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This article presents a novel particle swarm optimization (PSO)-based energy
management system (EMS) designed for microgrids (MGs) to enhance
operational efficiency, reduce dependency on the utility grid, and minimize
electric vehicle (EV) charging costs. The proposed EMS integrates distributed
energy sources, including photovoltaics (PVs), wind turbines (WTs), and battery
energy storage systems (BESSs), alongside several EVs with variable loads to
evaluate energy optimization. A comprehensive MGmodel is developed to assess
multiple operational scenarios, including variations in EV demand, load,
renewable energy production, and dynamic grid power prices. The study
demonstrates the effectiveness of the PSO-based EMS in optimizing energy
exchanges with the grid, leading to cost reductions of 14% and 21% with and
without EV integration, respectively. Furthermore, the EMS facilitates efficient
BESS charging/discharging schedules and implements proactive EV charging
strategies to ensure uninterrupted electricity supply during peak and off-peak
hours. These findings underscore the potential of PSO-based EMSs to provide a
sustainable and cost-effective energymanagement solution inMGs by leveraging
renewable resources and addressing the challenges posed by fluctuating energy
demand and grid prices. Hence, the proposed model provides an optimized EMS
and a proactive EV charging system.
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1 Introduction

The increasing number of smart grids has raised numerous obstacles in the preservation
of power quality and consistency. Grid-connected energy management systems (EMSs)
have experienced significant growth in recent years due to increasing energy usage. The
EMS developed with a microgrid (MG) allows optimal scheduling of renewable energy
sources (RESs), power storage, and charging for electric vehicles (EVs) to effectively manage
the equilibrium between supply and demand while ensuring cost-effectiveness. There is a
growing concern among urban populations regarding the escalating levels of atmospheric
greenhouse gases (GHG) resulting from the rapid growth of urbanization and rising
numbers of on-road vehicles. Developing a viable and enduring substitute for the
transportation infrastructure is crucial to address this issue. Incorporating RESs into
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MGs presents a viable approach to addressing environmental
concerns and providing a cost-effective EMS (Yong et al., 2015).
MGs can mitigate the high costs of distributed RESs in their
community by generating power during peak demand times and
periods of excess supply on the grid. However, because these RESs
are intermittent and unpredictable, integrating them into the grid
has been problematic and challenging (Nienhueser and Qiu, 2016).
Larger-scale RES integration needs the optimal combination of
system management, operation, and enough energy flow. This
study employed willingness-to-pay models to charge EVs with
RESs. Recently, numerous cost-effective and ecologically
sustainable EMSs for EVs have been successfully adopted. For
instance, in a study by Qi et al. (2018) for the green energy local
area network (ELAN), the collaborative energy management
optimization (CEMO) technique was used. They considered
economic, environmental, and safety issues, including a pollution
treatment fee. Furthermore, a clever method for charging and
unplugging plug-in hybrid electric cars (PHEVs) was suggested.

Two experimental modes have been developed to evaluate the
model’s efficacy, and the simulation outcomes indicate that the
energy management optimization model effectively distributes
energy resources. Additionally, the innovative charging and
discharging technique of the PHEV enhances economic benefits
within the network. Based on the findings, it can be stated that
recommended nonlinear energy management models can be used
for an ELAN. Mehrasa et al. (2021) suggested a method for power
management in an intelligent grid based on fuzzy logic. They put
into place a system that considered both the cost of electricity and
the plug-in electric vehicles’ (PEVs’) momentary state of charge
(SOC). They projected actual photovoltaic (PV) generating data as
the primary contributing variables to the grid system. As the
expected outcome, the main goal of their study was to optimize
PEV power output. To optimize power distribution among PEVs,
distinct output regulations are allocated according to the rated
power of each car. Furthermore, an additional heuristic approach
was proposed to determine an SOC for PEVs upon their departure
from the place of charging. The study indicated that intelligent
charging and discharging methods for EVs at charging stations can
optimize power generation, reduce expenses, and enhance overall
system efficacy.

