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Low-carbon scheduling strategy
for electric vehicles considering
carbon emission flow and
dynamic electricity prices
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As the global environmental pollution problem intensifies, the carbon reduction
transformation of the power system is urgent. In order to solve the problem
of unclear carbon flow and distribution in the operation of the power grid, as
well as the mismatch between static time-of-use electricity prices and peak and
valley periods in the scheduling of electric vehicle charging loads, a multiperiod
dynamic electricity price guidance strategy based on carbon emission flow
theory is proposed. First, based on the accurate power flow results of the
power system, a complex power distribution matrix of the power system is
constructed to obtain the distribution of the power generated by the generator
units in each node of the network. Then, the Monte Carlo random sampling
method is used to simulate the load situation of electric vehicles in a disordered
charging state. A mathematical model based on the carbon trading model is
established tominimize the load difference at the grid end andmaximize the cost
of charging on the user side. Finally, the proposed ordered chargingmethodwith
a multiperiod dynamic electricity pricing strategy is compared with unordered
charging, and considering the participation of electric vehicles in carbon trading,
this strategy effectively reduces the peak valley difference between the power
grid and user charging costs.

KEYWORDS

electric vehicles, dynamic electricity price, carbon emission flow, carbon trading,
orderly charging

1 Introduction

In recent years, industrial development has led to an increase in carbon emissions,
energy shortages, and increasingly serious environmental problems (Chen et al., 2021).The
massive emissions of greenhouse gases and continuous climate change have become severe
challenges facing the world. According to statistics, the total carbon dioxide emissions of
the whole world in 2023 will reach 40.6 billion tons. The carbon emissions of China’s power
industry account for approximately 40% of all energy carbon emissions (Yang et al., 2023;
Pan et al., 2022). The power industry faces great challenges. There is an urgent need to
develop clean energy and construct a new type of power system to reduce environmental
pollution (Zhang et al., 2022a).

Electric vehicles (EVs), as a low-carbon and environmentally friendly means of
transportation, have developed rapidly in terms of scale and technology in recent years.
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The integration technology of electric vehicles into the grid is
becoming more and more mature. The penetration rate of electric
vehicles is constantly increasing (Rahbari et al., 2016; Baharin and
Abdullah, 2013). Its spatiotemporal distribution characteristics and
the randomness and uncertainty of EV user charging behavior
will also increase the scheduling pressure on the power grid.
Subsequently, it will lead to the phenomenon of “peak on peak”
(Ma et al., 2013). In response to this phenomenon, it is necessary
to adopt appropriate incentive measures and policies to guide the
orderly charging of electric vehicles. This can achieve demand-
side management of the power grid and reduce user charging
costs. Among them, incentive policies based on electricity prices
are common demand-side management methods. Currently, such
policies mainly include time-of-use electricity prices and real-time
electricity price policies. However, using time-of-use electricity
prices as an incentive can lead to overresponse of electric
vehicles, resulting in new peak valley differences (Wang et al.,
2018); Under the guidance of real-time electricity prices, electric
vehicles may experience fatigue in response, resulting in new peak
load ratios (Shi et al., 2019). Based on the above phenomenon, a
dynamic time-of-use electricity price incentive method is proposed.
The method divides the electricity price into multiple levels
according to the net load size and implements different incentive
forces for different net load sizes.

Chinese scholars first proposed using a virtual network flow
to depict the carbon emission flow of various nodes and branches
in the power system. Zhou Tianrui et al.’s “Theoretical exploration
of carbon emission flow analysis in power systems” summarized
the calculation methods of carbon emission flow in power systems
(Zhou et al., 2012a; Zhou et al., 2012b; Zhou et al., 2012c).
They analyzed the relationship between carbon emissions flow and
power flow calculation.The distribution characteristics in the power
grid were also determined. Their work established a theoretical
foundation for carbon flow tracking methods in power systems.
Based on the theory of carbon emission flow, Yuan Shulin et al.’s
“Research on carbon emission allocation model based on carbon
emission flow theory of power system” considered three aspects:
plant electricity consumption, network loss, and electricity load
(Yuan and Ma, 2014). A carbon emission property allocation
model was established. Through this model, we can analyze the
carbon emission allocation of the system in a simple, clear, and
fair manner. Based on the power flow tracking theory, Li Weiwei
et al.’s “Principles and models for regional allocation of carbon
emissions from electricity” established a regional electricity carbon
emission allocation model (Weiwei et al., 2012). They proposed
a reasonable regional carbon emission allocation strategy and
achieved an optimized allocation of regional carbon emission rights.
Kang Chongqing et al.’s “Recursive algorithm for carbon emissions
in power systems” proposed the concept of node carbon potential
(Kang et al., 2017). They proposed a recursive algorithm for carbon
emission flow in power systems based on the theory of system node
carbon potential balance. The method improved the accuracy and
reliability of carbon flow calculation. Wang et al. (2022) introduced
a power flow distribution matrix to improve the accuracy of carbon
emission tracking in the power system.

The above studies are all based on the active power flow situation
of the system for carbon emission calculation. However, they do not
consider the impact of reactive power. In actual networks, reactive

power can impact system voltage network losses and indirectly affect
the distribution of active power in the system. Ultimately, it will
affect the carbon flow distribution in the power system. Yu et al.
(2014) established a complex power flow tracking model that
considers the indirect carbon emissions caused by reactive power.
However, the model cannot intuitively reflect the degree of impact
of reactive power on carbon emissions.

