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Given the complexity and dynamic nature of short-term load sequence data,
coupled with prevalent errors in traditional forecasting methods, this study
introduces a novel approach for short-term load forecasting. The method
integrates multi-frequency sequence feature analysis and multi-point
correction using the FEDformer model. Initially, variational mode
decomposition (VMD) technology decomposes the load sequence into
multiple subsequences, each exhibiting distinct frequency characteristics.
Subsequently, for each frequency band of the load sequence, the LightGBM
algorithm quantifies the correlation between the load and various influencing
factors. The filtered features are then input into the FEDformer model, providing
preliminary short-term and long-term sequence prediction results. Finally, a
point-by-point forecasting method based on a tree model generates multi-
point load prediction results by training multiple LightGBM models.
Throughout the forecasting process, a weighted threshold α is set, and a
hybrid weighting method is utilized to combine the forecast results from
different models, culminating in the final short-term load forecast results.
Validation of the proposed hybrid model was conducted on an actual dataset
from a specific area, The results exhibit higher prediction accuracy, affirming the
proposed method as a novel and effective approach for short-term load
forecasting.
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1 Introduction

The power system holds a central position in the national economy, and with the
increasing share of electricity in the global energy structure (Zhou et al., 2024; Liao and
Chakrabortty, 2019; Wang et al., 2024; Zhang, 2024), its significance has become more
prominent. However, the issue of supply and demand imbalance during the power
dispatching process is not uncommon, underscoring the criticality of power load
forecasting. Accurate power load forecasting serves two major purposes: firstly, it
effectively bridges the demand on the power side with the output on the power supply
side, thereby providing vital support in addressing various dispatching challenges. Secondly,
it significantly enhances the operational efficiency, safety, and economic benefits of the
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entire power system. Therefore, the research and practical
application of power load forecasting hold immense practical
significance and yield far-reaching social impact.

Load forecasting encompasses three distinct time spans: short-
term, medium-term, and long-term. Short-term load forecasting
holds particular significance due to its close correlation with daily
climate variations. Given the significant impact of weather
conditions on power consumption, precise short-term load
forecasting assumes a critical role, especially in grid dispatch and
generation planning.

In the realm of short-term load forecasting, a multitude of
forecasting techniques have been developed by experts and
scholars, leading to noteworthy outcomes. As artificial
intelligence research progresses rapidly, conventional prediction
approaches are being eclipsed by AI algorithms. The adoption of
AI algorithms for comprehensive analysis has become a dominant
trend in the industry.

Representative prediction methods in short-term load
forecasting include support vector regression (SVR) (Tan et al.,
2020), artificial neural network (ANN) (Li et al., 2015), and extreme
learning machine (Mao et al., 2012). Additionally, artificial
intelligence technologies, such as tree ensemble algorithms
(Zheng et al., 2023) and deep learning (Wang et al., 2019), have
demonstrated exceptional prediction capabilities in short-term
power load forecasting. These advancements provide robust
support for precise decision-making within the power industry.

Shi et al. (2018) proposes a prediction method based on deep
structured multi-task learning. Shi and Zhang (2019) introduces a
stacking-based prediction method that greatly improves prediction
accuracy. Guo et al. (2022) presents a combined load forecasting
approach based on the BiLSTMmodel for multi-task learning. Tang
et al. (2023) proposes a two-stage short-term adaptive prediction
method. Bu et al. (2023) proposes a hybrid short-term load
forecasting model based on the CGAN-CNN neural network.
Jiang et al. (2023) analyzes the similarity of power loads and
proposes an interpretable method for similar day filtering and
load prediction. Zang et al. (2021) combines self-attention
mechanism with LSTM to achieve more accurate load
forecasting. Chen et al. (2019) presents a short-term power load
forecasting model based on deep residual networks. Zhang et al.
(2021) proposes a medium- and long-term load forecasting method
for group objects based on image representation learning (IRL).

While most research has concentrated on one-step load
forecasting, multi-step load forecasting holds greater practical
significance, particularly in electricity market bidding and spot
price calculation. In the field of time series forecasting, the self-
attention mechanism of Transformers has gained significant
attention due to its excellent performance in modeling long and
short-term dependencies (Vaswani et al., 2017). However, directly
applying the original Transformer to time series modeling still faces
many challenges. Among them, the most prominent issues are the
high computational complexity and significant memory
consumption when dealing with long sequences. To address these
challenges, the academic community has proposed various variants
of Transformers, such as convolutional self-attention (Li et al.,
2019a), sparse self-attention (Zhou et al., 2021), attention-based
deep neural network architectures (Lim et al., 2021), seasonal trend
decomposition architecture (Wu et al., 2021), and frequency

augmentation mechanisms (Zhou et al., 2022). These variants
have not only successfully alleviated the difficulties of modeling
long and short-term dependencies in practice but also significantly
reduced computational complexity. Therefore, in this study, we
choose FEDformer (Zhou et al., 2022), a Transformer variant
with outstanding predictive performance, as the core model for
load sequence modeling. By cleverly combining it with models like
VMD (Liu et al., 2024) and LightGBM (Ke et al., 2017), this study
achieves high-precision short-term load forecasting.

The main contributions of this paper are as follows:

1) This paper proposes an innovative method for multi-
frequency sequence feature selection, combining Variational
Mode Decomposition (VMD) and the LightGBM algorithm.
By decomposing the original load sequence into multiple
frequency components using VMD, the method quantifies
the correlation between each component and candidate
features using the LightGBM model, constructing more
effective feature inputs. This approach not only enables in-
depth exploration of hidden information in load data but also
enhances prediction accuracy, providing new insights for
short-term load forecasting.