In another study, Sudhakar and Kumar (2022) propose reducing
MG dependency and operating costs by coordinating RES and EV
storage. The system works by forecasting RES generation and EV
demand and then scheduling EV battery charging and discharging
to ensure that the MG can operate independently from the grid as
much as possible. Four decision variables (SOC, laxity, DOD, and
transition probability) are used in an adaptive neuro-fuzzy inference
system (ANFIS); the author used the prioritization-based EV
technique. The authors show their method can significantly
reduce grid dependency and operating costs while improving the
reliability of MGs.

Misra et al. (2020) proposed a new battery management plan
that engages an original concept of a distribution of dispersed
generation based on the use of EVs to improve the intelligent
chargers known as V2G. The article fills the gap concerning the
key issues connected to energy management inside new charging
systems, underlining the positive role of an EV as a distributed
energy storage facility. Belkhier and Oubelaid (2024) proposed a

fuzzy logic-based EMS for hybrid MG’s integrating tidal, WT, PV,
and fuel cell systems with BESS. They claim that the efficiency and
cost of their power systems were improved through their
simulations to help prove the ability of the net zero energy
systems. Guddanti and Illindala (2019) applied an economic
optimization model with a real-time price structure for a DC
MG EMS. The model was designed with the overall goal of
making the operation cost of the MG as low as possible. This
included optimizing how the power could be handed off between
DGs, BESSs, and the utility efficiently. The model was implemented
using two different algorithms. The proposed model includes two
optimization algorithms: a genetic algorithm (GA) and a pattern
search algorithm (PS). The results indicated that the proposed GA-
based method optimized and surpassed the PS-based method by
reducing the cost and time spent on computation. The GA-based
method achieves cost savings of up to 20% compared to the
conventional EMS. The proposed model can be used to develop a
real-time EMS for DC MGs to operate economically and efficiently.

Another study by Fouladi et al. (2019) work focuses on CO2

reduction in MGs, integrating EVs and RESs. They use an improved
whale optimization algorithm to optimize scheduling and resource
utilization. This strategy aligns with the growing need for energy
system decarbonization measures, with MG offering localized
solutions. The study provides valuable insights for creating MG
management plans to prioritize environmental sustainability and
energy efficiency, building upon previous research on MG
optimization and EV integration.

Ahmad et al. (2019) proposed an ideal foundation for a
community MG-integrated EMS for EV charging stations for the
public. The foundation of the suggested structure is a switching
mechanism that enables the EMS to select the energy source that will
charge EVs. The most affordable framework is designed to fulfill
community load demand, minimize the cost of energy to charge
EVs, andmaximize the selling cost of excess energy from PV systems
and EVs. It is formulated as a mixed-integer, nonlinear issue under
numerous trading locations. The article presents a case study of a
100-house community in India and demonstrates that the proposed
EMS can significantly reduce energy costs and improve grid stability.
A study by Ahmad et al. (2019) proposed reducing the energy cost of
the station by optimizing the battery-swapping process and utilizing
RESs. The system’s performance was evaluated on a small-scale
battery-swapping station, and the results showed reduced energy
costs and GHG emissions.

A novel hybrid GA/MOPSO EMS for grid-connected MGs is
presented in another study by Tabrizi (2022). With PV energy, WTs,
microturbines, diesel generators, and a BESS, the system tries to
satisfy operational needs while lowering operating costs.

Zadeh et al. (2023) proposed an energy scheduling model for
intelligent buildings with EVs. Demand response (DR) programs
optimize energy costs by considering the building’s energy
consumption profile, EV charging and discharging requirements,
and DR incentives. Demand-side management (DSM) and techno-
economic indices are used to minimize total energy costs. The
model’s performance in a real-world intelligent building case
study significantly reduced energy costs. Another approach by
Ghasemi-Marzbali et al. (2023) integrates DR, BESSs, and RES
into EV rapid charging stations. The fuzzy logic approach
reduces the cost and environmental impact of EV charging,
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considering factors like WTs, BESSs, PV capacity, and RES. The
hybrid algorithm predicts wind speed variations. Attou et al. (2021)
suggested a unified EMS for a hybrid energy storage system (HESS)
and connected MG. The primary aim was to mitigate fluctuations in
demand as well as production patterns while simultaneously
improving the use of RESs and managing the transfer of energy
with the utility grid. The application of a rule-based EMS (RB EMS)
was proposed by the author as a means to implement long-term
EMSs, including the day-ahead schedule of distributed energy
resources (DERs), in a household multi-source grid-connected
MG. The distributed controller simultaneously supervises the
management of short-term electricity. The EMS enables the
efficient control of the MG’s operational requirements by
predicting and scheduling DERs for service to meet the needed
load in conformity with several conditions. Based on the
implementation and assessment of the proposed EMS in a
simulated hybrid MG, the outcomes reveal that this system is
beneficial in the minimization of operation costs and
improvement of the MG’s resilience.