Scholars have conducted extensive research on the participation
of electric vehicles in power grid optimization scheduling
(Fathabadi, 2017; Seungwook et al., 2017; Ayman and Salaman,
2014; Haoming et al., 2023). Pantos (2012) fully considers the
characteristics of EV charging and discharging and optimizes the
time-of-use charging pricing model. It can effectively improve
the new energy consumption capacity. Li et al. (2017) point out
that carbon emissions are a key issue of concern in today’s power
grid. Introducing carbon trading into cogeneration systems and
constructing a trading model can help reduce carbon emissions.
Clement et al. (2010), Yin et al. (2023), and Zhang et al. (2022b)
use the electricity price mechanism as the sole incentive to guide
the response of electric vehicles. Cui et al. (2021) introduced
carbon trading into the optimization scheduling of electric vehicles.
Simulation verified that electric vehicles with carbon quotas
participating in the optimization scheduling both reduce user costs
and achieve the goal of carbon reduction. Zheng et al. (2020) apply
the idea of game theory.They established amaster-slave gamemodel
between agents and car owners in intelligent communities, achieving
a balance of interests among multiple agents. However, there are
few literature studies on incentivizing and guiding the charging
behavior of electric vehicles through dynamic electricity prices and
scheduling the spatiotemporal distribution of EV charging loads
based on node carbon potential of carbon emission flow to achieve
economic and carbon emission optimization.

Themain issues are as follows.The carbon flow and distribution
during the operation of the power grid is unclear. The impact of
carbon flow distribution on the carbon emissions of scheduled EV
charging has not been thoroughly researched. The static time-of-
use electricity prices and peak and valley periods are mismatched.
The focus is on studying the trend-tracking model based on carbon
emission flow theory. We can adjust the incentive policies of
dynamic time-of-use electricity prices and carbon emission quotas.
The moderate response of EV charging behavior is guided and
optimized. In this way, we can reduce the charging cost and carbon
emissions of electric vehicles.

The introduction of this article first analyzes the current
development status of electric vehicles, the policies of time-of-use
electricity prices, and the existing problems. It also includes the
research status of carbon emission flow theory and its practical
application in the power system. This article is proposed as a
response to the above issues. The first part proposes a carbon flow
tracking method based on the complex power distribution matrix.
It clarifies the carbon flow accompanying the unit output and the
source of electricity used by the load through carbon flow tracking.
The second part proposes a method for formulating dynamic time-
of-use electricity prices for electric vehicles. By using dynamic
electricity prices, the electricity prices can be more reasonably
matched with actual load peaks and valleys, guiding EV charging.
The third part establishes a low-carbon schedulingmodel for electric
vehicles. This part considers carbon quotas and dynamic electricity
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FIGURE 1
Complex power flow diagram of branches i− j.

prices and analyzes the solving process, objective function, and
constraint conditions of this model. The fourth part conducts a
simulation analysis through four examples, comparing the charging
costs and carbon reduction effects of electric vehicles under different
strategies. The fifth part summarizes the entire text and draws
conclusions.

2 Carbon flow tracking method based
on a complex power distribution
matrix

2.1 Carbon flow tracking

The flow of carbon emissions in the power grid is transmitted
along the lines of power flow. We first analyze the power flow of the
system and then calculate the carbon emissions of the nodes.

The complex power flow of branch i− j is shown in Figure 1.
In the figure, ̃SGi represents the injected power of the generator
connected to the node; ̃SLi is the load power flowing out of the node.

When the active power on branch i− j flows from node j to node
i, the relationship between complex power ̃Sij, ̃Sji and network loss
̃Sij,loss is:

̃Sij,loss = ̃Sji − (− ̃Sij) = ̃Sij + ̃Sji. (1)

The total power of the incoming node is equal to the total
power of the outgoing node, so the complex power of node i can
be expressed as

̃Si = ∑
j∈Φi

(− ̃Sij) + ̃SGi. (2)

In the equation, ̃Si is the complex power flowing through the
node i; Φi is the set of active upstream nodes of the node i; that is,
the set of nodes directly connected to node i and with active power
flowing toward the node i.

By transforming Equation 2, we can obtain:

̃Si + ∑
j∈Φi

̃Sij
̃Sj
̃Sj = ̃SGi. (3)

In the equation, ̃Sj represents the complex power flowing
through active upstream node j of node i.

The above equation can be rewritten intomatrix form,which can
be expressed as

AS = SG. (4)

In the equation: for the n-node system, A is the complex power
distribution matrix; SG is the n-order matrix composed of the
complex power input from the generator at each node; S is an
n-order column matrix composed of the complex power flowing
through each node.

The elements in matrix A are as follows:

Aij =

{{{{{{
{{{{{{
{

1 i = j
̃Sij
̃Sj
 j ∈Φi.

0 other

(5)

When i = j, Aij takes the value of 1. When j belongs to the
upstream node set of active power flowing into node i, Aij takes the
value of the ratio of Sij to Sj. In other cases,Aij takes the value of 0.The
complex power distribution matrix A establishes the relationship
between the complex power SG emitted by the generator and the
complex power S flowing through each node in the system. Based on
the principle of complex proportional sharing, the above equation
can distribute the complex power generated by the generator to the
loads of each node, branch, and network loss, thereby tracing the
power sources of each node and branch.

Decomposing the complex power ̃SLk of load node k can yield:

̃SLk =
̃SLk
̃Sk
̃Sk =
̃SLk
̃Sk
eTkS =
̃SLk
̃Sk
eTkA
−1 ̃SG. (6)

In the equation: ek is the order matrix with the kth element
being 1 and the remaining elements being 0; ̃Sk is the complex power
flowing through load node k.