2) This paper presents a point-by-point forecasting method based
on tree models (POFtree). Considering that in sequence
prediction, the correlation between later predicted values
and historical data decreases, resulting in potentially higher
errors. To address this issue, this paper trains multiple
LightGBM models to perform weighted fusion based on the
predictions of FEDformer, correcting the predictions made by
FEDformer. This method further improves prediction
accuracy, making the predictions more accurate and reliable.

3) This paper proposes a hybrid weighted fusion approach to
combine the predictions of different models. For timestamps
in the prediction results with differences greater than the
threshold α, mean fusion is applied, while for timestamps
with differences smaller than α, weighted fusion is used. This
hybrid weighted fusion approach significantly reduces the
impact of error amplification on the prediction results,
making the final predictions more stable and reliable.

The subsequent sections of this paper are structured as follows:
Section 2 offers a comprehensive introduction to the fundamental
principles and pertinent techniques of the models. Section 3 delves
into the design structure and implementation specifics of the hybrid
model. Section 4 validates the efficacy of the proposed model
through numerous simulation analyses and comparative
experiments. Lastly, Section 5 summarizes the primary research
findings and outlines potential future research directions.

2 Model fundamentals

2.1 Variational mode decomposition

Addressing the challenges posed by the nonlinear and non-
stationary nature of load time series, conventional direct training of
prediction models on raw data often falls short in capturing the
intricate temporal features, thereby impacting prediction accuracy.
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To mitigate this, this study proposes leveraging the Variational
Mode Decomposition (VMD) (Liu et al., 2024) technique to
decompose multivariate load sequence data. VMD efficiently
breaks down complex signals into a series of sub-sequences
exhibiting diverse frequency characteristics. These sub-sequences
demonstrate enhanced periodicity and stability compared to the
original load sequence, rendering them more amenable to modeling
and prediction tasks. Assuming the decomposition yields K modes,
the corresponding constrained variational model expression is
constructed as shown in Formula 1:

min u k( ){ }, ω k( ){ } ∑K
k�1

∂t δ t( ) + j
πt

( )uk t( )[ ]e−jωkt

������� �������2⎧⎨⎩ ⎫⎬⎭
s.t. ∑K

k�1
uk t( ) � f t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (1)

In the formula: ∂t represents the partial derivative of the
function with respect to time; f(t) is the load time series;
u(k),ω(k){ } is the set of k modal component u(k) and the
corresponding center frequency ω(k) respectively; δ(t) is the unit
pulse function; K is the decomposition number.

In order to obtain the optimal solution to the above variation
problem, penalty factors and Lagrange multipliers are introduced to
construct an enhanced Lagrangian function as shown in Formula 2.

L u k( ){ }, ω k( ){ }, λ t( )( ) � ζ∑K
k�1

∂t δ t( ) + j
πt

( )uk t( )[ ]e−jωkt

������� �������2
+ f t( ) −∑K

k�1
uk t( )

��������� ���������2
+ 〈λ t( ), f t( ) −∑K

k�1
uk t( )〉 (2)

In the formula: ζ is the quadratic penalty factor; λ(t) is the
Lagrange multiplier. The above constrained variation problem can
be solved iteratively by the alternating multiplier method.

2.2 FEDformer

FEDformer, as a remarkable variant of the Transformer model
in time series forecasting, incorporates a core structure that includes
the classical encoder-decoder architecture, along with innovative
frequency domain augmentation and time series decomposition
mechanisms. These advanced design elements enable FEDformer
to accurately capture the underlying patterns in time series data,
leading to more precise and efficient predictions when dealing with
time series data.

2.2.1 FEDformer overall structure
The main architecture of FEDformer cleverly utilizes the

encoder-decoder structure as shown in Figure 1. Its core feature
lies in the periodic-trend decomposition module, which accurately
separates the sequence into periodic and trend components. It is
worth noting that this decomposition is not done all at once but
follows an iterative and hierarchical decomposition pattern,
ensuring a more detailed and precise decomposition of the sequence.

In the processing flow of the encoder, the input signal undergoes
refined processing in two decomposition layers. Each decomposition
layer finely divides the signal into two major components: the
periodic component and the trend component. The trend
component, which has a minor impact on the overall sequence,
is discarded, while the periodic component carries the main
fluctuation characteristics of the sequence and is passed on to the
next layer for further learning. Through layer-by-layer propagation,
these periodic components are ultimately transmitted accurately to
the decoder, providing strong support for subsequent prediction
tasks. This can be represented as shown in Formulas 3–5:

Sl,1
en ,− � AvgPooling FEB X l−1

en( ) + X l−1
en( ) (3)

Sl,2
en− � AvgPooling FeedForward Sl,1

en( ) + Sl,1
en( ) (4)

X l
en � Sl,2

en (5)

In the formula, X is the initial feature vector obtained by direct
mapping of the original meteorological data, Sl,i

en representing the
seasonal component after the i-th time series decomposition module
in the l layer.

In the decoder, the input undergoes a refined processing flow. It
is first finely decomposed into periodic components and trend
components through three decomposition layers. The periodic
components, which carry the key information of the sequence’s
fluctuation characteristics, are passed on to subsequent layers for
deeper learning. Notably, this process introduces a Frequency
Enhanced Attention (FEA) layer, which cleverly establishes the
frequency domain correlation between the periodic components
of the encoder and decoder. This allows the model to have a deeper
understanding of the frequency domain characteristics of the
sequence, enhancing the depth and breadth of learning. At the
same time, the trend components are not neglected. These
components are accumulated and added back to the periodic
components, thus reconstructing a more complete original
sequence. This design not only increases the utilization of
information, enabling the model to comprehensively capture the
features of the sequence but also improves the model’s inference
capability, showcasing outstanding performance in time series
prediction tasks. The decoding process is represented as shown
in Formulas 6–10:

Sl,1
de, T

l,1
de � AvgPooling FEB X l−1

de( ) + X l−1
de( ) (6)

Sl,2
de, T

l,2
de � AvgPooling FEA Sl,1

de,XN
en( ) + Sl,1

de( ) (7)
Sl,3
de, T

l,3
de � AvgPooling FeedForward Sl,2

de( ) + Sl,2
de( ) (8)

T l
de � T l−1

de +W l,1 · T l,1
de +W l,2 · T l,2

de +W l,3 · T l,3
de (9)

X l
de � Sl,3

de (10)

In the formula, Sl,i
de, T

l,i
de represent the seasonal and trend

components respectively after the i-th decomposition block in the
l-th layer, and W l,i represents the linear weight used for the i-th
extracted trend T l,i

de.