Rule-based systems, while offering straightforward solutions
using discrete algorithms, often struggle to accommodate the
dynamic and non-linear complexities of modern EMS. Their
inherent rigidity limits adaptability to evolving user
preferences, system constraints, and environmental
variations, frequently resulting in sub-optimal solutions. This
limitation is particularly pronounced in scenarios involving
multi-objective optimization and highly variable energy
demands, where a broader exploration of possibilities is
essential. To overcome these challenges, advanced
optimization techniques like PSO offer significant
advantages. PSO is adept at addressing complex constraints,
processing real-time data, and achieving multiple objectives,
making it a powerful tool for optimizing EMS performance in
MG’s. The primary objective of this study is to integrate PSO
into an EMS framework to enhance the cost-effectiveness and
operational efficiency of managing EV energy within MGs.
PSO’s robust optimization capabilities enable effective
scheduling for battery charging and discharging by
prioritizing RESs and dynamically responding to electricity
price fluctuations. For instance, the EMS ensures battery
charging during low-cost periods and discharging during
high-cost periods, thereby reducing overall energy expenses.
By leveraging PSO, this research offers a comprehensive and
adaptable EMS solution to address the dynamic challenges of
modern energy management while promoting the sustainable
integration of EVs in MGs.

2 Mathematical modeling

2.1 Objective function

The suggested power management technique is formulated
and provided in this section. Reducing dependency on the MG
and offer reasonably priced EV charging entails gradually
increasing the PHEVs’ charging power for a day. The
primary aim of the recommended optimization approach is
to obtain the most economical configuration for the MG system

while meeting the system’s overall requirements. Energy
optimization management aims to decrease overall expenses,
including pollution and power generation costs while satisfying
network load needs. Equation 1 shows a mathematical
expression of an objective function.

FMin t( ) � Ppv t( ) + Pwind t( ) + PGrid t, c( ) + PBESS t( ) − PH.Load t( )
− PEV.Load t( ),

(1)
where PP v(t) is the PV output, PW ind(t) is the wind output, PBESS(t)
is the battery power, PGrid (t, c) is the grid generation, PH. Load(t) is
the residential load, PEV. Load(t) is the EV load, and the time t is in
hours (0–24).

FIGURE 1
PV output.

FIGURE 2
Wind output.
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2.2 Photovoltaic array (PV)

The PV array’s output power is directly correlated with the sun
irradiation, and the generated power is given by Equation 2.

Ppv t( ) � ηpv · Npv · Pmpv · G t( ).
G0

(2)

To evaluate the generated PV power, see Figure 1, which is
contingent upon solar radiation at time G(t). Ppv(t) is the produced
power of PV arrays (W) at each hour, ηpv is the PV module
efficiency, Pmpv is the rated power of each PV (W), Npv is the
optimum size of PV, and G0 is 1,000(W/m2) Tooryan et al. (2022).
This dataset is from the city of Burlington, USA. Latitude is 44.47,
and longitude is −73.21 Stackhouse (2023).

2.3 Wind generation

The generated output power of the WT by Equation 3 is shown
in Figure 2 and is related to wind speed. This dataset is from the city
of Burlington, USA; latitude is 44.47 and longitude
is −73.21 Stackhouse (2023).

