
Multi-objective day-ahead
resilience improvement method
for distribution network with high
renewable energy penetration
considering uncertainty of load
and source sides

Taiyu Gu1*, Yidong Zhu1, Ye Tian1, Xiangli Chen2,
Yanhong Cheng2 and Wei Gao2

1State Grid Liaoning Electric Power Co., Ltd., Shenyang, Liaoning, China, 2Electric Power Technology
Collaboration, Beijing, China

With the increasing integration of a high proportion of renewable energy, the
fluctuation characteristics of distributed power generation such as wind and
photovoltaic energy affect the safe and stable operation of the power system.
Improving the operational resilience of the distribution network is of great
significance for ensuring reliable power supply and improving user satisfaction
with electricity consumption. In this paper, a multi objective day-ahead resilience
improvement method for distribution network is proposed. Firstly, a detailed
mathematical model of distribution network and its internal components was
established; then, taking into account the economic costs of network loss and
wasted renewable power punishment, as well as voltage safety margin indicators,
a multi-objective optimization model is given, and the multi-objective
optimization problem is transformed into a single objective optimization
problem through the weight method. Meanwhile, considering the uncertainty
of both source and load sides, a clear equivalence class method is adopted to
transform the uncertain optimization problem into a deterministic optimization
problem. Due to the existence of nonlinear and non-convex terms in the model,
in order to reduce computational complexity, particle swarm optimization (PSO)
algorithm is used to achieve the optimal solution. Finally, the effectiveness and
feasibility of the proposed method are demonstrated with the modified IEEE-33
node testing system.
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1 Introduction

With the integration of a large number of distributed power sources into the power
system, the volatility and fluctuation of photovoltaic and wind power generation have
caused serious interference to the safe and stable operation of power system (Liu et al., 2016;
Liao et al., 2023). The time-varying characteristics of power demand in the load side
increase the burden of reliable operation of the power system. On this condition, actual
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operation of the power system needs to withstand a large number of
random disturbances. In order to cope with the interference of this
random disturbance and ensure the safe operation of the power
network, the concept of power system resilience is proposed (Kushal
and Illindala, 2021). Power system resilience refers to the ability of
the power system to maintain normal operation without collapsing
or splitting under continuous random disturbances (Mahzarnia
et al., 2020; Lei et al., 2018).

The research on resilience assessment methods for distribution
networks is still in its early stages, and there is no unified definition
of assessment methods and resilience indicators. Ma et al. (2022)
proposed an indicator that reflects the resilience of distribution
networks from a temporal perspective; Panteli et al. (2015) designed
a toughness evaluation method that considers wind speed level and
load capacity; Min et al. (2012) considered the resilience calculation
method under the simultaneous action of multiple disaster weather
conditions; He et al. (2022) conducted research on urban resilient
power grids from several aspects, such as adaptability in response to
extreme events; Xu et al. (2021) proposed an operational resilience
assessment method for distribution networks with sensitive loads;
Yu et al. (2022) evaluated the resilience of each partition of the
distribution network through the feeder partitioning method.
Although the above references considered different toughness
indicators, none of them considered the impact of high
permeability distributed power sources. In order to improve the
ability of the distribution network to withstand disasters under
extreme weather conditions and reduce the severity of system
load losses, it is necessary to adopt certain resilience
enhancement methods to ensure that normal power as much as
possible (Zhou et al., 2018a; Yong et al., 2022) considered the impact
of extreme natural disasters and enhanced the resilience of the
distribution network by forming initial isolated islands and utilizing
demand response technology; Zhou et al. (20211) proposed a
method for improving the resilience of AC/DC hybrid
distribution networks by line reinforcement and energy storage
resource allocation; Tao et al. (2022) proposed a distribution
network resilience improvement planning method using
stochastic optimization with information gap theory. At present,
traditional planning methods such as strengthening high probability
fault lines are mostly considered for improving the resilience of
distribution networks. Due to limited investment costs, the
effectiveness of traditional methods is limited.