2.2.2 Frequency domain enhancement mechanism
The Frequency Enhanced Block with Fourier Transform (FEB)

module cleverly utilizes the Fourier transform to strengthen
sequence information as shown in Figure 2. In the FEB, the
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sequence is first subjected to one-dimensional Fourier transform,
smoothly transitioning to the frequency domain. Then, the module
employs a unique weighting mechanism to finely enhance the
frequency components, highlighting the key information in the
sequence. Compared to traditional self-attention blocks, the
introduction of FEB significantly enhances the modeling
capability of the sequence, allowing the model to have a deeper
understanding of the underlying patterns in the data. Finally, the
enhanced sequence is returned to the time domain through inverse
transformation, providing stronger support for subsequent time
series prediction tasks. Its specific implementation can be
represented as shown in Formulas 11, 12:

X̂ � Select F w · x( )( ) (11)
FEB x( ) � F −1 Padding X̂( ) ⊙ R( )) (12)

In the formula: x is the input; w is the weight of the linear
transformation; F(·) is the Fourier transform; F −1(·) is the inverse
transform; Select(·)means sampling the frequency domain information
and retaining theM-dimensional information; Padding(·)means filling
the frequency domain information with 0 and completing the
M-dimensional information as N-dimensional; R is a randomly
initialized parameterized kernel used for frequency weighting.

Frequency Enhanced Attention with Fourier Transform (FEA) is
an attention mechanism that leverages Fourier transform to enrich
sequence information as shown in Figure 3. Unlike conventional
attention mechanisms, FEA maps the sequence into the frequency
domain, where attention weights are calculated, thereby enhancing
sequence information. FEA can substitute traditional cross-attention
blocks, thereby enhancing the sequence modeling capability. Initially,
the sequence undergoes one-dimensional Fourier transform to
transition into the frequency domain. Subsequently, attention
weights for the sequence in the frequency domain are computed.
Finally, the sequence reverts to the time domain through inverse
transformation, resulting in an enriched sequence. The specific
implementation is outlined as shown in Formulas 13–16:

Q̂ � Select F q( )( ) (13)
Q̂ � Select F q( )( ) (14)
K̂ � Select F k( )( ) (15)

FEA q, k, v( ) � F −1 Padding σ Q̂ · K̂T( ) · V̂( )( ) (16)

In the formula: q, k, v represent query vector, key vector and
value vector respectively, and represent activation function.

2.3 LightGBM

LightGBM has made significant optimizations to the traditional
boosting framework, particularly in improving computational
efficiency and enhancing scalability (Ke et al., 2017).

One major innovation of LightGBM is the histogram algorithm.
It cleverly discretizes continuous floating-point feature values into
multiple integers and constructs corresponding histograms with
appropriate widths, significantly optimizing the data processing
pipeline. During the data traversal process, LightGBM
accumulates statistical information in the histograms based on

the discretized feature values. This not only reduces memory
usage but also significantly lowers computational costs, thereby
greatly improving overall computational efficiency.

LightGBM has revolutionized the growth strategy of decision trees
by adopting the Leaf-wise algorithmwith depth constraints, a departure
from the traditional level-wise strategy. This approach selects the leaf
node with the maximum split gain during each iteration, continuously
refining the model for enhanced accuracy. By employing this strategy,
LightGBM achieves superior error reduction with the same number of
splits, thus significantly improving model performance. Additionally,
LightGBM mitigates overfitting by setting a maximum depth limit.

In model parameter optimization, LightGBM utilizes Gradient-
based One-Side Sampling (GOSS), a crucial technique that samples
data based on gradient magnitudes. By focusing on high-gradient
samples, GOSS ensures model accuracy while reducing data volume,
further optimized by excluding small-gradient samples. This balance
between data size and accuracy enhances LightGBM’s efficiency.

Exclusive feature bundling, a concept introduced by LightGBM, is
particularly effective in sparse feature spaces. By merging mutually
exclusive features that seldom take nonzero values simultaneously,
LightGBM reduces feature dimensionality, thus enhancing training
efficiency. This innovative approach reinforces LightGBM’s capability
in handling complex data with improved efficiency and performance.

3 Hybrid model design

3.1 Hybrid weighting mechanism

Contrasted with the conventional single-point weighted method
utilized for point prediction, sequence prediction yields a continuous
sequence of values. As this sequence progresses, its correlation with
historical data diminishes, leading to increased prediction errors
towards the sequence’s end. To mitigate the cumulative error’s
adverse effects on overall prediction accuracy, this paper introduces
a novel hybridweightingmechanism to finely tune the predicted results.

To address the potential decline in fusion performance caused
by outliers in mean fusion, this paper proposes a hybrid weighting
strategy that integrates mean fusion and weight fusion, as detailed in
Formulas 17–19. Specifically, an error threshold α is introduced.
When the deviation between the predicted and actual values at a
given time point exceeds the threshold α, mean fusion is employed
to smooth abnormal fluctuations. Conversely, when the deviation
falls below the threshold α, weight fusion is applied to better capture
the varying significance of data points across different time periods.
This strategy ensures that the forecasting results are not only stable
and reliable but also capable of accurately capturing the dynamic
characteristics of the time series.

