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The rapid growth of renewable energy and electric vehicles (EVs) presents
new development opportunities for power systems and energy storage devices.
This paper presents a novel integrated Green Building Energy System (GBES)
by integrating photovoltaic-energy storage electric vehicle charging station
(PV-ES EVCS) and adjacent buildings into a unified system. In this system,
the building load is treated as an uncontrollable load and primarily utilized to
facilitate the consumption of surplus photovoltaic (PV) power generated by
EVCS. First, a strategy for determining the maximum value of the energy storage
system (ESS) capacity is presented. Subsequently, to coordinate the charging
and discharging plans of ESS, and EVs, a bi-objective optimization model
was established focusing on GBES power purchase costs and the load peak-
valley difference. The proposed GBES efficiently utilizes the integrated energy
system comprising charging stations and adjacent buildings, maximizing the use
of photovoltaic energy and external power grids during low-cost periods. In
experiments, we compare the proposed optimized charging strategy with the
unordered charging case, the simulation results demonstrate that the proposed
method for coordinating ESS and EVs charging can respectively reduce the cost
of purchased power by 33.2% and the peak-to-valley difference in load by 47.6%.

KEYWORDS

green building energy system (GBES), bi-objective optimization, electric vehicle (EV),
photovoltaic (PV), energy storage system (ESS)

1 Introduction

There is a general consensus that the large-scale deployment of electric vehicles (EVs)
and distributed renewable energy resources can effectively reduce dependence on fossil fuels
in the transport sector, thereby reducing carbon emissions (Borén et al., 2017; Khan et al.,
2019).Thenumber of EVs is growing by the day, andEVs charging is creating new challenges
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for the electricity grid, and the global EVs charging
demand is expected to grow nearly 11 times in 2030
compared to 2019 (Zou et al., 2023).

The integration of uncoordinated EVs charging into the
distribution system presents a number of challenges for the
management, operation, and control of the power system.
Furthermore, it may also compromise the reliability of the whole
power system (Wan et al., 2022; Yin et al., 2023; Mahato et al.,
2023). In response to the increasing demand for EVs charging,
some cost-effective methods of coordinated EVs charging are being
explored. These approaches involved scheduling EVs charging
during off-peak hours when grid demand was low, thereby reducing
the pressure on the electricity supply during peak hours (Mousa,
2023; Jian et al., 2017). Besides, distribution system operators
(DSOs) are considered to have the potential to coordinate EVs
and photovoltaic (PV) systems in an aggregated manner, which
could help to mitigate adverse effects such as the overloading of
network assets (Cortés Borray et al., 2020).

Recently, the researchers have devised a two-phase coordinated
charging scheduling solution within an energy market setting,
aiming to efficiently schedule EVs charging loads and maximize
profitability from the perspective of an EV integrator (Meng et al.,
2024; Zheng et al., 2023). Furthermore,multi-objective optimization
models are frequently employed to overcome the challenge
of electric vehicle charging scheduling. The authors usually
propose a multi-objective optimization approach to improve
economic efficiency while mitigating adverse effects on the
grid (Hou et al., 2020; Li et al., 2022; Mishra et al., 2023).
Especially, in Shen et al. (2022), the potential of multi-energy
microgrids has been investigated.The authors proposed amicrogrid
energy storage optimization method that incorporated multi-
energy coupled demand response (DR), and established a multi-
objective optimization model for multi-energy capacity planning
based on demand response. In Ghofrani and Hersi (2024), a
multi-objective optimization approach was proposed for integrating
EVs and renewable distributed generation (DG) in distribution
systems. This method coordinated EVs and DG using vehicle-to-
grid (V2G) technologies and system reconfiguration, promoting
participation in the renewable arbitrage market while managing
increased system loads and power losses from EV charging
and energy exchanges. To meet the charging demands of EVs
amid limited public charging stations and lower costs, optimizing
electric vehicle charging station (EVCS) operations is crucial.
This context leads to the proposal of an online multi-objective
optimization framework aimed at enhancing EVCS operations,
focusing on improving quality of service (QoS) and reducing total
charging costs (Li et al., 2024).