Establishing comprehensive quantitative resilience indicator
and diversified resilience assessment methods under various
extreme events is an important theoretical basis for system
resilience analysis. A single resilience indicator can only measure
system resilience from a certain aspect and each indicator is
interdependent, so resilience assessment should be considered as
a multi-attribute decision-making problem with inherent
correlation (Ruan et al., 2020). The current research on
quantitative indicators of distribution network resilience mainly
includes two types: static indicators and dynamic indicators (Su
et al., 2022): A static index system based on network topology factors
refers to quantitative indicator of distribution network topology
resilience that combines network seepage theory and complex
network analysis (Chen et al., 2019; Chanda and Seivastava,
2016). Regarding the diversity of static indicators, Bajpai et al.
(2018) used Choquet integral to aggregate fuzzy measures of

different resilience indicators, and combined graph theory to
obtain the comprehensive values. From the perspective of
dynamic indicators, Panteli et al. (2017) proposed quantitative
indicator values for toughness triangle and trapezoidal models
based on the missing area of function curve under a single
extreme event. In response to the uncertainty and complexity of
fault scenarios caused by multiple attacks, Monte Carlo simulation
(Li et al., 2020) and information entropymethod (Zhou et al., 2018b)
were used to extract the set of fault scenarios, and probabilistic
quantitative indicators such as expected values and probability
distributions were used for resilience evaluation (Andersson
et al., 2021). A multi-stage mapping evaluation model for
distribution networks was established based on the multi-
dimensional dynamic characteristics of resilience quantification
indicators, and a toughness evaluation index that
comprehensively was proposed in Qing et al. (2021), Li et al.
(2022), Zhang et al. (2021a) introduces a model for restoring
services in unbalanced distribution systems and microgrids
dominated by inverters, incorporating constraints on frequency
dynamics to enhance load restoration and ensure the system’s
frequency response performs optimally throughout the
restoration phase; in the study presented in Zhang et al. (2021b),
a two-phase stochastic mixed-integer linear programming approach
is introduced to streamline the preparation and allocation of
resources in anticipation of forthcoming extreme weather events,
ultimately facilitating swifter and more effective restoration efforts
following such events. Despite remarkable results being achieved,
the aforementioned method is still limited by computational
complexity.

To address the aforementioned issues, this paper proposes a
multi-objective day-ahead resilience improvement method for
distribution networks, considering the uncertainty of both load
and source sides. The main innovations of this paper can be
summarized as follows:

(1) In response to the impact of the fluctuation of distributed
generation on the safe and stable operation of power systems,
this paper introduces a multi-objective day-ahead resilience
improvement method. This method comprehensively
considers economic costs of network losses, penalties for
wind and solar curtailment, and voltage security margin
indicators to construct a multi-objective optimization
model. By using a weighting method, the multi-objective
optimization problem is converted into a single-objective
optimization problem, thereby achieving a comprehensive
improvement in the resilience of distribution networks.

(2) Taking into account the uncertainty on both the source and
load sides, this paper adopts a clear equivalence class method
to transform uncertain optimization problems into
deterministic optimization problems. This effectively
addresses the issue of how to handle uncertainty factors
during the optimization process, improving the accuracy
and practicality of the optimization results and reducing
the conservativeness of traditional robust
optimization methods.

The research framework of this paper is as follows: Firstly, a
mathematical model of the distribution network and its internal
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components is established in Section 2.1. Based on the analysis of
Section 2.1, a multi-objective optimization model is established by
comprehensively considering the economic cost of network loss,
wasted renewable power punishment, and voltage safety margin
indicators. In Section 3, the solution method for the proposed
resilience improvement strategy is given. Considering the
uncertainty of both source and load ends, the clear equivalence
class method is introduced in Section 3.1, which converts uncertain
optimization problems into deterministic optimization problems.
Considering the nonlinear and nonconvex characteristics of the
model, PSO algorithm is used to determine the optimal solution.
Finally, the effectiveness and feasibility of the proposed method are
demonstrated through an modified IEEE33 node system.

2 Mathematical model for improving
the resilience of distribution networks

2.1 Introduction to cloud model

2.1.1 Power supply related constraints
Wind power and photovoltaic power stations can output active

power while quickly and continuously compensating for dynamic
reactive power. Their participation in distribution network
optimization scheduling requires consideration of power factor
limitations and inverter capacity constraints, as shown in Equations 1–3.