The threshold α is determined using the following formula,
which quantifies the overall deviation of the 96-point prediction
results produced by the two models:

α � 1
N

∑N
i�1

y F,i( ) − y L,i( )
∣∣∣∣ ∣∣∣∣

y F,i( )
(17)

In this formula, y(F,i) is the prediction result of the i-th point of
the Fedformer model, y(L,i) is the prediction result of the i-th point
of the lightGBM model, and N is the output sequence length.
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Once the threshold α is determined, the prediction deviation for
each pair of corresponding points from the two models is calculated
using the following formula:

γi �
y F,i( ) − y L,i( )
∣∣∣∣ ∣∣∣∣

y F,i( )
i ∈ 1, N[ ] (18)

Finally, the hybrid weighting mechanism is expressed using the
following formula:

y � βy F,i( ) + 1 − β( )y L,i( ) γi < α
y � y F,i( ) + y L,i( )( )/2 γi > α

{ (19)

In the formula, y is the prediction result after weighted
combination; β is the weight value, which is taken as 0.8 in
this article.

3.2 Hybrid model structure

The structure of the FEDformer short-term load forecasting
model based on multi-frequency sequence feature analysis and
multi-point correction is shown in Figure 4. The model consists
of five core modules: VMD decomposition module, multi-
frequency feature analysis module, FEDformer prediction
module, Point-wise prediction based on tree models
(POFtree) module, and hybrid weighting module. Among
them, the number of models in the FEDformer module and
POFtree module matches the number of multi-frequency
components obtained from VMD decomposition to ensure
accurate prediction of each frequency component.

Step 1: Considering the possibility of anomalies and errors in sensor
data collection, datasets often contain a large number of
outliers and missing values. In order to obtain a more
complete and high-quality dataset and reduce the adverse
effects of these anomalies and missing values on the
prediction results, we conducted rigorous data
preprocessing on the original load data as well as weather
data such as temperature and humidity. During the
preprocessing process, we effectively removed outliers and

reasonably imputedmissing values, providing themodel with
a more reliable and accurate data foundation.

In this paper, linear interpolation is used to handle as shown in
Formula 20:

y � y0 + y1 − y0

x1 − x0
x − x0( ) (20)

In the formula, y represents the missing value, and x represents
the abscissa of the missing value. y0 and x0 represent the horizontal
and vertical coordinates of the first selected point respectively.
Moreover, y1 and x1 represent the abscissa and ordinate of the
second selected point.

FIGURE 1
FEDformer structure diagram.

FIGURE 2
Frequency enhancement module.
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Step 2: After preprocessing, we divided the data into training and
testing sets. To better extract data features, accelerate the
convergence speed of model training, and improve

prediction accuracy, we performed normalization on
the data. This operation maps the data range to the
interval between 0 and 1. Normalization is applied
from the beginning of the training set to the end of the
testing set, ensuring that the entire dataset is analyzed and
modeled on a unified scale.

Data standardization can be expressed as Formula 21:

y � y′ ymax − ymin( ) + ymin (21)

In the formula, ymax represents the maximum value in the data
set; ymin represents the minimum value in the data set; y’ represents
the uninitialized actual value, and y represents the initialized value.

Step 3: We input the load power data into the VMD
decomposition module to extract multiple load
components with different frequencies. At the same
time, the weather calendar dataset is input into the
multi-frequency component feature analysis module.
These two modules interact closely and dynamically
construct the feature input set by calculating the feature
correlations of different frequency components. This step
aims to avoid introducing noise from weakly correlated
features during the prediction process, which may affect
the accuracy of the model.

Step 4: To save computational resources without sacrificing
prediction accuracy, we feed the decomposed multi-
frequency component feature data into the FEDformer
prediction module for training and prediction.
Simultaneously, the original combined load dataset that
has not been decomposed is input into the POFtree
prediction module for the same operations. The

FIGURE 3
Frequency domain enhances attention.

FIGURE 4
Hybrid model structure diagram.
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FEDformer module is specifically designed for long
sequence time series prediction. It uses multi-step
prediction to directly output the load power values for
a future period. On the other hand, the POFtree module
performs point-wise prediction based on tree models,
working in a single-step prediction manner. Each
LightGBM model sequentially outputs the load value
for the next time point, and multiple models are used
to make predictions sequentially. The final result is
aggregated as the short-term power prediction value.

Step 5: We integrate the predictions from multiple FEDformer
models to form preliminary long sequence short-term
load predictions. Then, we use the predictions from the
POFtree module to perform point-wise correction on the
predictions from the FEDformer module. This correction
process utilizes a hybrid weighting mechanism with the
predictions from the FEDformer module as the reference.
If the error between the POFtree predictions and the
FEDformer predictions exceeds the set error threshold α,
mean fusion is used for correction. If the error between the
two is less than α, weighted fusion with a weight of β is used
for correction. Finally, the corrected 96-point predictions are
considered as our load power prediction results.

3.3 Error evaluation index

For accuracy evaluation, this study employs the mean absolute
error (MAE), root mean square error (RMSE), and mean absolute
percentage Error (MAPE) as assessment metrics. These indicators
are defined as shown in Formulas 22–24:

MAE � 1
N

∑N
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣ (22)

RMSE �

������������
1
N

∑N
i�1

ŷi − yi( )2√√
(23)

MAPE � 1
N

∑N
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣
yi

× 100 (24)

In the formula, yi and ŷi represent the true value and predicted
value respectively. N is the number of data samples.

