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The integration of a distributed generator (DG) into the distribution network alters
the topology structure and power flow distribution, subsequently causing
changes in network loss. Moreover, existing distribution network optimization
methods face high computational complexity, low efficiency, and susceptibility to
local optima. This article proposes a scenario generation method using a
generative adversarial network (GAN) to handle the uncertainty associated
with DGs and constructs a two-layer optimization model for the distribution
network. The upper layer model determines the installation location and capacity
of distributed power and energy storage systems with the lowest economic cost.
The lower layer model establishes an optimization model, including wind, solar,
and storage, with active power network loss and voltage deviation as objective
functions. Both layers are solved using the Improved Whale Optimization
algorithm (IWOA). Then, the IEEE-33 node distribution system was taken as a
simulation example to verify the effectiveness and superiority of the proposed
model and algorithm.
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1 Introduction

To achieve the dual-carbon goal, the State Grid Corporation has proposed a plan to
build a new power system to promote new energy as the dominant source of energy. New
energy includes clean energy, such as wind and solar energy, which are connected to the
distribution network in the form of distributed power sources (Zhang and Shao, 2017; Ma
et al., 2022; Sultana et al., 2016). Connecting distributed power sources helps improve the
reliability and flexibility of the power grid while reducing energy loss. However, connecting
DGs to the distribution network affects the distribution network’s topology and power flow
distribution due to the DG uncertainty, leading to changes in network losses (Zhang and
Shao, 2017; Wang et al., 2017; Wu et al., 2023). Battery energy storage systems (BESSs), due
to their advantages of being able to quickly and flexibly control the charging and discharging
of energy, can effectively improve the voltage and grid loss of distribution networks
containing DGs, benefiting the safe and stable operation of the distribution network.
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Therefore, it is necessary to optimize the two-layer model of wind
and solar storage and distribution networks while taking uncertainty
into account.

Scholars have conducted optimization research on distribution
networks by constructing single-layer models and adopting
artificial intelligence methods. Xie et al. (2021) and Wang et al.
(2021) employed the clustering method and optimized the multi-
classification correlation vector machine algorithm to study the
line loss in low-voltage station areas in the distribution network,
achieving fast convergence and accuracy. Huo et al. (2023)
investigated the impact of distributed photovoltaic access on
distribution network loss and used improved gray correlation
analysis and stacking algorithms to study the prediction of
distribution network line loss. Wu et al. (2020) and Feng et al.
(2023) utilized probabilistic methods to evaluate line loss and
energy loss of distribution networks. By employing the Gaussian
mixture model, a highly accurate mean value of line loss and a
comprehensive probability distribution of line loss can be
obtained. Yao et al. (2019) employed the gradient lifting
decision tree method to predict the line loss rate of the
distribution network. Hu et al. (2022) utilized data from the
power information acquisition system to establish a line loss
calculation model based on the convolutional neural network,
thereby determining the line loss interval. Pegado et al. (2019)
introduced the binary particle swarm method and created a new
S-function to control the particle change rate, which helps reduce
the power loss in the distribution network. Li et al. (2017) proposed
a calculation method for distribution network line loss based on
process state characteristics, considering factors such as three-
phase imbalance and DG access to the distribution network. Wang
H.j. et al. (2023) addressed the problems of incomplete real-time
monitoring data for electrical parameters and topology changes of
distribution network nodes and proposed a line loss calculation
method of a distribution network based on random forest and
kernel ridge regression. However, the above-mentioned
distribution network optimization methods based on a single-
layer model still face high computational complexity, low
computational efficiency, and a tendency to become stuck in
local optimums.

With the development of new technologies such as DGs,
electric vehicles (EVs), and energy storage, the planning of
distribution networks has become more complex. Based on the
aforementioned research findings, Liu et al. (2022)
comprehensively considered the impact of DGs and EVs on
the distribution network. It constructs a bi-level planning
operation model that takes into account the correlation of DG
power generation and EV demand response and takes the
“transportation network-distribution network” as the research
object to verify the model. Chen et al. (2024) considered the
interests of the distribution network and microgrid, constructed
a two-layer optimal scheduling model of the distribution network
based on a master-slave game, and used particle swarm
optimization to solve the model. Liao et al. (2024) proposed a
two-layer optimal configuration method for distributed
photovoltaic (DPV) and energy storage system (ESS) based on
IDEC-K cluster and solved by non-dominant sequencing genetic
algorithm II (NSGA-II). Zhang et al. (2022) proposed a
source–grid–load–reservoir two-layer co-programming model

of active distribution network (ADN) with soft open point
(SOP), which is optimized by an improved particle swarm
optimization algorithm.