For branch i− jwith active power flowing from node i to node j,
decomposing the complex power ̃Sij flowing through it can obtain:

̃Sij =
̃Sij
̃Sj
̃Sj =
̃Sij
̃Sj
eTj ̃S =
̃Sij
̃Sj
eTj A
−1SG. (7)

By tracking the flowof the branch, the carbon flow rate in branch
i− j can be obtained as

Cij = Re[
̃Sij
̃Sj
eTj A
−1diag(SG)]cG (8)

In the equation: Cij is the equivalent carbon flow rate of load k,
representing the equivalent carbon emissions per hour of electricity
consumption at the load node; diag(SG) represents converting the
complex power matrix SG emitted by the generator into a diagonal
matrix; cG is an n-order column matrix, where the elements are the
carbon emission intensity of each node’s generator unit.

According to the load flow trackingmethod, the carbon flow rate
of load k can be obtained as

CLk = Re[
̃SLk
̃Sk
eTkA
−1diag(SG)]cG. (9)

In the equation, CLk is the equivalent carbon flow rate of load k.
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Because the objects of the power generation and consumption
links in the power system are represented by nodes, exploring the
carbon emissions on nodes is of great significance for evaluating
the carbon emissions of the entire power system and formulating
emission reduction policies. The carbon potential of a node is the
ratio of the total carbon flow rate flowing into the node to the active
power flowing through the node, representing the carbon emissions
generated by the consumption of a unit of electricity by the node.
When each section is calculated, the carbon potential of each node
in the power system helps obtain the carbon emission levels of each
node. Limiting and reducing the carbon potential of nodes with
higher carbon potential can effectively reduce the carbon emissions
of the power system. The calculation method is as follows:

ej =

∑
j∈Φi

Cij +CGj

Re( ̃Sj)
(10)

In the equation: ej is the carbon potential of node j; CGj is the
carbon flow rate of the motor set emitted at node j.

2.2 Analysis of the carbon flow tracking
process

Theprevious text analyzed the electricity–carbon relationship in
the power system. It is of great significance to reasonably share the
carbon emissions generated on the power generation side with the
load side.The framework for joint tracking of electricity and carbon
in the power system is shown in Figure 2.The carbon emissions flow
in the power system depends on the system power flow; therefore,
the prerequisite for tracking the carbon flow in the power system
is to accurately calculate the power flow distribution of the system.
First, the Newton–Raphson method is used to calculate the power
flow distribution of each node and branch in the system. Based
on the complex power flow tracking method, a complex power
distribution matrix is established to accurately track the power flow
situation in the power system and obtain the power flow distribution
in the power grid. Second, historical power generation data of the
generator set are collected to construct a carbon emission model
for the generator set. Finally, based on the distribution of system
power flow and the carbon emissions of generator units, a carbon
flow tracking model for the power system is constructed to analyze
the total carbon flow of each load and branch in the system, as
well as the carbon emission components of each generator unit.
The carbon emissions of the power system can be tracked using
the methods delineated in this study, laying the foundation for
low-carbon scheduling and carbon emission data collection in the
power system.

Carbon emission flow is associated with active power flow. The
carbon emissions and carbon intensity in the power system can
be calculated from the power generation process. They can also
be counted and calculated based on electricity consumption in the
electricity consumption process. The two are linked through the
carbon emission flow of the power grid.

FIGURE 2
Structure of power system power-carbon joint tracking model.

3 Method for formulating dynamic
time-of-use electricity prices for
electric vehicles

3.1 Establishing an EV charging load model

Based on the charging characteristics of EV power batteries and
the distribution pattern of EV user behavior characteristics, Monte
Carlo sampling is used to simulate the travel distance, state of charge
(SOC) state, and required charging amount of electric vehicles,
laying a foundation for subsequent scheduling of EV charging at
different times and nodes.

3.1.1 Charging characteristics of power batteries
At present, the main type of automotive power batteries in

China is ternary lithium batteries. The charging process is a two-
stage mode of “constant current constant voltage.” In the early
charging stage, the current remains unchanged, and the voltage
continuously increases, reaches a predetermined value, remains
constant, and then the charging current continuously decays to a
fixed value. The starting and ending stages are relatively brief, and
the entire charging process can be considered as a constant power
characteristic charging process.

The state of charge (SOC) of a battery can be
calculated using Equation 11:

SOC0
= SOCe −

RdE
100C.

(11)

In the equation, SOC0
is the starting charge, SOCe is the total

capacity of the battery, E is the power consumption of the electric
vehicle every 100 kilometers traveled, C is the total capacity of the
power battery, and Rd is the daily driving distance.

According to the report on new energy vehicles, various types
of new energy vehicles in China still mainly rely on slow charging,
accounting for 80% of the total charging frequency. Therefore,
this article mainly considers the charging load of EVs under slow
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charging conditions. The calculation of charging time for electric
vehicles is shown in Equation 12:

Tc =
(SOCe
− SOC0
) ·C

Pc · ηc
(12)

In the equation: Tc represents the required charging time, Pc
represents the charging power, and ηc is the energy conversion
efficiency of the charging station.

3.1.2 User behavior characteristics
Electric vehicles replace fuel-powered vehicles. Therefore,

traditional fuel-powered vehicle user travel methods can be used to
consider user travel characteristics (Wang and Infield, 2018). This
article assumes that the usage habits of EV users are consistent
with those of ordinary fuel vehicle users. The data on household
car usage behavior patterns were processed by referring to the
2017 national car travel data analysis in the United States. The
daily driving mileage of EV users was approximately processed to
satisfy a log-normal distribution. The probability density function
is shown in Equation 13:

fD(x) =
1
√2πxσD

exp[−
(ln x− μD)

2

2σD2 ]. (13)

In the equation, μD takes 3.2 and σD takes 0.88.
The travel and return times of private cars also follow a normal

distribution, and the probability density function of travel time
is shown in Equation 14:

f(Td) =

{{{{{
{{{{{
{

1
√2πσd

exp[−
(Td − μd)

2

2σ2d
],0 < Td ⩽ μd + 12

1
√2πσd

exp[−
(Td − 24− μd)

2

2σ2d
],μd + 12 < Td ⩽ 24.