Pw t( ) �

0 ifVw ≤Vci or Vw ≥Vco

Pw,ra
Vw − Vci

Vra − Vci
( )3

ifVci <Vw ≤Vra,

Pw,ra + Vw − Vra( ) Pw,co − Pw,ra( )
Vco − Vra

ifVra <Vw <Vco

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where Pw,ra and Pw,co are the WT’s output power levels at its rated
and cut-out speeds, represented by kW, respectively, Vw is the
measured wind speed in m/s, Vra is the rated wind speed in m/s,
Vco is the cut-out wind speed in m/s, and Vci is the cut-in wind speed
in m/s (Fouladi et al., 2020).

2.4 Battery energy storage system (BESS)

In this work, the stochastic load profile of PHEV and the
intermittent output power of RESs are reduced using a lead-acid
BESS. Several conditions must be fulfilled to charge and discharge
the BESS. These conditions are described in Equations 4, 5.

SOCb
min ≤ SOCb t( )≤ SOCmax ,

b (4)
SOCb t0( ) � SOCb t24( ), (5)

where SOCmax and SOCmin are the BESS’s maximum and minimum
SOC boundaries, respectively. To increase the lifespan of the BESS
and prevent damage, the SOC of the BESS needs to fulfill the above
requirements (Fouladi et al., 2020). Equation 6 represents the
difference between the BESS’s charging and discharging powers,
which can be referred to as its output power, and Equation 7
provided that it stays within its permitted bounds.

Pch
max ≤ Pout t( )≤Pdh

min. (6)
Pout t( ) � Pdh t( ) − Pch t( ). (7)

3 Methodology

The utility grid, WTs, PVs, BESSs, and other DERs are all
included in the proposed MG system. Obtaining the cost-optimal
MG system while meeting the overall system demand is the main
objective of the suggested optimization process. The MG’s electricity
demand is simultaneously met every hour during a specific
timeframe. The input data include a range of technical and
economic factors and changeable hourly load profiles for various
needs over a year, such as electricity demand, solar radiation, and
wind speed. The PSO method, which is a meta-heuristic
optimization approach to identify the time for EV charging, is
used. According to the suggested energy management strategy for
meeting electrical demand, the resulting optimal outcomes can thus
provide the system’s whole demands for all hours within a given
time. The EMS receives power from PVs, WTs, BESSs, and utility
grids. The EMS gives power to the community and EV loads, as
shown in Figure 3. The EMS depends on load demand and cost
according to time. The aim is to address the optimization of a cost-
efficient EMS for EVs in a residential setting.

The goal is to balance the use of locally generated renewable
energy, grid energy, and BESSs to minimize costs and maximize the
utilization of sustainable resources. PSO will be explored as a
potential optimization technique to achieve this goal. The
primary energy sources used to power the loads are PVs and
WTs. When the price of electricity is low, the grid or excess
renewable energy power charges the BESS (when the output is
higher than the loads). When there is insufficient power from the PV
system and WTs, and the cost of grid electricity is high, the BESSs
release energy. EVs are charged by excess PV and WT energy when
the price of grid power is low. During a surge in demand or a
variation in renewable output, EVs give power to the grid (V2G). In
that case, if the PV, WT, and BESS systems are insufficient, the grid
will supply the load. If output outpaces demand and the BESS is fully
charged, surplus renewable energy will be sent straight into the grid.

To ensure the efficient use of RESs, the BESS strategic approach
was used, as shown in Figure 4. According to the proposed BESS
strategy, if the generation of renewable energy is greater than the
demand, then the system will check the battery SOC. In the case that
the battery SOC is less than 100%, the battery will be charged;
otherwise, the remaining power will be sold to the grid at minimum
cost. On the other hand, if the generation of renewable energy is less
than the demand, then the algorithm will check the utility grid price
according to time. If the grid price t is less than the price t+1, the
system will charge the battery until SOC is 100%. If the electricity
price t is greater than t+1, then the system will check the battery
SOC, and if it is greater than 50%, the battery will discharge until
SOC is 20%. On the other hand, if the battery SOC is less than 50%,
then the system will buy the power from the grid, and the battery will
be charged.