Additionally, the intermittent and random nature of power
output from high proportions of renewable energy sources
connected to the distribution network poses significant challenges
to the safe and stable operation of the network. Therefore, how to
consider the uncertainty of power output from high proportions of
renewable energy sources and take into account economy and power
quality for reasonable planning of the distribution network is an
urgent issue to be addressed.

As for the uncertainty of renewable energy output, researchers
have conducted research from three aspects: robust optimization
methods (Dai et al., 2024), traditional probabilistic modeling
methods (Xun et al., 2022), and scenario generation techniques
(Yuanze et al., 2021). The robust optimization method is too
conservative and cannot balance the economy and security of
the scheme well. Both traditional probabilistic modeling methods
and scenario generation techniques assume that the data obey a
specific probability distribution in advance, and the modeling
process is cumbersome. In addition, large errors may occur in
the parameter fitting process, resulting in poor quality of the
generated scenarios. However, the generative adversarial
network (GAN) has attracted much attention because it does
not require assumptions about the data distribution and can
directly learn the data distribution from historical data and
generate new data samples (Liu et al., 2023). Yuan et al. (2023)
proposed a deeply renewable scenario generation model that uses a
style-based generative adversarial network to generate accurate
and reliable day-ahead scenarios directly from historical data
through different levels of scenario style control and mixing.
Cai et al. (2023) proposed a two-layer coordinated optimal
scheduling method based on GAN scenario generation. The
improved coati optimization algorithm (COA) is used to solve
the proposed optimization problem. Zhang et al. (2024) proposed
an improved PV power generation method with a gradient penalty
to solve the problems of over-reliance on statistical assumptions
and unstable model training in the existing PV scenario
generation methods.

Therefore, this article uses the generative adversarial network
(GAN)-based generation scenario method to deal with the
uncertainty associated with a high proportion of renewable
energy sources. Furthermore, a two-layer optimization model
for line loss in wind-solar-storage integrated distribution
networks based on an improved whale algorithm is constructed.
Based on the IEEE-33 node distribution network system, the
effectiveness and superiority of the proposed model and
method are verified.

2 Generative adversarial network
scenario generation

2.1 The structure of a generative
adversarial network

Traditional uncertainty handling methods are obtained by
sampling from probability distributions, but the probability
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distribution models obtained through sample fitting often fail to
accurately capture complex probabilistic characteristics. This makes
it difficult for the samples processed for uncertainty to accurately
simulate the actual output of wind and solar power. Therefore, this
article adopts GAN for scenario generation of wind and solar power
uncertainty (Liu et al., 2023).

A GAN is a deep-learning model proposed by Goodfellow in
2014 that can effectively learn the complex probability distribution
of historical data in distributed generation power and generate new
data samples with similar characteristics. The training process of a
GAN consists of a generator and discriminator (Shao et al., 2019;
Yi et al., 2024). The generator generates forged samples and

improves its discrimination ability by minimizing the loss
function of the discriminator. The discriminator receives real
samples and forged samples at the same time, distinguishes
them, and improves the authenticity of the generated samples
by minimizing the loss function of the generator. Through iterative
training, the generator and discriminator are continuously
optimized in the mutual game, and finally, the generator can
generate new samples with high fidelity. The principle is shown
in Figure 1.

In the scenario generation for high-penetration renewable
energy output, the historical data of wind and photovoltaic
power generation is used as the training set x. G takes random

FIGURE 1
Schematic diagram of GAN.

FIGURE 2
Wind output curve. (A) Iteration 0 times. (B) Iteration 100 times.
(C) Iteration 500 times. (D) Iteration 5000 times.

FIGURE 3
Solar output curve. (A) Iteration 0 times. (B) Iteration 100 times.
(C) Iteration 500 times. (D) Iteration 5000 times.
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noise z as input to simulate and generate output data of wind and
solar x’ = G(z). D receives output data of the real wind and solar and
the data generated by G. The loss functions of the two neural
networks G and D in GAN are expressed in Equation 1.