PDG
i,t � PDG,av

i,t − PDG,cut
i,t (1)

−PDG
i,t tan arccosPFDG

i,down( )≤QDG
i,t ≤PDG

i,t tan arccosPFDG
i,up( ) (2)

PDG
i,t( )2 + QDG

i,t( )2 ≤ SDG
i,t( )2 (3)

Here, PDG,av
i,t represents the allowable active power output of

renewable energy at node i; PDG
i,t represents the actual renewable

energy active power output at node i; PDG,cut
i,t represents the wind

and solar power curtailment at node i; PFDG
i,down and PFDG

i,up represent
power factor maximum and minimum values; SDG

i,t represents
renewable energy inverter capacity at node i.

2.1.2 Modeling of power consumption on the
load side

Some distribution network loads, such as central air
conditioning and electric ve-hicles, have strong controllability
and can achieve cross temporal and spatial transfer of electricity
consumption, with good peak shaving and valley filling effects.
Equation 4 represents the power regulation capacity constraints
of controllable loads partici-pating in the coordinated scheduling of
multiple flexible resources, while Equation 5 represents that the total
electricity consumption of controllable loads remains un-changed
during a certain period of time.

PLoad
i,t � PLoad.O

i,t γDR
i,t

QLoad
i,t � QLoad.O

i,t γDR
i,t

1 − γDR
i( )≤ γDR

i,t ≤ 1 + γDR
i( )

⎧⎪⎨⎪⎩ (4)

∑T
t�1
PLoad
i,t Δt � ∑T

t�1
PLoad.O
i,t Δt

∑T
t�1
QLoad

i,t Δt � ∑T
t�1
QLoad.O

i,t Δt

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(5)

Here, PLoad.O
i,t and PLoad

i,t respectively represent the initial active
power of controllable load at node i and the active power of load
after flexibility transfer; QLoad.O

i,t and QLoad
i,t are the original reactive

power of the controllable load at node i and the reactive power of the
load after flexibility transfer; γDR

i,t represents shift rate of controllable
load at node i. In incentive demand response, the γDR

i,t can be
determined by the distribution network dispatcher, and
controllable load can be dispatched according to instructions;
γDR
i represents power regulation capacity limit of controllable
load at node i based on the self-regulation capacity limit of
controllable load; Δt represents the time scale of scheduling.

2.1.3 Modeling of energy storage system
To protect the service life of energy storage system (ESS) and

prevent excessive charging and discharging, ESS needs to consider
its own state of charge and balance constraints [as shown in
(Equation 6)] and charging and discharging power constraints
[as shown in (Equation 7)] when adjusting the flexibility of
charging and discharging.

SOCi,t+1 � SOCi,t + ηESSi,chaP
ESS
i,t,cha

Stotali,ESS

− PESS
i,t,dis

ηESSi,disS
total
i,ESS

SOCi
min ≤ SOCi,t ≤ SOCi

max

⎧⎪⎪⎨⎪⎪⎩ (6)

0≤PESS
i,t,cha ≤PESS,max

i,t,cha

0≤PESS
i,t,dis ≤P

ESS,max
i,t,dis

PESS
i,t,chaP

ESS
i,t,dis � 0

⎧⎪⎨⎪⎩ (7)

Here, SOCi,t, SOCi
min and SOCi

max are the state of charging and
corresponding limits for ESS at node i; PESS

i,t,cha and PESS
i,t,dis are the

maximum allowable charging and discharging power for ESS at
node i. ηESSi,cha and ηESSi,dis represents the energy storage charging and
discharging efficiency at node i, respectively.

2.1.4 Operation constraints of distribution network
For distribution networks, operational constraints mainly

include power flow constraints, power balance constraints, node
voltage and current related constraints, and power purchase
constraints, which are given as follows. Firstly, the power flow
constraint is shown in Equation 8:

Pij,t � gijU2
i,t − gijUi,tUj,t cos θij,t − bijUi,tUj,t sin θij,t

Qij,t � −bij − bC,ij( )U2
i,t + bijUi,tUj,t cos θij,t − gijUi,tUj,t sin θij,t

{
(8)

Here, Pij,t and Qij,t represent the active and reactive power of
branch ij, respectively; gij and bij represent the conductivity and
susceptance of branch ij, respectively; bC,ij represents the ground
admittance of branch ij; θij,t represents the voltage phase
difference of nodes i and j; Ui,t and Uj,t represent the voltage
amplitudes of nodes i and j.