(14)

In this equation, μd = 7.63 and σd = 1.9.
The probability density function of the return time can be

expressed as Equation 15:

f(Tr) =

{{{{{
{{{{{
{

1
√2πσr

exp[−
(Tr − μr)

2

2σ2r
],μr − 12 < Tr ⩽ 24

1
√2πσr

exp[−
(Tr + 24− μr)

2

2σ2r
],0 < Tr ⩽ μr − 12.

(15)

In this equation, μr = 17.63 and σr = 2.41.

3.1.3 Monte Carlo simulation
Usually, the charging behavior of an isolated EV is uncertain and

difficult to predict and cannot be combined with any probability
distribution. However, as the number of electric vehicles increases
and the range gradually scales, the charging behavior will follow
a certain probability distribution that can be randomly simulated.
Monte Carlo simulation (MCS) combines probability theory to
perform statistical analysis on variables in an event, fit the
probability distribution function, and then sample to generate
approximate data that satisfy the distribution. Further analysis is
then performed on these approximate data to make judgments
about the event.

Assuming that the user charges the electric vehicle from the
moment they return home, the Monte Carlo sampling steps are
as follows.

1) Based on the statistical data referenced earlier, set the factors
that will affect the charging behavior.

2) Random sampling is performed using the MCS method to
initialize the parameters.

3) Input the relevant parameters into the calculation to determine
the charging duration.

4) Add up the number of electric vehicles currently charging
during each time period andmultiply it by the charging power.

5) Obtain the charging load demand for electric vehicles.

The random sampling parameters for Monte Carlo simulation
in this article are the same as those in Section 4.1.2. The mean
and variance of daily mileage sampling for EV users are 3.2 and
0.88, respectively. The mean and variance of private car travel time
sampling are 7.63 and 1.9, respectively. The mean and variance of
return time sampling are 17.63 and 2.41, respectively.

3.2 Dynamic time-of-use electricity pricing
model

Time-of-use peak valley electricity pricing is an effective way
for the power grid to regulate user-side demand. The power grid
operator divides the peak valley electricity price based on the local
basic load curve. Changes in electricity price will affect electricity
demand, thereby guiding changes in charging load. The purpose is
to reduce the peak valley difference of the load and achieve the effect
of peak shaving and valley filling.

In response to the bimodal pattern of electricity demand in
China, a typical principle for dividing time-of-use electricity prices
is to divide the peak periods of basic electricity consumption at
noon and evening into peak periods of electricity prices, divide the
valley periods of electricity consumption at night into valley periods
of electricity prices, and the rest of the time into flat periods of
electricity prices.

However, because static electricity prices do not change after
being divided into different intervals, and the basic load of residents
is not constant, new changes may occur due to differences in
geographical and climatic conditions, which can easily conflict with
the original range of intervals. Considering the above factors, a
multiperiod dynamic electricity price regulation strategy based on
daily load forecasting is proposed to address the mismatch between
prices at peak and loads at valley or flat levels.

Based on the results of the current basic load forecasting,
the load is divided into multiple segments, and then the current
price for each time period is calculated based on the actual load.
A multiperiod dynamic electricity pricing strategy is proposed,
with the aim of accurately and effectively guiding load transfer
and improving efficiency by combining different actual basic load
situations.

ΔL = Lmax − Lmin , (16)

In Equation 16, Lmax and Lmin respectively represent the highest
and lowest loads predicted by the daily basic load forecast.

p∗ =
Lt − Lmin,
ΔL

(17)
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In Equation 17, before the membership degree of each load
period is calculated through the membership function p

∗
, with

values ranging from 0 to 1, where Lt represents the load of period t.

Δp = p∗ (pmax − pmin), (18)

pt = Δp+ pmin , (19)

Then, the mapping of each load period in the price range is
obtained. In Equation 18, Δp represents the difference between
the tiered electricity prices corresponding to different loads in
different time periods and the set minimum electricity price. pmax
and pmin are the peak and valley values of the original time-of-use
electricity price. In Equation 19, pt represents the charging unit price
for the t-th time period.

The multiperiod dynamic electricity pricing strategy can be
adjusted according to different basic load conditions, making the
guidance more realistic. The more detailed the division of load
intervals, the more accurate the guidance, but a more detailed
division of intervals will bring a larger computational load.

For electric vehicles, the technology of guiding EV charging
through dynamic electricity prices can avoid peak electricity
consumption periods and reduce users' charging costs. At the same
time, it reduces the power supply pressure on the power grid and
minimizes the load peak valley difference.

4 A low-carbon scheduling model for
electric vehicles considering carbon
quotas and dynamic electricity prices

This article uses a two-layer scheduling model to study the
economics and low-carbon performance of the system. The upper-
level model is directly solved using the complex linear programming
expert (CPLEX) solver. The lower-level EV scheduling uses the
particle swarm optimization algorithm to optimize the distribution
of EV charging power. The upper-layer model transfers the
preliminary scheduling parameters to the lower layer. The charging
power of the electric vehicle in the lower layer is optimized to obtain
new node power and return to the upper layer. The upper layer
recalculates the optimal power flow after the node power changes
to obtain the new line power. The question is iteratively solved.