LossG � −Ex′−p x′( ) D x′( )[ ]
LossD � −Ex−p x( ) D x( )[ ] + Ex′−p x′( ) D x′( )[ ], (1)

where LossG、LossD are the loss functions of G and D, respectively.
E denotes the expected value of the corresponding sample. D(x’) is
the probability that the generated data x’ are judged to be true in D.
D(x) represents the probability that the real data x are discriminated
to be true in D.

The objective function of GAN is to obtain a Nash equilibrium
point during the game between G and D. The minimax game model
is expressed as Equation 2:

min G max D V D,G( ) � Ex−p x( ) D x( )[ ] − Ex′−p x′( ) D x′( )[ ]. (2)

2.2 WGAN-GP

The training process of GAN usually requires a large amount of
data and computing resources and may encounter training
instability problems, such as pattern collapse and gradient
disappearance. Better stability during the training process is

FIGURE 4
Variation curve of Wasserstein distance with training times.

FIGURE 5
Cumulative probability distribution functions of wind generation
samples and historical samples.

FIGURE 6
Cumulative probability distribution functions of solar generation
samples and historical samples.

TABLE 1 Generate evaluation indicators for scenarios under.

Type Method RMSE MAE MAPE

Wind power WGAN-GP 0.9252 0.7316 12.3522

Monte Carlo sampling 1.4328 1.8755 22.7531

Solar power WGAN-GP 0.5386 0.2204 11.1304

Monte Carlo sampling 1.2547 1.3977 17.1502
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provided by using the Wasserstein GAN framework with an
increased gradient penalty, which replaces JS divergence with
Wasserstein distance.

The Wasserstein distance is defined in Equation 3:

W px,px′( ) � sup
fD‖ ‖L≤ 1

Ep x( ) D x( )[ ] − Ep x′( ) D x′( )[ ], (3)

where ‖fD‖L≤ 1 indicates that discriminator D needs to satisfy 1-
Lipschitz continuity.

The gradient penalty is defined in Equation 4:

GP|x̂ � λEx̂−p x̂( ) ∇x̂D x̂( )‖ ‖2 − 1( )2[ ], (4)

where x̂ � εx + (1 − ε)x′, ε ~ U[0, 1]. ‖•‖2 denotes two norms. λ
represents the weight coefficient of the gradient penalty term.

The objective function of WGAN-GP is transformed by
Equation 5:

min G max D V G,D( ) � Ex−p x( ) D x( )[ ] − Ex′−p x′( ) D x′( )[ ]
− λEx̂−p x̂( ) ∇x̂D x̂( )‖ ‖2 − 1( )2[ ]. (5)

After the above optimization, the objective function of WGAN-
GP is transformed to minimize the Wasserstein distance between
the generated data and the real data, and a gradient penalty term is
added to ensure the training stability of the generator and
discriminator. Therefore, the wind/ solar output scenario
generation method based on WGAN-GP can more effectively
capture the characteristics of data distribution, thereby generating
more realistic and diversified data samples. This provides strong
technical support for the simulation and prediction of wind/solar
output scenarios.

2.3 Training results

The output data of 96 points of wind power and photovoltaic
power generation in 1 day are taken as the input ofD inWGAN-GP,
respectively. After training, the scenario’s combined output can be
generated, and the training results are shown in Figures 2, 3. During
the training process, the variation curve of the Wasserstein distance
between the generated and the real scenarios with the training times
is shown in Figure 4.

In Figures 2, 3, the horizontal direction of the picture represents
the time scale, and the vertical direction is the standard value of wind
and solar output. The generated wind and solar output data take
15 min as the time interval, and the output curve contains 96 data
points. Figures 2A–D represent the wind output curves of the model
learning 0, 100, 500, and 5,000 times, respectively. Figures 3A–D
represent the solar output curves of the model learning 0, 100, 500,
and 5,000 times, respectively. Each subgraph contains nine wind and
solar output curves generated by generator G.

At the beginning of training, because generator G has not
learned the wind and solar output data, the output data are

FIGURE 7
Probability graph of typical scenarios.