The power balance constraint is shown in Equation 9:

Pgrid
i,t + PDG

i,t + PESS
i,t,dis − PESS

i,t,cha − PLoad
i,t � ∑Pij,t

Qgrid
i,t + QDG

i,t + QESS
i,t − QLoad

i,t � ∑Qij,t

⎧⎨⎩ (9)

Here, Pgrid
i,t and Qgrid

i,t represent the active and reactive power
provided by the upper level power grid.

Meanwhile, node voltage and branch current constraints should
also be satisfied, as shown in Equations 10–12:
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Ui,min ≤Ui,t ≤Ui,max (10)
Iij,t ≤ Iij,max (11)

I2ij �
P2
ij + Q2

ij

U2
i

(12)

Equation 12 provides the calculation method for line current. As
shown in Equation 12, the active power, reactive power flowing
through the line, and the node voltage all have an impact on the
line current.

Finally, the distribution network is connected to the upper
power grid through the root node, and in some scenarios with
heavy load, the safe operation of the distribution network can be met
by purchasing electricity from the upper network. The purchasing
electricity amount constrains are shown in Equation 13:

−Pgrid
i,up ≤Pgrid

i,t ≤Pgrid
i,up

−Qgrid
i,up ≤Qgrid

i,t ≤Qgrid
i,up

⎧⎨⎩ (13)

Here, Pgrid
i,up and Qgrid

i,up represent the active and reactive power limits
provided by the upper power grid.

2.2 Objective function for resilience
enhancement of distribution networks

For distribution networks, the common scheduling goal is to
minimize network losses. On the other hand, as the proportion of
renewable energy access in the distribution network continues to
increase, in order to improve the level of renewable energy
consumption, waste renewable power penalty fees have been
added, as shown in Equation 14:

f1 � min∑T
t�1

λloss ∑gij U2
i,t +U2

j,t − 2Ui,tUj,t cos θij( ) + λcut∑I
i�1
PDG,cut
i.t

⎛⎝ ⎞⎠/f1,max

(14)
In Equation 14, λloss represents the penalty cost per unit of network

loss; λcut represents the penalty cost per unit of wind/solar power
curtailment; f1,max represents the maximum value of the objective
function f1, which can be obtained by ignoring the objective function in
Equation 15 (i.e., using a single-objective optimization method).
Meanwhile, in this paper, the distribution network can purchase
electricity from the upper power grid, so it is believed that there is
no shortage of electricity. Therefore, this paper mainly considers the
resilience improvement of the distribution network from the
perspective of voltage (Xu et al., 2021), and the specific
mathematical expression is shown in Equation 15:

f2 � max∑T
t�1

4A cos a Pj,tB cos β + Qj,tB sin β( )
Ui,t cos δ( )2⎡⎣ ⎤⎦/f2,max (15)

Here, A and B represent the transmission matrix parameters of the
distribution network; α represents the complex angle value of parameter
A; β represents the complex angle value of parameter B; δ represents the
phase angle difference of the voltage at both ends; f2,max represents the
maximum value of the objective function f2, which can be obtained by
ignoring the objective function Equation 14. The weighting method is a
commonly used multi-objective optimization approach that assigns
different weights to each objective and then sums these weighted

objectives to form a single objective function. This method is simple,
intuitive, and easy to understand and implement. In the paper,
considering multiple objectives such as economic cost and voltage
security margin, it is reasonable to use the weighting method to
transform them into a single-objective optimization problem. It
should be noted here that the introduction of f1,max and f2,max is
to normalize the objective functions, facilitating the subsequent use of
allocation factors to convert the multi-objective optimization into a
single-objective optimization, ensuring objectivity and accuracy. This
paper comprehensively considers network loss and voltage stability, and
transforms the multi-objective optimization problem into a single
objective optimization problem through the weight method, as
shown in Equations 16 and 17:

obj � min Z1f1 − Z2f2( ) (16)
Z1 + Z2 � 1 (17)

Here, Z1 and Z2 represent assignment factors. When system
dispatchers pay more attention to network loss, Z1 can be assigned a
larger value. Similarly, when dispatchers are more concerned about
the voltage safety of the distribution network, Z2 can be assigned a
larger value. In other words, the objective function f1 here represents
the economic level and f2 focuses more on the safety aspect. In this
paper, the values of Z1 and Z2 are set to 0.5, achieving a balance
between system safety and economy.