4.1 Upper-level scheduling model

4.1.1 Upper-level goals
A function 1 is established on the power grid side to minimize

load variance to smooth load fluctuations in the distribution
network and reduce load peak valley differences.

min f1 =
24

∑
t=1
(PLt + Pev,t − Pav),

2 (20)

Pav =∑
24
t=1
(Pev,t + PLt)/24, (21)

Pev,t =
N

∑
i=1

Pev(i,t), (22)

Pt = PLt + Pev,t, (23)

In Equations 20–23, PLt is the conventional load power at time
t of the distribution network, Pev,t is the overall charging power of
electric vehicles at time t of the distribution network, and Pav is the
24-h average of the total load power of the distribution network.
Pev(i,t) is the charging power of a single electric vehicle at time t of
the distribution network. Node power Pt is the sum of conventional
load and EV charging power.

4.1.2 Power grid flow constraints
In DC power flow calculation, the basic form of line power flow

is shown in Equation 24

Pij = (θi − θj)/bij. (24)

In Equation 25, Pij is the tidal current on line i–j; θi, θj represents
the voltage phase angle between node i and node j, respectively; bij is
the line admittance. Therefore, the DC power flow constraint of the
model in this article can be expressed as:

{{{{{{{
{{{{{{{
{

Pij,t = (θi,t − θj,t)/bij

−Pmax
ij ≤ Pij,t ≤ P

max
ij .

−θmax
i ≤ θ

t
i ≤ θ

max
i

θre f = 0

(25)

In the equation: Pij,t is the capacity limit of line i–j; θmax
i is the

maximum value of the voltage phase angle at node i; θre f is the phase
angle of the equilibrium node.

4.1.3 Carbon emission flow calculation
According to Section 2, the calculation of carbon emission

flow can be obtained from Equations 1–9, and the carbon
potential of each node can be calculated to obtain the carbon
emissions at the load end, which are then transmitted to the
lower layer.

4.2 Lower-level scheduling model

4.2.1 Lower-level goals
On the user side, in order to ensure the highest user revenue,

the objective function 2 is to minimize the charging cost of electric
vehicles, shown in Equation 26.

min f2 =
N

∑
i=1

24

∑
t=1
(Qt +Ct). (26)

In Equation 26, Qt represents the total cost of EV charging for
t hours. Ct is the total cost or benefit of carbon quota for electric
vehicles at time t.

4.2.2 Constraints for electric vehicles
The charging load of electric vehicles in each time period should

be less than the schedulable charging load of electric vehicles in that
time period, with the following constraints:

0 ⩽ Pev,t ⩽ Nch,tPch. (27)
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In Equation 27, Nch,t represents the number of electric vehicles
currently charging atmoment t; Pch is themaximum charging power
of each electric vehicle.

In order to ensure battery life and prevent deep charging, the
battery capacity of each electric vehicle should be less than its
upper limit during each time period. Because this article considers
the participation of electric vehicles as a whole in scheduling
within a region with a large number of electric vehicles, a macro-
level average output is adopted to constrain the overall electricity
consumption as follows:

St ⩽ rNevSmax. (28)

In Equation 28, Nev represents the total number of electric
vehicles; Smax is the upper limit of the storage capacity of a single
EV battery; St is the remaining power of all EV batteries at
time t. Considering charging safety, this article increases the state
coefficient r to 0.9 to ensure that the charging capacity does not
exceed 90% of the capacity.

In addition, the total amount of EV charging capacity during the
inspection period shouldmeet the demand for EV charging capacity
during the inspection period, with the following constraints:

N

∑
t=1

Pev,tΔt ⩾ Pn. (29)

In Equation 29, Pn represents the total charging demand for
electric vehicles during free charging.

4.2.3 Unit constraints
The output of the power unit cannot exceed its upper limit or be

lower than its minimum output, with the following constraints:

Pmin
i ⩽ Pi,t ⩽ P

max
i . (30)

In Equation 30, Pmin
i is the lower limit of the output of the first

thermal power unit.
The rate of increase or decrease in output of thermal power units

has its limit value, and the constraints are as follows:

Pi,t − Pi,t−1 ⩽ R
U
i ΔtP

max
i

Pi,t−1 − Pi,t ⩽ RD
i ΔtP

max .
i

(31)

In Equation 31, RD
i is themaximum landslide rate of the thermal

power unit i; RU
i is themaximum climbing rate of the thermal power

unit i.
The clean energy output constraints are expressed by

Equation 32:

0 ⩽ Pclear,t ⩽ P
max
clear,t. (32)

4.2.4 Carbon quotas and carbon trading
constraints for electric vehicles

This article adopts the baseline method to study the carbon
quota of electric vehicles. Based on the current situation in China,
we adopt a free allocation method and provide carbon emission
quotas for the systembased on the baselinemethod.Then, according
to the different carbon potentials of the charging nodes where
different electric vehicles are located, we calculate the actual carbon

emissions of electric vehicles using the corresponding carbon
emission intensity at different times andnodes andobtain the carbon
quotas that electric vehicles can trade.

Cev,t = qev(Mev1,t −Mev2,t)

Mev1,t = κPe,t
Mev2,t = ej,tPe,t

. (33)

In Equation 33, Cev,t is the profit obtained by EVs from selling
carbon quotas at time t; qev is the EV carbon quota selling price;
Mev1,t is the free carbon quota allocated to electric vehicles, Mev2,t
is the actual carbon emissions of electric vehicles, and κ is the
allocation of carbon emissions per unit of electricity in the region. It
is determined by the 2019 Emission Reduction Project China Regional
Grid Benchmark Emission Factors set by the National Development
and Reform Commission. This article uses the weighted average of
the operating margin (OM) emission factors and the build margin
(BM) emission factors of the system region to obtain a value of 0.57.
ej,t is the carbon potential of each node at different times.