FIGURE 8
Normalized fan output diagram.
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generated by random noise and do not have the output
characteristics of wind and solar, as shown in Figures 2A, B.
When training is performed 100 times, generator G captures
some output characteristics of the wind and solar data, and the
generated output data are periodically transformed. At 500 times,
generator G learns the periodic change of the wind and solar output,
and the generated data gradually stabilize and no longer change
drastically. They show the periodic change characteristics of the
wind and solar output. At 5,000 times, because generator G has fully
captured the intrinsic characteristics of wind and solar output and
reached a Nash equilibrium with the discriminator D, the generated
output curve is relatively smooth. The generated photovoltaic output

curve shows that the output is concentrated during the daytime
period, while the output is 0 at night. The generated output curve of
wind power shows the characteristics of concentrated output at
night, but the overall fluctuation is large. These results are consistent
with the characteristics of wind and solar output in engineering
practice. They indicate that the model proposed can accurately learn
and capture the output characteristics of wind and solar.

It can be seen from Figures 2–4 that the fitting error of the
discriminator D to the Wasserstein distance is large in the initial
stage of training because generatorG has not fully learned the output
characteristics of wind and solar. With continuous training,
generator G gradually mines the output characteristics of wind
and solar, which makes the coincidence between the output data
of generated wind and solar and the measured data gradually
increase. At this time, the Wasserstein distance begins to
decrease and tends to be stable. When generator G has fully
learned the output characteristics of the scenario, the Wasserstein
distance fluctuates stably around 0. At this time, generator G and the
discriminator D have reached a Nash equilibrium, and the
discriminator D can no longer distinguish the difference between
the generated data and the real data. Finally, the WGAN-GP
training converges.

In order to test the quality of the WGAN-GP generation
scenarios, the cumulative probability distribution functions of the
generation sample and the historical sample are plotted, as shown in
Figures 5, 6. It can be seen that the cumulative probability
distributions of the two are quite close, which shows that the
wind/solar data generated based on WGAN-GP are reasonable.

To further illustrate the computational complexity and accuracy
of the generated scenarios, some unlearned datasets were selected
and compared with the traditional Monte Carlo sampling scenario
generation method. Statistics were performed on the generated data
and the real data, and the results are shown in Table 1. The scenario
evaluation indicators in Table 1 are as follows:

The root mean square error (RMSE) can reflect the deviation
between the output value of the generated wind and solar and the

FIGURE 9
Normalized PV output diagram.

FIGURE 10
Double-layer model interaction.
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true value. The lower the RMSE value determined by Equation 6, the
higher the fitting accuracy of the generated data.

XRSME �
������������
1
n
∑n
i

yi − ŷi( )2,√
(6)

where yi is the output value for the real scenario. ŷi is the output
value of the generated wind and light. n represents the number of
pieces yi. �y is the average value of yi.

The mean absolute error (MAE) can verify the difference
between the output value of the generated wind and solar and

FIGURE 11
The solution flow of two-layer programming.
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the true value by measuring the average size of the error. The smaller
the value ofMAE determined by Equation 7, the closer the generated
data are to the true value.

XMAE � 1
n
∑n
i

yi − ŷi

∣∣∣∣ ∣∣∣∣. (7)

The mean absolute percentage error (MAPE) can be used to
describe the difference between the generated value and the true
value by the percentage error. The smaller the MAPE value
determined by Equation 8, the closer the generated data are to
the true value.

XMAPE � 1
n
∑n
i

∣∣∣∣∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣∣∣∣∣× 100%. (8)

When Table 1 is combined with Figures 5, 6, it can be seen that
the cumulative distribution function of the data generated by
WGAN-GP is close to the distribution of the real sample. The
proposed method can obtain the distribution characteristics of wind
power and photovoltaic output data through implicit learning and
obtain data that are closer to the real wind and solar output. The
result illustrates the effectiveness of the proposedmethod in terms of
probability distribution.

2.4 K-means clustering scenario reduction

In order to reduce the difficulty of solving the planning model
later, the k-means clustering algorithm is used to reduce the
scenarios (Zhang et al., 2021). The specific steps are as follows:
(1) Arbitrarily select k scenarios from the matrix N as the clustering
center. (2) By calculating the Euclidean distance, assign the
remaining data points to the nearest cluster centered on selected

cluster centers and then recalculate the cluster centers of these
clusters for comparison and updating with the previous data. (3)
Repeat the above steps until the cluster centers no longer change.