4 Simulation results and analysis

4.1 Dataset description

This study analyzes actual measurement data from a specific
area spanning an entire year, from October 2022 to October 2023.
The dataset comprises 35,040 records with a sampling interval of
15 min, encompassing electricity consumption in a specific region
alongside closely associated parameters such as temperature,
humidity, wind speed, and rainfall. To visually illustrate the
load’s periodic characteristics, a continuous 1-week load curve
commencing from midnight of a particular day was specifically
chosen, as depicted in Figure 5. The figure highlights notable
periodic variations in both daily and weekly loads, consistent
traits observed in most power system loads.

Figure 6 presents the statistical distribution of the collected
dataset in a 24-h period (frommidnight 0:00 to 24:00) in the form of
a box plot. By careful observation, we can observe different
maximum values, minimum values, medians, and quartiles for
each hour’s load, which demonstrates the significant fluctuations
caused by the periodic nature of the dataset. This, in turn, increases
the difficulty of learning load forecasting patterns. Additionally, the
box plot of the 24-h load distribution clearly reveals the load
distribution within the dataset. The research results indicate
significant variations in quartiles during different time periods,
largely influenced by holiday electricity consumption behavior.

The dataset used in this study contains a total of
35,040 segments. To facilitate effective model training and
evaluation, we divided the dataset into training, validation, and
testing sets in a ratio of 60%, 20%, and 20%, respectively. This
division ensures that the model has sufficient data for learning
during the training process, allows for initial performance evaluation
on the validation set, and ultimately tests the model’s generalization
ability on the testing set.

4.2 Experimental setup

The predictive model in this study was meticulously constructed
utilizing the PyTorch deep learning framework within a Python
3.11 environment. To effectively manage data and incorporate
intuitive visualization capabilities, Python libraries including
NumPy, pandas, Matplotlib, and sklearn were extensively utilized.
The experimental setup relied on a powerful hardware platform
consisting of a 12th generation Intel Core i5-12600KF CPU, 32GB of

FIGURE 5
Load curve graph.

FIGURE 6
Load distribution diagram.
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RAM, 3TB of storage capacity, and an NVIDIA GeForce RTX
4070 Ti GPU, providing robust computational support for model
training and testing.

The experimental process was structured into three main phases.
Firstly, we presented the outcomes of the VMD decomposition,
offering a detailed analysis of the load characteristics. Secondly, we
employed the LightGBM model to conduct feature correlation
analysis for various components and selected features highly
relevant to the prediction target. Subsequently, comprehensive
comparisons were drawn between our proposed model and other
advanced time series forecasting models such as LSTM, Informer,
and Autoformer. This comparison encompassed the assessment of
prediction accuracy across different seasons and the predictive
performance for varying forecast horizons. Finally, ablation
experiments were carried out to scrutinize the specific impact of
VMD and POFtree on prediction accuracy, thereby furnishing
comprehensive evidence regarding the effectiveness of our
proposed model.

4.3 Multi-frequency sequence
feature selection

For enhanced accuracy in load value prediction, we utilized
Variational Mode Decomposition (VMD) on the dataset. Figure 7
illustrates the decomposed components of the power load data

following VMD processing. Default parameter settings were
employed during the VMD process, with the medium bandwidth
constraint set to 2000, noise tolerance set to 0, and the convergence
criterion tolerance set to 10–7.

It is worth noting that the choice of the decomposition number
K has a significant impact on the decomposition results and
subsequent prediction performance. If K is too small, it may lead
to the loss of load sequence information or mode confusion, thereby
affecting the accuracy of the prediction. On the other hand, if K is
too large, it may result in excessive analysis, increased computational
complexity, and decreased prediction performance. Therefore, when
selecting the decomposition number K, it is necessary to consider the
data characteristics, computational resources, and prediction
requirements in order to achieve the optimal prediction effect.

Based on empirical knowledge, we initially selected load history
information, weather information, and calendar rules as input data.
Specifically, the load information included the historical load data
from the previous 4 h, while the weather data consisted of key
information such as temperature, humidity, wind speed, and rainfall
at the starting point of the prediction. Additionally, calendar rule
information was incorporated, including the hour, day of the week,
and whether it was a holiday, corresponding to the prediction target.
The selected input information and their processing methods are
detailed in Table 1.

To prevent interdependencies among continuous data and
considering the periodic nature of load fluctuations, we applied

FIGURE 7
VMD decomposition results.

Frontiers in Energy Research frontiersin.org08

Hou et al. 10.3389/fenrg.2024.1524319

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1524319


one-hot encoding to features such as hour, day of the week, and
holiday. Through this encoding method, we transformed these
features into a discrete form that is easier for the model to
process. The encoded features were then added to the input
features to form the final input vector. This approach helps the
model better capture the correlations between data and improves the
accuracy of the prediction.

The feature contributions calculated by the LightGBM
algorithm are shown in Figure 8. From the graph, it is evident
that load history information has a significant impact on the
prediction target. Particularly, load history data closer to the
prediction target exhibits higher feature importance. The
historical load data from the previous 1 h stands out as having a
particularly prominent contribution. Additionally, factors such as
temperature information, holidays, and weekends also have a
considerable influence on electricity load.

Among weather factors, temperature stands out as a crucial
determinant of electrical load. During the hot summer months,
rising temperatures typically lead to increased usage of air
conditioning and refrigeration equipment, which, in turn,
boosts electricity demand. Conversely, during cold winters,
lower temperatures heighten the need for heating, particularly
in regions dependent on electric heating systems. This results in a
corresponding rise in electricity demand, a phenomenon that
aligns with common knowledge and everyday experience.
Moreover, changes in weather significantly influence people’s
daily activities. For instance, on rainy weekends, individuals are
more inclined to stay indoors, leading to a slight reduction in the
area’s electricity load compared to days with more
favorable weather.