3 Solving algorithm

3.1 Clear equivalence class
transformation method

In the power balance constraint Equation 9, both the power
consumption on the load side and the output of renewable energy
have certain uncertainties and cannot be directly solved. In this
section, we first relax the strict power balance constraint into a
chance constraint form using fuzzy chance constraints, and then
adopt the clear equivalence class method to transform the uncertain
optimization problem into a deterministic optimization problem for
solution. The specific steps are as follows:

As shown in Figure 1, this paper adopts trapezoidal fuzzy
number, in the figure r1, r2, r3, r4 represent membership
parameters and H (rn) represents membership function. The
specific mathematical expression is shown in Equation 18:

FIGURE 1
Trapezoid fuzzy number used in this paper.
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With the help of trapezoidal fuzzy number, original strict power
constraint Equation 9 can be relaxed as (Equation 19):

~P � r1, r2, r3, r4( )
r1 � μ1Pf, r2 � μ2Pf

r3 � μ3Pf, r4 � μ4Pf

(18)

min credit Pgrid
i,t + ~P

DG

i,t + PESS
i,t,dis − PESS

i,t,cha − ~P
Load

i,t � ∑Pij,t{ } ≥ r

(19)
Then, considering the value of confidence level r in this paper is

larger than 0.5, (Equation 20) is satisfied and the corresponding proof of
sufficiency and necessity can refer to literature (Zhang et al., 2022).

2r3 − r4( )/2 r3 − r4( )≥ r (20)

According to (Equations 20, 21) can be obtained.

2 − 2r( )*r3 + 2r − 1( )*r4 ≤ 0 (21)
Next, the relaxed constraints (Equation 19) be written in a

compact form as (Equation 22). Here, x represents decision
variables, ς represents trapezoidal fuzzy number.

Creadit g x, ς( )≤ 0{ }≥ r (22)

More generally, g (x, ς) can be divided into the sum of several
items as (Equation 23), and the two auxiliary functions (Equation
24) and (Equation 25) can be identified.

g x, ς( ) � ∑J
j�1
hj x( )ςj + h0 x( ), ςj � ςj1, ςj2, ςj3, ςj4( ) (23)

h+j x( ) � hj x( ) ∨ 0, j � 1, 2, . . . , J (24)
h−j x( ) � −hj x( ) ∧ 0, j � 1, 2, . . . , J (25)

Here, h+j and h-j are nonnegative, and hj(x) � h+j (x) + h-j(x).
Therefore, (Equation 26) can be derived.

g x, ς( ) � ∑J
j�1

h+j x( ) − h−j x( )( )ςj + h0 x( )

� ∑J
j�1

h+j x( )ςj + h−j x( )ςΕj( ) + h0 x( ), ςΕj
� −ςj4,−ςj3,−ςj2,−ςj1( ) (26)

According to the addition and multiplication rules of fuzzy
programming, (Equation 26) can be written in an expanded form as
(Equation 27).

g x, ς( )T �

∑J
j�1

h+j x( )ςj1 − h−j x( )ςj4( ) + h0 x( )

∑J
j�1

h+j x( )ςj2 − h−j x( )ςj3( ) + h0 x( )

∑J
j�1

h+j x( )ςj3 − h−j x( )ςj2( ) + h0 x( )

∑J
j�1

h+j x( )ςj4 − h−j x( )ςj1( ) + h0 x( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

We substitute (Equation 27) into (Equation 21), and the original
chance constraints (Equation 19) can be translated into clear
equivalence class model (Equation 28).