K-means clustering is used for scenario reduction and
normalization to generate five typical scenarios with scenery
output. The probability of each scenario is shown in Figure 7,
and the scenario reduction results are shown in Figures 8, 9.

3 Dual-layer optimization model for
power distribution network

3.1 Upper layer model

The upper-level model considers the system economic cost of
the distribution network planning, aiming for the optimal annual
comprehensive cost. In the model, the location and capacity of DGs
and BESSs are planned.

3.1.1 Objective function

minCp � min Cr + Ci( ), (9)
where Cp is the total cost at the planning level, Cr is the operating
costs, and Ci is the investment costs of DGs and BESSs (Xun et al.,
2022) (Equation 9).

FIGURE 12
Distribution system based on the IEEE-33 node
distribution system.

TABLE 2 DG and energy storage planning results.

Type Install node Installed capacity (kW) Cost (RMB)

Wind power 16, 22 253.5, 240.2 45,410

Solar power 9, 30 306.3, 301.4 50,650

Stored energy 8, 29 1,025, 956 59,430

FIGURE 13
Comparison of system network losses before and after
optimization.
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(1) Operating costs are determined as shown in Equation 10:

Cr � CG + Closs + CDG + CBS, (10)

where CG, Closs, CDG, and CBS represent purchase cost and
network loss cost of the main network electricity and
operation fees of wind, photovoltaic, and energy storage,

FIGURE 14
Comparison of voltage magnitudes at various moments in the system before and after optimization. (A) Before optimization . (B) After optimization.
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respectively. The specific formulas for each indicator can be
found in Shao et al. (2019).

(2) Investment costs determined as shown in Equation 11:

Ci � r 1 + r( )n
1 + r( )n − 1

∑NDG

i�1
cinv,DGPi,DG + ∑NBS

i�1
cinv,BSEi,BS

⎛⎝ ⎞⎠, (11)

where cinv andN are the unit capital investment cost and installation
quantity, respectively; Pi,DG and Ei,BS are the installed capacities of
the DG and BESS at node i. n is the economic service life; r is the
annual return rate.

3.1.2 Constraints

(1) Total investment cost constraints are determined as shown in
Equation 12:

Cinv,DG + Cinv,BS ≤Cinv,total, (12)
where Cinv,total is the upper limit of total investment cost.

(2) Capacity constraints are determined as shown in Equation 13:

0≤Pi,DG ≤Pmax
i,DG

0≤Ei,BS ≤Emax
i,BS

{ , (13)

FIGURE 15
Energy storage charge/discharge power vs. charge state variation curve.

TABLE 3 Planning scheme of each scenario.

Scenario Wind power
installation

node

Installed
capacity of

wind
power (kW)

Photovoltaic
installation node

Photovoltaic
installed

capacity (kW)

Energy storage
installation

node

Installed
energy
storage

capacity (kWh)

1 12, 25 210.2, 252.5 7, 29 315.2, 292.5 — —

2 5, 27 224.3, 261.7 3, 20 315.2, 292.5 8.29 1,025, 956

3 15, 25 265.5, 242.6 10, 31 315.2, 292.5 8.29 1,025, 956

TABLE 4 Planning cost of each scenario.

Scenario Operating cost (RMB) Investment cost (RMB) Power purchase cost (RMB) Total cost (RMB)

1 22,280 23,580 93,550 139,410

2 24,150 36,520 78,250 138,920

3 24,520 41,150 73,020 138,690
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where Pmax
i,DG and Ei,BS

max represent the maximum capacity of the DG
and BESS installed at node i, respectively.

3.2 Lower level model

The lower-level model is established with the objective
functions of minimizing active power losses and voltage
deviations in the distribution network, creating an operational
model for the distribution network that includes wind,
photovoltaic, and storage.

3.2.1 Objective function

(1) Minimum active power losses are determined as shown in
Equation 14:

minPloss � f1 � rL

3U2[P2
L + Q2

L+ P2
DG + Q2

DG − 2PLPDG − 2QLQDG( ) l

L
( )] ,

(14)
where r is the single-phase resistance. U is the phase voltage. PL and
QL are the active power and reactive power consumed by the load,
respectively. PDG and QDG are the active power and reactive power
output produced by the distributed power source. L is the total
length of the distribution line. l is the distance between the power
source and the DG.