The heuristic optimization approach has been proven to be
an effective solution for optimizing the aforementioned model,
which incorporates EVs charging (Wang et al., 2024). As mentioned
in Morais et al. (2020), a novel hybrid approach by combining
deterministic techniques with the elitist nondominated sorting
genetic algorithm (NSGA-II) was proposed as a solution to the
EVs scheduling challenge. A novel microgrid system optimization
model was proposed with aiming to optimize the microgrid
system by integrating multi-purpose renewable energy (MEM)
and EV. The multi-objective grey wolf optimization (MOGWO)
algorithm has been used to optimize EVCS and EVs charging

costs. Through dynamic pricing based on time, state of charge,
and hour-based scheduling, the new proposed optimization strategy
can improve system efficiency, encourage off-peak charging, and
reduce costs (Sharma and Ali, 2024).

Furthermore, time-of-use (TOU) pricing is also a simple
and effective demand response strategy. Previous literature has
demonstrated the feasibility of time-sharing tariffs (Qie et al., 2024;
Kaur and Singh, 2023). The authors in Enrich et al. (2024) evaluate
the effect of a TOU pricing program introduced in Spain on
residential electricity consumption. Besides, optimal configuration
of energy storage equipment can effectively alleviate the peak and
valley pressure on grid load, leading to an improved utilization
rate of wind power (Wang et al., 2021). In Ahmad et al. (2024),
a parking lot with integrated photovoltaic energy generation and
energy storage systems (PV-ES PLs) is proposed to facilitate EVs
charging, enhance energy savings, and reduce carbon emissions.
The focus is on the energy management strategy (EMS) based
on TOU tariffs, which aims to reduce peak-to-valley power
demand from the grid and maximize PV utilization. By aligning
EVs charging with low-cost periods and utilizing PV generation
during the day, the EMS optimizes energy usage and decreases
grid dependence. Despite rapid advancements in PV systems
and energy storage technologies, the widespread deployment of
residential distributed photovoltaic (RDPV) systems encounters
complex challenges, including intermittent PV output, fluctuating
electricity demand, and increasing adoption of EVs. To address
these issues, an integrated RDPV capacity planning model has been
proposed in Chen et al. (2024), encompassing EV charging, vehicle-
to-home (V2H) systems, and flexible load demand response. Five
scenarios were developed to analyze the influence of various factors
on the optimal installed capacity of PV systems, electricity costs,
self-consumption, and self-sufficiency. Case studies revealed that
demand response and V2H technologies can significantly reduce
both the optimal installed capacity of PV systems and the total
electricity costs.

As previously stated, significant advancements have been made
in the field of PV-ES EVCSs, with the utilization of diverse
heuristic algorithms. However, a notable limitation persists in the
comprehensive optimization of electric loads within the vicinity of
the EVCS. Additionally, there is a paucity of research exploring the
influence of storage system capacity on the optimization outcome.
Inspired by these, in this paper, a novel Green Building Energy
System (GBES) will be implemented, which will examine not only
the integration of electric vehicle charging stations with photovoltaic
generation and energy storage systems, but also the impact of
uncontrollable building loads in the vicinity of the charging stations
on the shape of the regional power load curve. The system employs
a price-based demand response mechanism based on TOU tariffs.
Theprimary objective function is tominimize the system’s electricity
purchasing costs, including the portion that needs to be purchased
beyond photovoltaic generation. Additionally, in consideration of
the augmented peak-to-valley load disparity resulting from the
conjunction of electric vehicle loads and uncontrollable building
loads, a secondary optimization objective is established with the
aim of minimizing the load peak-to-valley difference of the GBES.
Moreover, the optimization framework takes into account the
influence of fluctuating energy storage system (ESS) capacities on
the optimization outcomes.
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FIGURE 1
The schematic diagram of the proposed GBES.