2 − 2r( ) PLoad
i3,t − PDG

i2,t( ) + 2r − 1( ) PLoad
i4,t − PDG

i1,t( ) + Pgrid
i,t + PESS

i,t,dis

−PESS
i,t,cha � ∑Pij,t (28)

Through the above processing, the uncertain optimization
problem is transformed into a deterministic optimization
problem for solution.

3.2 PSO algorithm

By using the clear equivalence class method, the initial uncertain
optimization problem is transformed into a deterministic
optimization problem. However, it essentially belongs to mixed
integer nonlinear optimization problems, which have a significant
computational burden. In order to facilitate the solution, we use the
PSO algorithm for fast solution. The specific solution process
includes the following steps:

(1) Establish a high-dimensional solution space for the optimal
scheduling of distributed power sources, purchased electricity
amount, and energy storage devices.

(2) Initialize particle swarm parameters. Under the premise of
ensuring the stable operation of the distribution network and
meeting the constraints, generate appropriate basic
parameters such as the number and position of particles,
particle motion speed, etc. Set the number of iterations m =
1 at the beginning.

(3) Evaluate the fitness of particles. On the premise of reducing
active power loss and improving voltage stability in the
distribution network, judge whether the power balance in
the distribution network is met.

(4) Update the velocity and direction of particles in
contemporary particle swarm, and continue to search for
new particles that meet the conditions for the next-
generation.

(5) Update the number of iterations m = m+1, and proceed
to step (4).

(6) Determine whether the particle swarm optimization
algorithm converges. Check the fitness in the particle
swarm, output the optimal calculation result, terminate the
iteration, otherwise continue with the iterative calculation.

(7) Store the optimal particle data in the solution space matrix
established in (1), and obtain the output data of the reactive
power compensation device and energy storage device.

To gain a better understanding, the specific solution process is
shown in Figure 2.

4 Case study

In this section, anmodified IEEE-33 node system is used for case
validation. The testing system includes multiple distributed power
sources (wind power and photovoltaic), with three energy storage
systems. The distribution network is connected to the upper power
network through the root node, and during periods of power
shortage, electricity can be purchased from the upper power grid
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to meet the demand for electricity supply; similarly, the local
distribution network can also choose to sell electricity to the
upper power grid to achieve profitability. The topology of
modified IEEE-33 node system is shown in Figure 3. Other
information including load power and renewable energy output
are shown in Figures 4, 5, respectively.

The reconstruction of distribution networks is currently widely
adopted to reduce network losses. In order to more intuitively
demonstrate the effectiveness of the proposed method, two
comparative cases are set up for analysis:

Method 1: The Multi objective day ahead resilience improvement
method for distribution network proposed in this paper
considers the coordinated scheduling of multiple
flexible resources.
Method 2: The method proposed in Zhang et al. (2022) adopts a
dynamic reconfiguration strategy for the distribution network.

Through analysis, the renewable energy consumption rate of
the proposed method is 93.86%, while the renewable energy
consumption rate of method 2 is 87.12%. This also
demonstrates the advantages of the proposed method. The

proposed method can fully utilize the flexibility of the source
and load sides, economically and efficiently improve the level of
renewable energy consumption, while avoiding the damage to
mechanical equipment caused by the traditional distribution
network reconstruction strategy. Figure 6 shows the shift ratio
of controllable load using different methods. By observing
Figure 6, it can be obtained that during the periods of 1: 00–5:
00 and 19: 00–24: 00, when wind power output is high, the shift
rate of controllable loads is higher. Increasing the load power
consumption during these periods can effectively reduce the wind
abandonment rate. On the other hand, compared to Method 2, the
proposed method has a lower controllable load shift rate because
ESSs participate in scheduling, avoiding frequent adjustments to
the user’s electricity consumption behavior, which is beneficial for
improving the user’s electricity consumption experience. In fact,
ESS has the highest flexibility in power system scheduling. ESS has
a dual identity, and when the energy storage device is discharged, it
can be considered as a power source; when the energy storage

FIGURE 2
Schematic diagram of particle swarm optimization solution.

FIGURE 3
The topology of modified IEEE-33 node system.

FIGURE 4
Detailed data of load power.