(2) The minimum voltage deviation is determined as shown in
Equation 15:

minΔV � f2 � ∑N
i�1

Vi−Vr| |, (15)

where N represents the total number of nodes. Vi is the actual
voltage value of the node i. Vr is the rated voltage of the
distribution network.

(3) Target weight settings (Wang Y. F. et al., 2023; Shahraki et al.,
2023) are determined as shown in Equation 16:

f � αf1 + βf2 (16)

according to Deb and Jain (2014). α and β are the weight coefficients
of objective functions 1 and 2, respectively, with α + β � 1, and
α � 0.4, β � 0.6.

3.2.2 Constraints

(1) System power balance constraints are determined as shown in
Equation 17:

PGi + PDGi � PLi + Vi ∑N
j�1
Vj Gij cos θij + Bij sin θij( )

QGi + QDGi � QLi + Vi ∑N
j�1
Vj Gij cos θij − Bij sin θij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (17)

FIGURE 16
The active power network loss curve of each node.

FIGURE 17
Voltage deviation curves of each node.

FIGURE 18
Comparative algorithm convergence curves.
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where PGi and QGi are the active and reactive power injected by the
generator at node i, respectively. PDGi and QDGi are the active and
reactive power of the distributed generator at the i node, respectively.
PLi and QLi are the active and reactive power injected by the load at
node i, respectively. Vi and Vj are the voltages at the distribution
input node i and output node j, respectively. Gij and Bij are the
conductance and susceptance between nodes i and j, respectively. θij is
the phase difference between nodes i and j.

(2) Node voltage constraints are determined as shown in
Equation 18:

Vimin ≤Vi ≤Vimax . (18)

(3) DG power output constraints are determined as shown in
Equation 19:

0≤PDGi ≤PDGimax . (19)

(4) Energy storage charging and discharging power constraints
are determined as shown in Equation 20:

ηBS EBS
t − EBS

t−Δt( ) � −PBS
i,t Δt

PBS
imin

∣∣∣∣ ∣∣∣∣≤ PBS
i,t

∣∣∣∣ ∣∣∣∣≤ PBS
imax

∣∣∣∣ ∣∣∣∣{ , (20)

where ηBS is the charge–discharge efficiency

(5) Energy storage charge and discharge state constraints
Energy storage devices can only be in a charging or discharging

state at any time t during normal operation and can be expressed as
Equation 21:

PBS1
i,t PBS2

i,t � 0, (21)

where PBS
i,t represents the charging and discharging power of energy

storage device i during time period t.

4 Two-layer model solving

4.1 Basic Whale Optimization
algorithm (WOA)

The Whale Optimization algorithm (WOA) is a heuristic
optimization algorithm based on the hunting behavior of
humpback whales in nature. Whales use different hunting
strategies to find the best food location, among which there are
two main hunting mechanisms: around the prey and spiral hunting.
These behaviors inspire the process of searching for the optimal
solution to the optimization problem.

WOA’s basic algorithm updates its search location by simulating
the behavior of humpback whales. Each whale’s position update can
be represented in one of two ways.

4.1.1 Behavior around prey

X t + 1( ) � Xk t( ) − A ·D, p< 0.5. (22)
where Xk(t) is the current candidate solution, A is the
coefficient, and D is the distance between the optimal

solution and the current solution (Wang Y. F. et al., 2023)
(Equation 22).

4.1.2 Spiral update behavior

X t + 1( ) � Xk t( ) +D′ · ebl · cos 2πl( ), p≥ 0.5, (23)
where b the control parameter of the spiral shape. l is a random
control parameter and ∈ [−1, 1]. D′ is the distance between the
current solution and the optimal solution. Where b the control
parameter of the spiral shape. l is a random control parameter and ∈
[−1, 1]. D′ is the distance between the current solution and the
optimal solution. p is a random number that is used to select an
update policy in the range of [0,1] (Shahraki et al., 2023) (Equation
23). When p< 0.5, the whale calculates the distance between the
current solution and the optimal solution and updates the position
to approach the optimal solution. At that time p≥ 0.5, the whale
searches for prey along a spiral path, adjusting its position through
an updated formula that simulates the process of hunting.

The algorithm uses these two behaviors to achieve a balance
between global and local searches. Through these behaviors, the
whale optimization algorithm is able to perform global and local
exploration within the search space.

