., at
the midpoint of the line, the overvoltage reaches its maximum
magnitude of 1.3 p.u. at the corresponding location of the health
pole. Furthermore, the location of the fault point is in the middle
of the line, and the overvoltage amplitude is smaller, indicating
that the location of the ground fault affects the overvoltage at the
health pole.

4.2.2 Effect of DC filter main capacitor
The DC filter used in the ±800 kV UHVDC project was a

thrice-tuned passive filter, and the circuit diagram is shown
in Figure 9.

Referring to the parameters of DC filters in actual engineering,
the main capacitor C1 is usually 1–4 μF; C2 and C3 are usually
1–5 μF. Simulation analysis was performed for the overvoltage
caused by the ground fault occurring on the single line when
C2 = 1 μF and C3 = 1 μF.

Based on Figures 10, 11 and the Tables 3, 4, when C2 or C3 is
1 μF, the overvoltage gradually decreases with an increase in C1. The
changes in C2 and C3 do not significantly affect the overvoltage,
indicating that the main capacitor C1 of the DC filter is the main
factor of the single pole ground fault influencing the overvoltage of
the DC line.

Next, the main capacitor parameters are further explored in
relation to the fault and health pole pulse currents, overvoltage, and
main capacitance.

TABLE 3 Effect of C1/C2 on overvoltage (C3 = 1 μF).

C1/C2 1 μF 2 μF 3 μF 4 μF

1 μF −1.5527 −1.3956 −1.3746 −1.3441

2 μF −1.5401 −1.4033 −1.3700 −1.3449

3 μF −1.5481 −1.4073 −1.3740 −1.3461

4 μF −1.5257 −1.4095 −1.3741 −1.3427

5 μF −1.5358 −1.4101 −1.3738 −1.3472

TABLE 4 Effect of C1/C3 on overvoltage (C2 = 1 μF).

C1/C3 1 μF 2 μF 3 μF 4 μF

1 μF −1.5527 −1.3956 −1.3746 −1.3441

2 μF −1.5380 −1.4011 −1.3676 −1.3420

3 μF −1.5446 −1.4056 −1.3740 −1.3452

4 μF −1.5271 −1.4077 −1.3735 −1.3427

5 μF −1.5330 −1.4100 −1.3761 −1.3500
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FIGURE 12
DC filter discharge current versus main capacitance.

FIGURE 13
Health pole overvoltage versus main capacitance.
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As shown in Figures 12, 13, the discharge current of the DC filter
and the overvoltage at the sound pole increase with an increase in the
main capacitor C1, further verifying that the overvoltage on the sound
pole line is caused by the discharge current generated by the sound pole
ground capacitor that is charged by the main capacitor of the DC filter
through the electromagnetic coupling that occurs in both pole lines.

4.3 Transient overvoltage influence factor
analysis for typical operating conditions

4.3.1 Effect of short-circuit ratio
The initial short circuit ratio of the feeder grid was 2.5. The

system short-circuit ratio was changed by adjusting the internal

FIGURE 14
Effect of system short-circuit ratio on transient overvoltage.

FIGURE 15
Effect of DC transmission power on transient overvoltage.
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impedance of the AC power supply to alter the magnitude of the
equivalent reactance XS, and the system phase change failure and
DC blocking conditions were simulated at Kscr = 2.5, 3, 5, and 7.5.

In Figure 14, the transient overvoltage caused by phase change
failure in a system with a short-circuit ratio of 2.5 reaches 1.19 p.u.,
which increases by 0.11 p.u. compared with the overvoltage of
1.08 p.u. at a short circuit ratio of 7.5. The larger the short
circuit ratio, the stronger is the AC system strength, and the
smaller is the amplitude of the transient overvoltage and change,
which also increase nonlinearly. Therefore, measures to improve the
strength of an AC system are beneficial for the stable operation of
the system.

4.3.2 Effect of DC transmission power
Letting the AC system at the transmitting end be 2.5, the DC

transmission power was changed to observe the change in transient
overvoltage.

According to Figure 15, the outcome reflects that the change
in the DC transmission power has a relatively small effect on the
highest value of the transient voltage, and the transient
overvoltage caused by the phase-change failure occurs at a
power of 1.0 p.u. and reaches approximately 1.25 p.u. The
higher the power, the higher is the transient overvoltage.
Therefore, high-capacity DC transmission should be avoided
in a weak system, or the system strength should be increased
during high-capacity transmission.

5 Conclusion

In this study, to explore the transient overvoltage problems
caused by DC single pole ground fault and typical fault conditions, a
theoretical analysis was conducted on the mechanism of overvoltage
generation in two different cases. The influencing factors of transient
overvoltage were deduced, and the PSCAD/EMTDC
electromagnetic transient simulation software was used to model
and perform calculations for the ±800 kV UHVDC transmission
project. By simulating and analyzing the relationship between each
influencing factor and overvoltage, the following conclusions
were reached:

1) By analyzing the mechanism of DC line overvoltage
generation, it was concluded that the health pole line
overvoltage is caused by the pulse current wave generated
under the action of electromagnetic coupling to the ground
capacitor charging. If a fault occurs in the line, the midpoint
overvoltage is superimposed, and the size of the current is
related to the main capacitance of the DC filter.

2) In typical fault conditions, such as phase change failure and
DC blocking, a reduction in the active DC power delivery
leads to a large amount of surplus reactive power flooding
into the grid at the transmitting or receiving end, causing a
transient overvoltage at the transmission converter bus,
which is mainly related to the AC system short-circuit ratio
and transmitted DC power, as derived from the
overvoltage formula.

3) Simulations were conducted to analyze the relationship
between the ground fault, main capacitor parameters, and

health pole transient overvoltage of the DC lines. The further
the fault point was from the middle of the line, the lower was
the amplitude of the overvoltage, reaching the maximum at the
midpoint. By comparing the main capacitor C1 with the
change in C2 and C3, C1 was determined to be the main
influencing factor of overvoltage, and the overvoltage varied
positively with an increase in the main capacitor C1.

4) A simulation-based analysis of the relationship between
the AC system short circuit ratio, DC transmission power,
and transient overvoltage at the transmission end of the
grid, revealed that the larger the short-circuit ratio, the
lower was the amplitude of the overvoltage, whereas the
larger the DC transmission power, the higher was the
overvoltage, and the short-circuit ratio was greater than
the DC transmission power on the overvoltage. Therefore,
large-capacity DC transmission should be avoided under a
weak system to improve system strength.
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