4.3 Model solving

The steps for solving the model are as follows:

1) Input line parameters, node parameters, device parameters,
etc., for initialization.

2) Conduct preliminary scheduling to obtain the initialized
power of the grid interconnection line.

3) Perform optimal power flow scheduling for the upper-level
power grid, calculating the carbon emission flow of the power
grid and the tradable carbon quotas for different electric
vehicles in different time periods, and transmit them to the
lower level.

4) Conduct lower-level EV scheduling to obtain new contact
line power.

5) Determinewhether the discriminant expressed by Equation 34

n

∑
i=1
|Pi,t+1 − Pi,t|/Pi,t

n
≤ ε. (34)

is valid, where n is the number of nodes. If it is, the iteration will
terminate. If it is not, proceed to step (3). To prevent oscillation, the
binarymethod is used to constrain the power of the connecting line.
The convergence accuracy values for the power grid are 0.05.

6) Output scheduling results for analysis.

The specific flowchart is shown in Figure 3.

5 Example analysis

5.1 Basic data

This article uses the IEEE14 node system for testing, which does
not include the auxiliary power part of each power source. The
system wiring diagram is referenced in by Zhou et al. (2012b), as
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FIGURE 3
The process of solving.

shown in Figure 4. In the system, G1 is a coal-fired unit, G3 and
G4 are gas units, G2 and G5 are situational energy units, and the
parameters of the units are shown in Table 1.

This study is based on typical daily loads and typical equipment
parameters. The scheduling period used in the study is 24 h, with
a step size of 1 h. The price of carbon trading is 50 yuan/t. The
capacity of an electric vehicle is 35 kW · h, the charging power is
7 kW, the initial SOC of the electric vehicle is 0.1, the SOC of
the electric vehicle at the end of charging is 0.9, and the charging
efficiency is 0.95.The number of electric vehicles participating in the
dispatch is 2000.

The basic load demand and original residential electricity price
are shown in Figure 4.

In Figure 5, the electricity price from 00:00 to 08:00 is relatively
low, at 0.38 yuan/kWh. From 08:00 to 09:00 and from 12:00 to 18:00,
the electricity price is 0.55 yuan/kWh. The electricity price from
09:00 to 12:00 and 18:00 to 23:00 is 0.75 yuan/kWh. The basic load
data are during the valley period from 00:00 to 08:00. The peak

FIGURE 4
IEEE 14 node system wiring diagram.

period is from 18:00 to 22:00. The static electricity price has the
problemof low accuracy. It cannotmatch peak and valley valueswith
changes in residential load.

To compare the impact of dynamic charging electricity prices
and carbon quota trading on EV charging load scheduling and user
charging costs, this study sets the following calculation examples:

Case 1: Uncontrolled charging without considering dynamic
electricity prices and carbon trading;

Case 2: Consider orderly charging with static time-of-use
electricity prices;

Case 3: Ordered charging considering the dynamic time-of-use
electricity prices;

Case 4: Consider orderly charging of dynamic electricity prices
and carbon trading.

5.2 Analysis of scheduling results

The simulation results of the EV charging load curves for the
four cases set are shown in Figure 6.

We can compare Case 1 and Case 2 in Figure 6 when the
objective function does not consider the emission reduction
benefits of electric vehicles. Due to the guidance of time-of-use
electricity prices, EV charging is concentrated during periods with
lower electricity costs. Compared with disorderly charging, the
charging load of electric vehicles shifts towards valley periods
of 21:00–24:00 and 00:00–06:00. This avoids charging peaks of
13:00–21:00 and charging with lower charging prices. To some
extent, this allows electric vehicles to fill the valley. The method
avoids the phenomenon of “adding peaks on the peak,” reduces the
peak valley difference, and reduces the pressure of unit scheduling.

When considering the guiding effect of dynamic electricity
prices on EV charging, comparing Case 2 and Case 3, dynamic time-
of-use electricity prices are higher during peak periods of basic load
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TABLE 1 Unit equipment parameters.

Unit Upper output limit (MW) Lower output limit (MW) Carbon emission intensity (t·MW h−1)

G1 125 25 0.875

G2 40 5 0

G3 60 5 0.520

G4 19 5 0.520

G5 20 5 0

FIGURE 5
Basic load demand and original residential electricity price.

electricity consumption, guiding users to charge more during peak
periods.When dynamic electricity prices are not considered, there is
still a higher charging load during the peak electricity consumption
period of 17:00–19:00 than when dynamic electricity prices are
considered, which will bring greater power supply pressure to the
power grid. Considering dynamic electricity prices during periods
02:00–06:00 can guide more electric vehicles to charge during peak
hours, reflecting a significant charging guidance effect of dynamic
electricity prices compared to static time-of-use prices.

When considering the emission reduction benefits of electric
vehicles in the objective function, we can compare Case 3 and Case
4. It is found that the peak charging load during the valley period
after considering carbon trading for electric vehicles shifted from 5
o'clock to 4 o'clock ismore dense, while the distribution during peak
periods is less. This reduces carbon emissions while avoiding peak
charging loads.

Figure 7 compares the distribution of EV charging power
between Case 1 and Case 4 at different time nodes. In addition
to reflecting the difference in the time dimension of EV charging

load, the figure also reflects the distribution of EV load at each
node in space.

In Figure 7, it can be observed that the load distribution of
electric vehicles under disordered charging occurs during the peak
period of electricity consumption from 15:00 to 20:00. Through
the scheduling of the proposed dynamic electricity price and
carbon flow guided charging strategy, the charging load of electric
vehicles has been transferred to the low valley period with lower
electricity consumption, effectively reducing the power supply
pressure on the grid.