4.2 Improving the Whale Optimization
algorithm (WOA)

On the basis of the basic WOA, an Improved Whale
Optimization algorithm (IWOA) is proposed. The core of the
improvement lies in the introduction of nonlinear control
parameters l, which can be dynamically adjusted according to the
number of iterations so as to achieve a more appropriate balance of
global and local search at different stages and improve the
convergence accuracy and algorithm performance.

4.2.1 Introduction of nonlinear control parameters
In order to better control the search behavior, nonlinear control

parameters l are introduced so that the whale search strategy can be
gradually refined with the increase of the number of iterations, as
shown in Equation 24. The corresponding parameters l in Equation
23 can be updated.

l � a2 · rand1 + 1 −
��������

t

max -iter

√
, (24)

where a2 � sin(π2 · (1 − l)) is a coefficient based on nonlinear
adjustment that ensures gradual convergence during the search.
rand1 is a random number with a range of [0,1] that is used to
introduce randomness. t is the current number of iterations.
max iter is the maximum number of iterations.

4.2.2 Optimize performance
Through l the introduction, the IWOA can make the whale

gradually reduce the scope of the global search and transform it into
a local search in the search process so as to avoid falling into the local
optimal solution. Specifically, in the early stages, whales are able to
explore the search space extensively. In the later stage, the search
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gradually converges to the vicinity of the optimal solution, which
improves the convergence speed and accuracy of the algorithm.

The IWOA performs better than the basic WOA in terms of
convergence speed, accuracy, and global search capabilities. In the
optimization process, with the increase in the number of iterations,
the whale can locate the optimal solution more accurately, thereby
improving the overall algorithm performance.

4.3 Algorithm flowchart

This article adopts an IWOA to solve the upper- and lower-layer
models, featuring faster convergence speed and good global search
capability. The relationship between the upper and lower layers of
the joint model is shown in Figure 10, and the solving process is
presented in Figure 11.

5 Case study

5.1 Example parameters and settings

In this article, the model is verified and analyzed using the IEEE-
33 node distribution system, and the example topology is shown in
Figure 12. The scenario outputs of the system are shown in
Figures 7–9.

The parameters of the IWOA algorithm are set as follows: the
population size of both the upper and lower layers of the two-layer
programming model is set to 200, and the maximum number of
iterations is set to 200.

5.2 Model results analysis

Based on the two-layer optimization model for the distribution
network established in this article, the planning results for DGs and
energy storage are shown in Table 2. The comparison results of
system network losses and voltage magnitude before and after
optimization are shown in Figures 13, 14.

It is observed that the active power grid loss of the system
significantly decreases after optimization. Before the introduction of
distributed power sources and energy storage systems, the system’s
average grid loss over 24 h was 67.49 MW. After introducing
distributed power sources and energy storage systems, the
system’s average grid loss was 56.53 MW, with a system loss
reduction rate of 16.1%. The results show that the reasonable
location of DGs reduces the long-distance transmission loss, and
the BESS peak shaving and valley filling improve the time series
power flow distribution, suppress the power fluctuation, and
significantly reduce the line loss.

It can be seen that before optimization, some node voltages
exceeded the system’s safe range, but after optimization, the voltage
amplitude has been overall improved and maintained within a
reasonable range. This is because the BESSs smooth out the
voltage fluctuations through dynamic charge and discharge,
absorb excess power during the day to prevent over-voltage, and
compensate for the power gap at night to support voltage
stabilization.

To further verify the feasibility and superiority of the IWOA
proposed in this article, the initial SOC of BESSs is set to 50% in the
simulation. The charging and discharging strategies of the optimized
energy storage system at each moment within 24 h, as well as the
changes in the state of the charge curve, are shown in Figure 15.

It can be seen that during the day, the energy storage system
absorbs excess energy from the power grid, and the charge state
curve of the storage during this period shows an upward trend. At
night, the energy storage system discharges to the grid, alleviating
grid pressure and resulting in a downward trend in the charge state
curve. In addition, the charging and discharging power of the energy
storage system is basically balanced, effectively maintaining the
charge state of the storage device within the specified range.
Based on the optimized scheduling strategy, it can be seen that
BESSs not only provide the function of load peak and valley
reduction but also optimize the power flow and frequency
support by dynamically responding to wind and solar fluctuations.