FIGURE 5
Detailed data of renewable energy output.
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device is charged, it can be considered as a load. The participation
of ESS in power system scheduling will significantly improve the
scheduling flexibility of the system. Figure 7 shows the charging
and discharging power of different ESSs. During periods of high
output of renewable energy, ESSs are used to charge and store
renewable energy that cannot be absorbed by power grid. During
peak load periods, ESSs release power to meet the load electricity
demand, reduce the demand for electricity from the upper power
grid, and thus reduce overall operating costs.

Meanwhile, the optimization scheduling strategy proposed in
this paper not only considers active power, but also reactive power.
By implementing reactive power compensation, the voltage level of
nodes can be improved, and the operational risks caused by unstable
renewable energy output can also be reduced. A certain number of
capacitor banks are installed in the distribution network. Each group
of capacitors has a capacity of 200 MVar and is equipped with 5 sets
of capacitors at nodes 7, 24, and 30. The number of capacitor banks
put into operation during the dispatch process of the distribution
network is shown in Figure 8.

The network loss during 24 h are shown in Figure 9. From
Figure 9, it can be seen that by using the reactive power

compensation equipment obtained from the optimization results,
the network losses in the distribution network can be obtained.
Adding reactive power compensation equipment can reduce
network losses of the distribution network by approximately
1 MW at each time period. The voltage amplitude of the wind
power node is also shown in Figure 10. As shown in Figure 10, while
ensuring the safe, economic and stable operation of the distribution
network, capacitor banks put into operation also increases the
voltage amplitude of wind power generation nodes, ensuring the
reliability of power supply.

Voltage stability is an important index of the resilience of power
systems. After calculating the values of node voltage and current in
the network, the voltage stability index can be obtained. The voltage
stability index of the distribution network are shown in Figure 11.
From Figure 11, it can be seen that the voltage stability of the entire
distribution network is significantly improved after the addition of
reactive power compensation devices and energy storage devices.
After the participation of compensation devices, the voltage stability
fluctuations tend to flatten out, and the value of voltage stability
index fluctuate between 0.001 and 0.002. Compared to the drastic

FIGURE 6
Shift ratio of controllable load using different methods.

FIGURE 7
Charging and discharging power of different ESSs.

FIGURE 8
Number of capacitor banks put into operation.

FIGURE 9
Network losses in the distribution network.
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fluctuations in voltage stability of the distribution network before
the participation of compensation equipment, the quantitative index
of voltage stability fluctuate between −0.006 and 0.002. From the
perspective of voltage stability, compensation equipment has a
significant effect on improving the resilience of the
distribution network.

Comparisons with some commonly used methods are also
added, including the reactive power compensation voltage control
method (Method A) (Win et al., 2015), dynamic reconfiguration of
distribution networks (Method B) (Luo et al., 2024), load demand
response method (Method C) (Rabiee et al., 2019), a multi-objective
method based on stochastic optimization (Method D) (Xie et al.,
2021), and a multi-objective optimization algorithm based on the
box-type robust model (Method E) (Melgar-Dominguez et al.,
2022). The relevant calculation results are shown in Table 1 below.

Observing the above table, it can be seen that the method
proposed in this paper achieves a balanced effect across various
indicators. Compared withMethod A, the proposed method reduces
network losses by 27.6%while the calculation time is only half of that
of Method A. This is mainly because Method A adjusts voltage by
regulating steady-state reactive power, introducing integer variables
such as the switching status and number of capacitor banks, which