The PSO can be utilized to dynamically optimize the charging
schedules of electric vehicles by iteratively adjusting the charging
rates based on the community’s energy consumption patterns. This
feature of PSO helps utilize the available renewable energy from PV
and WT sources while considering the charging requirements
of the EVs.
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4 Case studies, results, and discussion

This study presents the PSO technique for the best scheduling
mode for EV car charging, aiming to produce a more optimized
EMS. The suggested MG EMS, which integrates RESs, including
PVs, WTs, BESSs, EVs, and the main grid, is evaluated using a
MATLAB algorithm simulation.

Several scenarios are implemented to see how the EMS behaves
in power-sharing across various sources in all operational modes
(electricity pricing, BESS SOC, residential load, and electric car
charging time frames). For this simulation, we took 24 h to test the
different scenarios. This operation is divided into three modes.

Mode 1: PV, wind, and grid.
Mode 2: PV, wind, BESS, and Grid.

FIGURE 3
Proposed model for an EMS.

FIGURE 4
Strategic rules used for a BESS.
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Mode 3: Proactive EV charging.
In all modes, the SOCmin and SOCmax are 20% and 80%,

respectively. Depending on the amount of solar irradiation, the
PV system operates in all modes with a regular distribution over the
day, peaking in power at noon.

Throughout the day, there are peaks and troughs in the WT
generation due to the wind speed, which varies randomly. The
daily load curve displays a 23 kW maximum power output for
the residential and EV loads. The load profile fluctuates
throughout the day and weather, with strong demand periods
in the morning and evening and low demand throughout
the night.

When the MG runs in Mode 1 (without a BESS), WTs and the
main grid supply load in the morning when energy prices are low.
Then, the PV system produces energy to satisfy the residential load
demand. At the same time, the power produced by the grid
decreases, as shown in Figure 5. The grid works with the WTs to
supply electricity as PV production decreases. The energy demand is
low at midnight and evening, and the WTs provide the load at this
time. All the energy needed to meet the electricity demand is
obtained from the grid, resulting in extremely high purchasing costs.

Figure 6 shows that when the EV load is added to the residential
load, the amount of power imported from the grid increases. When
operating in this mode, the system becomes less affordable outside of
periods of renewable production when all demand is met by
purchasing electricity from the grid due to the lack of storage
mechanisms (stationary BESSs).

In Mode 2, PVs, WTs, BESSs, and the utility grid were used.
Initially, the analysis was performed without implementing
optimization techniques, as shown in Figure 7. The total
amounts of power received and returned are 88.01 kW and

FIGURE 5
Hourly power variation with residential load and grid import and
return power.

FIGURE 6
Hourly power variation with residential and EV load and grid
import and return power.

FIGURE 7
Residential, renewable, BESS, and grid import and return power
without optimization.

TABLE 1 Mode 2 with and without EV.

Without optimization With optimization

Without EV

Receive P G 88.01 kW 75.1 kW

Return P G 6.2 kW 8.1 kW

Per-day cost 6.69 $ 5.25 $

With EV

Receive P G 125.3 kW 112.4 kW

Return P G 4.67 kW 6.51 kW

Per-day cost 9.82 $ 8.38 $
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6.2 kW, respectively. The per-day cost was also calculated (6.69 $
without optimization) as presented in Table 1.

Figure 8 shows that with optimization to take advantage of the
cost-effective energy pricing, the grid and WTs work together to
meet the demand and enable the charging of batteries before sunrise.
This method aims to ensure that the SOC remains between 20% and
80%, with a minimum limit of SOCmin at 20%.

Ppv + Pwind > Load. (8)

In Equation 8 whenmore electricity is produced than consumed,
PV andWT systems are used to meet the demand, giving preference

to using excess power from renewable sources. On the other hand, in
the optimized case, surplus energy is used to raise the BESS SOC to
its SOCmax limit at a reasonable cost when the BESS is not fully
charged. The remaining surplus energy will be used as a second
priority, which is power return to the grid. Figure 8 shows the
optimized power received and returned from the grid as 75.1 kW
and 8.1 kW, respectively. The per-day cost for this case can be noted
as 5.25 $. It can be observed that optimization results in a 21%
reduction in cost.