5.3 Scenario comparison analysis

Three different scenarios are set for comparative analysis to
verify the effectiveness and superiority of the model proposed in
this article. In Scenario 1, only DGs are added to the IEEE-33
node distribution system without connecting to BESSs. In
Scenario 2, both DGs and BESSs are added, and no
optimization algorithms are used. In Scenario 3, both DGs
and BESSs are added, and the IWOA is used. The planning
schemes and costs for each scenario are shown in Table 3, 4,
respectively. At that point, the node active power loss and node
voltage deviation under the three scenarios are compared and
analyzed, as shown in Figures 16, 17.

It is observed that the active power grid loss and voltage
deviation in Scenario 3 are lower than those in Scenario 1 and
Scenario 2. When comparing Scenario 1 with Scenario 2, it can be
observed that with the addition of energy storage, the overall active
power loss decreased by 764 kW, and the active power loss rate
decreased by 12.3%. The overall voltage deviation decreased by 8.9%.
When comparing Scenario 2 with Scenario 3, the overall active
power loss based on the IWOA is decreased by 1.14 MW, and the
active power loss rate decreased by 17.6%. The overall voltage
deviation decreased by 23.8%. This is due to the collaborative
optimization of DGs and BESSs; DGs with reasonable site
selection can effectively reduce the transmission loss, and the
dynamic scheduling of BESSs enhances the system voltage
support capacity and operation flexibility so as to achieve the
dual optimization of network loss and voltage. The IWOA
optimization algorithm further improves the global optimality of
site selection and scheduling and enhances the adaptability of the
system to the randomness of wind and solar output. In the
integrated wind–solar–storage mode, the energy storage system
effectively absorbs the fluctuation of wind and solar, which not
only optimizes the power flow distribution but also significantly
improves the voltage quality, providing key support for the
improvement of the operation performance and economy of the
distribution network. The above comparisons demonstrate that the
optimization model proposed in this article has a good effect on the
active power loss and voltage control of the system.
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5.4 Analysis of algorithm
improvement results

Figure 18 shows the convergence curves of the Particle Swarm
Optimization algorithm (PSO), WOA, and IWOA when solving the
two-layer optimal configuration model. As can be seen from the
figure, the improved IWOA shows higher solution accuracy and
faster convergence speed than the traditional PSO and WOA
algorithms. In the first 20 iterations, the fitness value of IWOA
decreases rapidly and approaches the optimal solution, showing
obvious convergence advantages, while the PSO and WOA decrease
rates are slower, and the final convergence effects are not as
good as IWOA.

By introducing nonlinear control parameters l and optimizing
the spiral update strategy, the improved IWOA improves the
balance between local development and global exploration. It
greatly improves the global optimal search ability and avoids the
phenomenon of premature convergence, so the IWOA is better than
the other two algorithms in terms of solution accuracy and
convergence. This shows that IWOA has more efficient
performance and better solution quality when solving the two-
layer optimal configuration problem proposed in this article.

6 Conclusion

In this article, generative adversarial networks are first used to
effectively learn the complex probability distribution of historical
data of a high proportion of new energy generation, and new data
samples with similar characteristics are generated. Then, a two-layer
optimization model of the distribution network based on the IWOA
and combining DGs and BESSs is proposed that addresses the high
randomness introduced into the distribution network by the
integration of a high proportion of renewable energy sources and
the issues of high complexity, low efficiency, and susceptibility to
local optimum traps in line loss calculation methods of traditional
distribution networks. The results are as follows.

(1) Considering the high randomness and uncertainty introduced
into the distribution network by the integration of a high
proportion of renewable energy sources, a scenario generation
method based on an improved GAN is proposed. This
approach addresses the issues of the cumbersome modeling
process, significant errors arising from parameter fitting, and
poor quality of generated scenarios in traditional multi-
scenario analysis methods.

(2) After adopting the two-layer optimal configuration model,
the network loss of the distribution network system is reduced
by 31.9%, and the voltage amplitude is improved as a whole
and maintained within a reasonable range. It shows that the
model can effectively improve the network loss and voltage of
the distribution network with DGs and BESSs, which is
beneficial to the safe and stable operation of the
distribution network.

(3) Three different scenarios are set for comparative analysis to
verify the effectiveness and superiority of the model proposed
in this article.
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