In addition to weather factors, calendar rule information is also
an indispensable element in model construction. Holidays, days of
the week, and hours of the day are particularly crucial. Different time
periods within a day are closely linked to people’s daily routines and
production activities, exerting important influence on electricity
load prediction.

It is worth noting that the calendar features such as hour and day
of the week, which were one-hot encoded, appear sparse and
scattered in the graph. However, this encoding method plays an
indispensable role in model training, as it helps the model better
capture and understand the impact of these features on the
prediction target.

By conducting a meticulous analysis of the model’s feature
contributions, we indirectly affirm the efficacy of the feature
selection process in this study. The chosen features not only
adhere to the practical demands of electricity load forecasting but
also play a crucial role in enhancing the prediction accuracy and
generalization capability of the model.

After an in-depth analysis of the contribution of each feature, we
can conclude that feature selection helps reduce the complexity of
the model from the perspective of input attributes. As shown in
Figure 8, certain factors have low or zero contributions to the model
construction, indicating that not all selected features have a positive
impact on the model construction. Therefore, based on the feature
contribution scores, this study ranked all input information from
low to high and gradually removed features with low or zero
contributions, retaining only the highly contributing feature
information.

Based on the aforementioned processing, we established hybrid
prediction models for each new subsequence and obtained output
values for each prediction model. By summing these values and
performing inverse normalization, we obtained the final predicted
load value. This approach not only improves the accuracy of the
prediction but also helps enhance the efficiency of the
model’s operation.

4.4 Model comparison experiment

To further validate the effectiveness of the proposed model and
ensure the fairness of the experiment, this study conducts a
comprehensive comparison between the developed model and
several baseline methods. Specifically, we selected three well-
established models in the field of time series forecasting—LSTM,
Informer, and Autoformer—as well as a hybrid model that
integrates these three with VMD + POFtree, totaling six models
for comparison. These models are tailored to address the challenges
posed by traditional RNNs in handling long-term dependencies.
Notably, the Informer and Autoformer models build upon the
Transformer architecture and enhance performance through the
incorporation of an attention mechanism. The predictive
performance of the model proposed in this paper for typical
working days and holidays is detailed in Supplementary
Appendix SA1.

TABLE 1 Feature information table.

Characteristic details Characteristic attribute Variable handling method Feature number

Historical load information Historical load data for the past 4 h Continuous 0-15

Weather information Temperature Continuous 16

Humidity Continuous 17

Wind speed Continuous 18

Rainfall Continuous 19

Calendar rules Holiday Discrete 20

Week of day Discrete 21-27

Hour of day Discrete 28-51
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To ensure the fairness and reliability of the experiments, we
carefully set the hyperparameters of the proposed model, which are
detailed in Table 2. At the same time, for the other comparative
models, we also performed parameter tuning to ensure that they
participate in the comparison in their best states. With such settings,
we can more accurately evaluate the performance of each model
under the same conditions, leading to more objective and reliable
conclusions.

To thoroughly verify the effectiveness and stability of the model,
we meticulously selected multiple representative days across the four
seasons and performed detailed load forecasts for various forecast
step sizes. Specifically, we predicted load data at future intervals of
24 points (6-h steps), 48 points (12-h steps), 96 points (24-h steps),
and 192 points (48-h steps), with the length of input data uniformly
set to 96 points. This series of prediction experiments is designed to
comprehensively evaluate the model’s performance across different
prediction step sizes, ensuring broad applicability and robustness.

Figures 9, 10 provide detailed representations of the 96-point
load data predictions made by different models on various typical
days. From Figure 9, it is evident that the model proposed in this
paper demonstrates outstanding performance across various
evaluation metrics. Given the extended prediction span of
96 points, the LSTM model exhibits subpar prediction outcomes,
with its prediction curve significantly deviating from the original
data in both shape and timing. This underscores the tendency of
RNN networks to lose information in long-term sequence prediction
and their ineffectiveness in capturing sequence features,
consequently leading to reduced prediction accuracy.

Compared to others, the series of models based on the
Transformer architecture demonstrate superior performance in
predicting outcomes. Their prediction curves generally capture
the fluctuation trends of the load data accurately, particularly at

FIGURE 8
(A)Original component feature correlation, (B) IMF1 component
feature correlation, (C) IMF2 component feature correlation, (D)
IMF3 component feature correlation, (E) IMF4 component feature
correlation.

TABLE 2 Model hyperparameters.

Model Hyperparameters Value

FEDformer e_layers 4

d_layers 4

d_model 512

n_heads 6

activation Adam

batch_size 32

len_seq 192

len_pred 24/48/96/192

len_label 64

dropout 0.1

POFtree Number of trees 35

Tree depth 6

lr 0.1
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points of fluctuation. However, there remains a discrepancy in their
ability to predict the amplitude of these fluctuations accurately. This
indicates that while the attention mechanism excels at learning
dependencies in long-term sequential data, it still has limitations in

capturing the finer details of fluctuations precisely. Notably,
although the prediction results of the other three Transformer-
based models are relatively similar, the model proposed in this paper
exhibits a distinct advantage in overall accuracy.

Observing Figure 10, it is evident that the prediction curve fitting
degrees of the three models enhanced by the VMD + POFtree structure
have improved over their single-model counterparts, yet they still fall

FIGURE 9
(A) Typical day 1 prediction results of a single model, (B) Typical
day 2 prediction results of a single model, (C) Typical day 3 prediction
results of a single model, (D) Typical day 4 prediction results of a
single model.

FIGURE 10
(A) Typical day 1 prediction results for the composite model, (B)
Typical day 2 prediction results for the composite model, (C) Typical
day 3 prediction results for the composite model, (D) Typical day
4 prediction results for the composite model.
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short of the model proposed in this paper. The enhancement in
accuracy and trend in the prediction curves can be attributed to the
VMD decomposition and the point-by-point correction mechanism
integrated into the model. This advantage becomes particularly notable
in long-span forecasts, indicating that this model exhibits significant
stability and robustness in long-term forecasting.