The system standard deviation, system carbon emissions,
charging cost of EV clusters, and the cost or benefit of considering
EV carbon quota trading for four scenarios are shown in Table 2.

The results show that considering orderly charging reduces the
standard deviation of the system from 30,552.56 to 29,761.76, which
can effectively reduce the standard deviation of the system,maintain
stable operation of the system, and reduce the charging cost of
EV users from 6,587.49 yuan to 5,108.53 yuan; Considering the
dynamic charging electricity price, it reduces the charging cost by
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FIGURE 6
Electric vehicle charging load curve.

227.28 yuan compared to the static electricity price, better matching
the electricity price with the peak valley distribution, and reducing
the charging cost for users; Considering carbon quota trading
for electric vehicles, compared with dynamic electricity pricing
charging without considering carbon trading, the system’s carbon
emission reduction reaches 10.13 tons, which is 10.41 tons less than
disorderly charging. The EV cluster can earn a profit of 431.84 yuan
by selling additional carbon quotas through carbon trading, while
disorderly charging requires an additional carbon cost of 139.40
yuan due to carbon emissions exceeding the carbon quota. Overall,
considering dynamic electricity prices and carbon trading, there is a
significant reduction in charging costs and system carbon emissions
for EV users.

5.3 Analysis of dynamic electricity prices
and carbon trading charging scenarios

In case 4, the comparison between the final balanced charging
price after considering dynamic electricity prices and the original
time-of-use price is shown in Figure 8.

The low dynamic electricity prices during the valley period are
more concentrated at 4–6 h, while the price during the normal period
of 12–17 h does not decrease. Because the power grid load during this
period is still high. The electricity price is correspondingly adjusted
and increased. In Figure 8, the adjusted electricity price during the
valley period ismore concentrated andbetter corresponds to the load’s
valley period. The electricity price during the secondary peak period
has decreased, and the price during the normal period has increased.
The electricity price during the peak period also shows some peaks
that match the charging peak period.

The output situation of each unit is shown in Figure 9.
Unit 1 is set as a coal-fired unit, with the highest power output

and the highest proportion of output in each period, especially
during the peak period of 16:00–23:00, when the output proportion
exceeds 50% of the total output of each unit. Unit 2 and Unit 5 are

set as clean energy units, and Unit 2 also has a higher output during
peak hours. The proportion of output in Unit 2 and Unit 5 increases
significantly during peak hours because the increase in clean energy
output during peak hours is conducive to guiding electric vehicles
to charge and consume clean energy during peak hours. Under the
carbon trading mechanism, a higher proportion of green electricity
allows the EV cluster to obtain more carbon trading benefits.

The carbon potential distribution of nodes at different times
is shown in Figure 10.

Node carbon potential can reflect the carbon emission levels of
each node in the power system. Node 1 has a carbon potential of
0.875 t/MWh, which is consistent with the carbon emission intensity
of this node.The carbon potential of nodes 2 and 6 is higher than the
carbon emission factor of the generator at that node because the unit
at node 1 injects power into nodes 2 and 6 through the line;Node 8 is a
cleanenergyunitwithnootherunits injected, and thecarbonpotential
is 0. Electric vehicles charge at different nodes and use electricity
corresponding to different carbon emission intensities, resulting in
different equivalent carbon emissions.Thehigher the carbonpotential
of thenode, themoreelectricityflows fromcoal-firedunits, andthe less
electricity flows from clean energy units. Therefore, guiding electric
vehicles to charge at nodes with lower carbon potential is conducive
to achieving carbon reduction in the system.

Figure 11 shows the distribution of carbon emissions generated
by the basic load of each node. The emissions are mainly
concentrated in nodes 2–4. The reason is that these nodes are
relatively close toUnit 1, which has the highest power generation and
carbon emission factor. Therefore, the carbon emissions generated
by Unit 1 account for a large proportion. The closer the node is to
Unit 1, the higher the branch carbon flow rate and carbon potential
and the higher the carbon emissions.

Figure 12 shows the tradable carbon quotas for electric vehicles
at each node after considering carbon quota trading, as well as
the tradable carbon quotas at different times. In terms of space,
tradable carbon quotas aremainly distributed in nodes 7–10 because
these nodes have lower carbon potential and a higher proportion
of clean energy sources in electricity. Electric vehicles gathering at
these nodes for charging can consume more clean energy and have
smaller equivalent carbon emissions, thus obtaining more carbon
quota trading quotas. In terms of time, tradable carbon quotas are
mainly distributed between 0:00 and 8:00.The reason is that electric
vehicles aremainly charged during peak periods, and high electricity
consumption during peak periods can lead to an increase in the
potential of each node. Charging during peak periods corresponds
to lower node potentials, obtaining more tradable carbon quotas.

Overall, in terms of time and space, the transfer of EV
charging load to low-load periods and low-carbon potential nodes
has resulted in higher carbon trading quotas for the transferred
EV clusters.

5.4 Prospects for electric vehicles and
low-carbon development

With the rapid growth of the EV penetration rate and China’s
promotion of the “dual carbon” target, it is urgent to explore and
solve the problem of how electric vehicles can effectively participate
in the electric carbon coupling market. At present, China’s
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FIGURE 7
Distribution of charging power for electric vehicles. (A) case 1, (B) case 4.

TABLE 2 Charging cost and carbon emission results.