further increases computational complexity. Additionally, Method
A adjusts voltage from the perspective of reactive power balance,
whereas renewable energy integration is more often regulated
through active power, leading to a lower renewable energy
absorption rate under Method A. Similarly, Method B enhances
the reliability and resilience of distribution network operation
through dynamic reconfiguration, but it introduces a large
number of 0–1 variables to describe the switching status of lines,
especially for large-scale distribution networks with numerous lines,
resulting in extremely high computational complexity. Method C
guides orderly electricity consumption through demand response
strategies, encouraging loads to consume more electricity during
periods of high renewable energy output to improve renewable
energy absorption rates. However, it should be noted that when load
power consumption increases, the power transmission demand on
distribution network lines also increases, leading to an increase in
system network losses. Compared with the proposed method,
Method C increases network losses by 53.9%. Meanwhile, for the
load side, as China still uses a long-term fixed time-of-use electricity
pricing mechanism, to assist in renewable energy absorption, the
load side needs to increase electricity consumption during periods of
higher electricity prices, requiring the system to provide additional
compensation, which increases system operating costs. From the
perspective of uncertainty handling, this paper adopts a fuzzy
chance-constrained method to deal with uncertainty. Fuzzy
chance-constrained programming does not require precise
modeling of the probability distribution of random variables, but
instead uses fuzzy sets to describe uncertainty. This reduces the need
for a large amount of historical data, thereby simplifying data
collection and processing. Method D requires generating a large
number of scenarios to simulate uncertainty, while fuzzy chance-
constrained programming directly handles uncertainty through
fuzzy sets and chance constraints without generating numerous
scenarios, thus reducing computational effort. Fuzzy chance-
constrained programming can convert uncertainty into
deterministic constraints and obtain decision-making solutions by
solving optimization problems under these constraints. This process
is relatively straightforward and efficient, avoiding the complex
scenario combinations and optimization solutions that may be
involved in scenario-screening-based stochastic optimization
algorithms. Method E ensures that decisions are valid under all
possible uncertainty scenarios by setting a boundary for uncertainty
(i.e., a box set). This method often leads to overly conservative
decisions because it ignores the diversity and probability distribution
of uncertainty in actual situations. In contrast, fuzzy chance-
constrained programming allows decisions to satisfy constraints
within a certain confidence level, thereby reducing the
conservativeness of decisions.

To quantitatively describe the impact of Z1 and Z2 on the
objective functions, Figure 12 presents the results of voltage
fluctuation and total operating cost under different weight
factors. Observing the figure below, it can be found that there is
an approximately linear increasing relationship between the average
voltage fluctuation rate and Z1. The larger the value of Z1, the better
the system’s economy and the lower the total operating cost. For
system decision-makers, during periods of heavy load or significant
fluctuations in renewable energy, reducing the value of Z1 can
provide a larger margin of safety for voltage stability. In

FIGURE 10
The voltage amplitude of the wind power node.

FIGURE 11
The voltage stability index of the distribution network.
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conventional scenarios, such as light load conditions where the risk
of voltage instability is lower, increasing the value of Z1 can be
considered to achieve better economic efficiency.

5 Conclusion

In this paper, a multi objective day-ahead resilience
improvement method for distribution network is proposed.
Firstly, a detailed mathematical model of distribution network
and its internal components was established; then, taking into
account the economic costs of network loss and wasted
renewable power punishment, as well as voltage safety margin
indicators, a multi-objective optimization model is given, and the
multi-objective optimization problem is transformed into a single
objective optimization problem through the weight method.
Through case analysis of the IEEE-33 node testing system, the
following conclusions can be drawn:

(1) Adding ESSs and reactive power compensation devices into
the distribution network to mitigate the impact of such
random interference, keeping the node voltage around 3%
of the rated voltage, ensuring that nodes do not experience
significant fluctuations, and improving the resilience of the
distribution network.

(2) The clear equivalence class method and PSO algorithm are
used to model and solve the 33 node distribution system. In
the established distribution network resilience improvement
model, by comparing the active power loss, the data showed

that the network losses in the distribution network decreased
by approximately 0.03 MW during each time period.

(3) In the calculation results, the voltage stability index of the
distribution network fluctuates smoothly within the range of
0.001–0.002, ensuring the safe and stable operation of the
distribution network.
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TABLE 1 Comparison of indicators under different methods.

Indicators The proposed method Method A Method B Method C Method D Method E

Network loss/MW 2.564 3.272 3.254 3.945 3.254 4.187

Average voltage fluctuation rate/% 3.10 3.25 3.78 3.69 3.12 3.15

Renewable energy consumption rate/% 96.7 92.5 93.2 95.7 94.8 93.2

Total operating cost/$ 11324.6 13526.4 12784.9 13785.9 12056.3 14152.6

Total calculation time/s 32.8 61.8 57.4 33.5 297.6 32.7

FIGURE 12
Analysis of indicators under different assignment factors.
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