Overall, the model proposed in this paper demonstrates stable
and realistic prediction performance. Its success is primarily due to
three factors: First, the FEDformer framework incorporates a
frequency enhancement mechanism and a temporal
decomposition mechanism, which enable the model to better
learn data features across different time scales and capture
periodic patterns in the data. Second, the VMD decomposition

and multi-frequency feature analysis clarify the input features,
enhancing the precision and efficiency of the predictions. Lastly,
the POFtree point-by-point correction mechanism effectively
minimizes the cumulative error in long-sequence time series
predictions, thereby further elevating the accuracy of the forecasts.

The quantitative evaluation results for each model are presented
in Table 3. When compared with the other six methods, the
approach proposed in this paper exhibited the highest prediction
accuracy. Its forecasts not only precisely capture cyclical and long-
term changes but also maintain the highest accuracy rate across
various forecast step sizes on multiple typical days. Regarding the
evaluation metrics—RMSE, MAE, and MAPE—the model proposed
in this article achieved optimal performance.

TABLE 3 Error accuracy table.

Methods Typical day 1 Typical day 2 Typical day 3 Typical day 4

Metric RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

LSTM 24 100.87 77.14 11.79% 66.72 44.30 6.50% 187.33 117.43 14.93% 191.30 118.85 15.95%

48 114.65 87.75 12.32% 87.07 62.70 8.53% 199.21 145.36 22.57% 155.97 101.53 17.74%

96 136.92 113.22 14.60% 116.47 92.89 11.90% 178.65 128.63 22.43% 185.01 132.93 20.65%

192 156.89 121.43 17.30% 163.45 109.45 13.33% 202.54 167.56 24.05% 215.09 150.04 21.67%

Informer 24 84.89 75.23 7.85% 68.41 55.29 6.37% 78.36 58.69 9.52% 58.97 46.13 7.84%

48 53.45 42.94 6.31% 76.75 65.98 8.21% 71.19 59.88 9.53% 71.19 59.88 9.53%

96 72.07 54.68 8.65% 80.05 65.79 8.94% 96.37 77.86 10.73% 80.28 66.71 9.80%

192 93.69 80.42 9.72% 88.72 73.33 10.43% 101.34 81.12 12.34% 91.43 70.01 11.87%

Autoformer 24 53.20 40.99 5.22% 47.45 36.93 5.77% 57.54 41.07 6.50% 66.33 45.90 7.11%

48 70.93 59.81 9.09% 55.77 46.25 6.79% 60.46 50.55 7.77% 85.65 62.59 9.17%

96 58.71 40.98 10.71% 47.86 39.12 7.07% 65.88 57.59 8.19% 113.42 91.68 10.73%

192 89.65 62.49 11.07% 61.04 51.77 9.99% 74.60 61.54 8.98% 131.01 111.02 12.65%

LSTM + VMD
+POFtree

24 95.63 75.42 10.42% 63.63 40.11 6.10% 151.43 96.54 10.13% 153.04 95.91 10.25%

48 108.37 81.34 10.90% 82.44 57.01 8.03% 155.55 110.43 14.24% 131.96 80.62 13.23%

96 130.21 100.67 11.11% 110.32 83.83 9.42% 132.07 97.14 14.98% 140.03 99.94 13.55%

192 149.39 103.19 12.43% 151.12 98.09 10.15% 167.78 121.73 16.66% 171.24 114.43 14.09%

Informer + VMD
+POFtree

24 64.33 55.09 6.99% 56.68 41.43 5.13% 68.01 51.54 7.54% 61.01 45.55 6.98%

48 50.12 39.45 5.71% 72.32 46.78 7.04% 59.99 52.34 7.69% 59.90 50.13 7.05%

96 62.67 50.13 7.94% 75.86 46.91 7.13% 76.46 60.14 8.99% 73.72 55.67 7.31%

192 77.84 69.69 9.13% 78.78 50.14 8.38% 82.33 69.04 10.12% 79.56 66.71 9.01%

Autoformer + VMD
+POFtree

24 50.11 39.21 4.99% 45.43 33.66 5.05% 55.53 40.39 5.99% 62.12 44.44 6.78%

48 49.35 42.42 6.66% 50.98 39.87 4.99% 58.67 48.18 6.01% 73.35 52.52 7.13%

96 57.63 39.90 8.01% 44.09 34.42 5.09% 64.44 52.09 8.05% 80.98 70.09 7.77%

192 75.41 55.78 10.01% 55.43 45.56 7.98% 71.12 60.19 8.88% 91.09 82.07 10.23%

Proposed model 24 50.06 38.59 4.92% 44.31 33.24 4.41% 75.85 50.96 5.55% 59.14 43.74 5.65%

48 48.42 36.54 5.02% 45.93 33.33 4.85% 56.70 38.61 5.70% 48.43 35.96 5.27%

96 61.09 46.54 7.39% 41.30 30.28 4.72% 71.16 51.23 7.28% 46.50 33.38 6.24%

192 70.36 50.17 9.01% 52.47 41.09 7.65% 72.43 60.01 7.99% 78.06 52.21 8.72%
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Among all the models compared, the prediction performance of
LSTM is the least effective. In contrast, the series of models based on
the Transformer architecture, which utilize the attention
mechanism, are more adept at capturing both long-term and
short-term dependencies in time series data, resulting in better
prediction performance. However, the model proposed in this
paper demonstrates more substantial improvements in predicting
long-term time series data, primarily due to the integration of VMD
decomposition and the point-by-point correction architecture.