Case 1 Case 2 Case 3 Case 4

System standard deviation 30,552.56 29,761.76 29,749.16 29,746.86

Charging cost (yaun) 6,587.49 5,108.53 4,881.25 4,530.14

System carbon emissions (t) 1,614.02 1,613.87 1,613.74 1,603.61

Carbon quota benefits/costs (yuan) −139.40 0 0 431.84

FIGURE 8
Comparison of dynamic and static time of use electricity prices.

electricity and carbon markets operate relatively independently,
lacking research on the coupling mechanism between electricity
and carbon and the synergistic mechanism of market connection,
which hinders the full utilization of the carbon reduction value of

FIGURE 9
Output situation of each unit.

electric vehicles. The optimization scheduling strategy for electric
vehicles considering carbon emissions and dynamic electricity
prices proposed in this article has a significant impact on urban
sustainable development and transformation.
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FIGURE 10
Node carbon potential distribution.

FIGURE 11
Basic load carbon emissions.

The key issue in achieving mutual synergy between diverse
markets is to find a coupled quantitative model between the
electricity and carbon markets. This article proposes the concept
of carbon trading that considers carbon emissions flow to link
the carbon market with the electricity market, transferring the
carbon emission responsibility of power plants to electricity
consumers in the form of electricity prices through the calculation
of carbon emission intensity. The EV load is based on the
carbon emission cost corresponding to the carbon emission
intensity and the dynamic electricity price adjustment charging
and discharging strategy to reduce electricity costs. Based on

the EV load charging and discharging load curve, the electric
carbon couplingmarket operation system calculates themain body’s
electricity carbon emission intensity, calculates the carbon emission
intensity of the region where the load is located, and the electricity
market obtains the carbon emission cost or benefit and charging
electricity price through the regional carbon emission intensity. The
optimization scheduling strategy for electric vehicles considering
carbon emissions flow and dynamic electricity prices proposed in
this article can enable EV loads to participate in a diversified electric
carbon market that includes medium - and long-term electricity
energymarkets, spot tradingmarkets, ancillary service markets, and
demand response markets.

The coupling effect between the green electricity market,
green certificate market, and carbon market occurs through
price transmission, clarifying the price relationship between green
electricity, green certificates, and carbon, and facilitating the
transmission of price signals between multiple markets, which
can better promote the connection between the green electricity,
green certificate market, and carbon market. On the one hand, we
should further promote the reform of the power system, deepen the
openness of the power market, and improve the price formation
mechanism in various markets. On the other hand, it is necessary
to improve the price transmission mechanism between markets
and production links and promote the transmission of carbon
emission reduction costs from the power supply side to the user
side while opening up the price transmission channels between the
green certificate market and the carbon market. By clarifying the
price relationships between markets and transmitting prices with
environmental value signals to the user side, the cost of carbon
emission reduction can be shared by the whole society, promoting
the comprehensive green and low-carbon transformation of the
power generation and consumption sides.
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FIGURE 12
Tradable carbon quotas. (A) Distribution of each node and (B) Time distribution.

The findings of this study can be applied to both the Chinese
electricity market and to markets in other different countries.
Based on the concept of regional carbon intensity, the impact of
the carbon market on the electricity market is quantified through
carbon quotas, and on this basis, an operational system for the
electricity carbon coupledmarket and amodel architecture for electric
vehicles to participate in the diversified electricity carbon market
are proposed. The proposed operation system of the electric carbon
coupling market can enable EV load aggregators to participate in
the diversified electric carbon market. At the same time, a carbon
tradingmodel that considers carbonemissions can effectively quantify
the economic responsibility that electricity users need to bear for
carbonemissions, shiftingtheresponsibility forcarbonemissions from
the production side of electricity to the consumption side, thereby
effectively promoting the operation of the electricity carbon market
business model.

6 Conclusion

This article proposes an optimization scheduling strategy for
electric vehicles that considers carbon emission flow and dynamic
electricity prices. Fully utilize the scheduling role of dynamic time-
of-use electricity pricing and carbon quota trading in the operation
of electric vehicles. Unleash the economic and low-carbon potential
of electric vehicles. The scheduling method proposed in this study
can promote the consumption of renewable energy. Simultaneously
balancing economic and low-carbon aspects during the operation
of electric vehicles. By establishing simulation examples to verify
the effectiveness of the proposed model, the following conclusions
can be drawn:

1) Compared with disordered charging, using static time-of-
use electricity price for orderly charging reduces the system
standard deviation, reduces the charging cost for EV users by
22.45%, reaching 1,478.96 yuan, and disordered charging will
pay 139.40 yuan in carbon cost due to the equivalent carbon

emissions exceeding the carbon quota. Therefore, orderliness
has a good grain-filling effect and charging economy.

2) Compared with the static time-of-use electricity price, adopting
the dynamic time-of-use electricity price reduces the system’s
carbon emissions by 0.15 t. At the same time, adopting the
dynamic time-of-use electricity price reduces the total charging
cost of electric vehicles by 2.49%, reaching 127.28 yuan. The
use of dynamic time-of-use electricity prices not only reduces
carbon emissions to a small extent but also adjusts the degree
ofmatching between time-of-use electricity prices and peak and
valley electricity consumption, reducing the economic burden
on the system.Therefore, dynamic time-of-use electricitypricing
charging has good economic benefits.

3) After considering the carbon quota trading of electric vehicles,
the system’s carbon emissions will decrease by 10.13 tons,
which is 10.41 tons less than disorderly charging.The total cost
of EV charging will be reduced by 451.11 yuan. At the same
time, considering the carbon quota trading of electric vehicles,
the EV cluster can obtain tradable carbon quota profits of
431.84 yuan, which stimulates the enthusiasm of EV users to
participate in charging time and location guidance. Therefore,
considering that carbon quota trading for electric vehicles has
good economic and low-carbon benefits.
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