In Equation 9 when less electricity is produced than consumed,
and EV is available without optimization, the total received power
from the grid is 125.3 kW, the total returned power to the grid is
4.67 kW, and the day cost is 9.82 $, as shown in Figure 9 and Table 1,
respectively.

Ppv + Pwind < Load. (9)

If an EV is available after charging the BESS, the remaining
power is initially used to charge the EV battery, and any excess
power will be returned to the grid. The BESS begins to discharge to
make up the power deficit when the demand exceeds consumption.
The BESS and the WTs feed the load to its ultimate SOCmin limit.
Then, importing the power from the grid fulfills the load demand
requirements, shown in Figure 6, resulting in a significant
financial benefit.

Ppv + Pwind + PBESS > Load. (10)

In Equation 10 through dynamic adjustments to BESS pricing in
response to hourly electricity rates, the system makes the best use of
renewable energy during low-cost periods. Figure 10 shows the
optimized total power received and returned from the grid as
112.4 kW, 6.51 kW, and the 1-day cost as 8.38 $. It can be seen
that the optimization reduces the total cost by 14%, as shown in
Table 1. The system stays off the grid during periods of high cost, as
shown in Figure 11. This strategy is to improve the operating

FIGURE 8
Residential, renewable, BESS, and grid import and return power
with optimization.

FIGURE 9
Residential, EV and renewable, BESS, and grid import and return
power without optimization.

FIGURE 10
Residential, EV and renewable, BESS, and grid import and return
power with optimization.
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conditions, together with a concurrent decrease in the cost of fuel,
grid energy purchases, and CO2 emissions. Figure 12 describes the
optimized time for EV charging based on cost and time. The
provided method shows how EV car charging may be optimized
by carefully timing charging sessions to coincide with times when
power is most affordable. In addition to guaranteeing economical
energy use, this enhances the MG system’s overall sustainability.
Incorporating a BESS is essential for reducing excessive power bills,
improving energy use flexibility, bills, improving energy use
flexibility, and encouraging eco-friendly EV charging habits. In
Mode 3, a proactive EV charging system was used, which is an
innovative technique for managing electric car charging that

optimizes energy use, lowers costs, and has a low effect on the
power grid, unlike standard charging systems, which allow EV
owners to plug-in their vehicles and start charging instantly from
the grid (EV CharFG). Figure 13 shows the EV without considering
the proactive algorithm, while Figure 14 presents EV charging with
implementing proactive algorithms. Proactive charging systems
employ powerful algorithms and real-time data to intelligently
manage and regulate the charging process. It can be seen in
Figure 14 that the system checks the renewable energy and BESS
charging if any is available and then checks the EV charging by RESs
(EV CharFRew). When renewables and BESSs are unavailable, the

FIGURE 11
Charging and discharging of BESS.

FIGURE 12
Optimized EV car charging time.

FIGURE 13
EV charging without proactive optimization algorithm.

FIGURE 14
EV charging with the proactive optimization algorithm.
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system checks the electricity price, tries to charge the EV at the
lowest cost, and optimizes the EV charging hours.

5 Conclusion

This study proposed an EMS in a grid connected to an MG that
consists of EVs with variable loads, a PV system, a wind farm, and a
BESS. The PSO optimization technique has been developed to
determine the best configuration of energy sources to minimize
operating costs and grid dependence while maximizing renewable
energy and electricity exchange. The simulation’s findings showed
the system’s ability to generate electricity during varying times,
following the power system’s demands, and offer a more adaptable
and effective service. Additionally, the energy exchange mechanism
between the load and various sources illustrates the effectiveness of
smart grids in maximizing energy exchanges with the main grid,
optimizing the use of renewable resources, and improving energy
management and consumption prices. The suggested scheduling
technique lowers the energy cost of EVs. The scheduling problem is
using PSO with certain modifications based on the condition that
batteries will be charged if electricity rates are low and discharged
when prices rise. Moreover, the results showed that the
implementation of PSO-based optimization resulted in a cost
reduction of 14% and 21% in cases with and without EV
consideration, respectively. EV charging also uses a proactive
technique and saves cost and power. The simulation results
validate the approach and method.
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Appendix

FIGURE A1
PSO algorithm flow chart.
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