Taking Typical Day 2 as an example, in the 24-h 96-point
prediction task, the model proposed here significantly reduced the
prediction error. When compared with LSTM, the RMSE was
reduced by 75.17, MAE by 62.61, and MAPE by 7.18%. When
compared with the Informer model, the reductions were 38.75 in

RMSE, 35.51 inMAE, and 4.22% inMAPE. Against the Autoformer,
reductions were 6.55 in RMSE, 8.84 in MAE, and 2.35% in MAPE.
These results underscore the significant advantages of the model

FIGURE 11
(A) RMSE distribution, (B)MAE distribution, (C)MAPE distribution.

FIGURE 12
(A) FEDformer, (B) FEDformer + VMD, (C) FEDformer + POFtree,
(D) FEDformer + VMD + POFtree.
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proposed in this paper in terms of prediction accuracy and stability,
offering an effective solution to the challenges of long-term time
series prediction.

In comparing the prediction accuracy of the combined models,
the model proposed in this paper shows substantial improvements.
Relative to the LSTM + VMD + POFtree model, this model achieved
a reduction in RMSE of 69.02, MAE by 53.55, and MAPE by 4.70%.
When compared with the Informer + VMD + POFtree model, the
reductions were 34.56 in RMSE, 16.63 inMAE, and 2.41% inMAPE.
Even against the Autoformer + VMD + POFtree model, the new
model still displayed noticeable enhancements, with RMSE reduced
by 2.79, MAE by 4.14, and MAPE by 0.37%.

These results clearly demonstrate the significant strides made by
the newmodel in reducing prediction errors, particularly in terms of
accuracy and error percentage. This improvement underscores the
model’s potential advantage in application scenarios where high
accuracy is paramount.

Furthermore, the error distribution for each model is depicted in
Figure 11. It is evident that among the three prediction indicators, the
model proposed in this paper demonstrates the most favorable
distribution, as illustrated by the green histogram, which is positioned
on the far left of the graph. This indicates that the predictions made by
this model are stable, exhibit robustness across all seasons, and achieve
the highest accuracy. In contrast, the LSTMmodel performs the poorest,
as indicated by the pink and yellow histograms, with a scattered error
distribution predominantly on the right side of the graph.

Although the Informer, Autoformer, and their combined
models do not perform as well as the model discussed in this
paper, they still display commendable prediction effects and
stability, as shown in the blue histograms.

4.5 Ablation experiment

In this section, we conducted a series of ablation experiments to
delve into the specific impact of VMD and POFtree’s point-wise
correction mechanism on the prediction performance. To do so, we
took FEDformer as the baseline model and compared it with the
combinations of VMD and POFtree separately. Specifically, we
tested three variants of FEDformer: FEDformer + VMD,
FEDformer + POFtree, and FEDformer + VMD + POFtree.

To clearly demonstrate the effectiveness of VMD and POFtree in
improving prediction performance, we specifically selected a multi-
step test with a horizon of 48 as the experimental scenario. Through
detailed recording of experimental data, we obtained corresponding

tables and figures, as shown in Figure 12 and Table 4, to intuitively
display the prediction results of each model.

Through in-depth analysis combining experimental data and
charts, we found that both VMD and POFtree can significantly
enhance the prediction performance of FEDformer. The FEDformer
+ VMD variant effectively improves the model’s handling of multi-
frequency features by introducing VMD decomposition, thereby
enhancing prediction accuracy. On the other hand, the FEDformer +
POFtree variant improves prediction stability by reducing
cumulative errors in long sequence forecasting through the
point-wise correction mechanism.

Most notably, when we simultaneously incorporate VMD and
POFtree into FEDformer, forming the FEDformer + VMD +
POFtree variant, the model achieves the best prediction
performance. This result fully validates the effectiveness of VMD
and POFtree in improving prediction performance and
demonstrates their crucial role in constructing efficient and
accurate time series prediction models.

5 Conclusion

This paper proposes a short-term load forecasting method called
FEDformer, which is based on multi-frequency sequence feature
analysis and point-wise correction, and it has achieved significant
effectiveness. Specifically, this method introduces several
innovations:

Firstly, in the data preprocessing stage, this paper combines
VMD and LightGBM in a novel way and proposes a new multi-
frequency sequence feature selection method. By decomposing
the original load sequence into multiple frequency components
using VMD and utilizing the LightGBM model to measure the
correlation between each component and candidate features,
effective feature inputs are selected, thereby improving
prediction accuracy.

Secondly, this paper presents a tree-based point-wise
correction method. Considering that the correlation between
subsequent values in a sequence and historical data gradually
decreases, which may lead to error accumulation, this method
further trains multiple LightGBM models based on the
predictions of FEDformer. The predictions of FEDformer are
then corrected using a weighted fusion approach, thereby further
improving prediction accuracy.

Furthermore, this paper introduces a hybrid weighted fusion
approach. It combines mean fusion for timestamps with
significant prediction differences and weighted fusion for
those with minor differences, thereby mitigating the impact
of increased errors on prediction outcomes. Validation
conducted on a dataset from a specific district in a specific
area demonstrates the superior prediction accuracy of the
proposed hybrid model.

Looking ahead, we will delve into the influence of factors such as
renewable energy integration, electric vehicles, and extreme weather
on load forecasting. Incorporating these factors into consideration is
anticipated to enhance the accuracy of load forecasting, providing
more reliable support for the stable operation and efficient
management of power systems in the future.

TABLE 4 Error accuracy table.

Methods Metric

RMSE MAE MAPE

FEDformer 61.45 49.89 7.01%

FEDformer + VMD 54.34 41.55 5.93%

FEDformer + POFtree 53.22 40.39 5.81%

FEDformer + VMD + POFtree 50.23 38.91 5.22%
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