Themain contributions can be summarized as follows:

1. A novel GBES is constructed with considering uncontrollable
base loads and EVs charging loads. In order to enhance the
utilization of PV and match load peaks, an ESS capacity
allocation formula is built, which can be used to obtain an
upper limitation of ESS capacity based on the maximum PV
redundancy;

2. A bi-objective optimization model with respect to power
purchase cost and load peak-to-valley difference for GBES
is constructed. The proposed GBES effectively coordinates
the ESS and EV charging and discharging schedules, thereby
enhancing the utilization of PV generation and optimizing the
load management during off-peak periods;

3. Extensive experiments and comparisons demonstrate that
the proposed method for coordinating ESS and EVs
charging/discharging can reduce the cost of purchased
power by 33.2% and the peak-to-valley difference in load
by 47.6%.

2 Problem statement and modeling

2.1 Structure of GBES

Firstly, we propose a GBES. This energy system can be
seen as having three participants, with the external power grid
only purchasing and selling electricity. And the other two,
adjacent buildings and EVCS, form the proposed GBES. The
EVCS contains PV and ESS. The EVCS can supply energy to
buildings, primarily from PV, followed by EV discharging and ESS
discharging. In addition, EVCS can also sell/purchase electricity
from the external power grids end to generate revenue/cost. The
adjacent building loads can be supplied through two channels:
purchasing from the external power grids and supplying fromEVCS,
as shown in Figure 1.

This system is different from the concept of microgrids and does
not consider additional power generation equipment other than PV,
such as turbines. Unlike simply considering the charging stations,
the inclusion of adjacent buildings is due to the following reasons:

1. Adjacent buildings can share excess PV power, thereby
reducing waste and improving overall energy efficiency.

2. Including adjacent buildings allows for better load balancing
between EVCS and buildings, enhancing energy demand and
supply management.

3. The energy consumption patterns of adjacent buildings
and charging stations differ significantly. Considering the
significant fluctuations in the load of charging stations, a
more elastic and flexible energy system can be formed by
combining the two.

4. By optimizing energy use across both buildings and EVCS, we
can contribute to reducing carbon emissions and promoting
sustainable energy practices.

The scheduling strategy of GBES is as follows,
as shown in Figure 2: Firstly, the state of ESS needs to be
distinguished. When ESS is considered as an energy supply device:
PV is mainly used to meet the energy demand of EVCS, and the
remaining part is supplied to adjacent buildings, ESS also supplies
energy to adjacent buildings; If there is a shortage of PV, the ESS
is replenished for use by EVCS, and the excess ESS energy is used
to supply adjacent buildings. At this time, the surplus/shortage
electricity of GBES is sold/purchased from the external power grid.
When ESS is regarded as an energy consuming device: PV is mainly
used to meet the energy demand of the EVCS, and the remaining
part charges the ESS before supplying energy to adjacent buildings;
if there is a shortage of PV power, the remaining/missing electricity
in GBES will be sold/purchased from the external power grid.

To minimize costs, we assume that ESS can purchase electricity
from the grid only for charging during periods of low electricity
prices. In addition, the symbol meanings in Figure 2 are: PG
represents the power exchanged with the grid, PB is the load of
adjacent buildings, PEV is the charging load in the EVCS, PESS is the
exchangeable power of ESS, and Psur is a temporary value used to
determine the difference between PV, ESS, and charging demands
in the EVCS.

2.2 Models in GBES

This study aims to investigate the impact of coordinated EVs
charging on the total costs and power system stability. Consequently,
the adjacent building load and PV are not included in the scope of
the optimization.The variables to be optimized in this study include
the charging and discharging strategies for both EVs and the ESS,
as well as the electricity purchased from external power grids. It is
important to note that, this paper not only considers the coordinated
scheduling of ESS with EVs but also the selection of ESS capacities.
This will be detailed in the next section.

2.2.1 Operational model and upper capacity
calculation of ESS

To dynamically manage the capacity of the ESS, the State of
Charge (SOC) is introduced here. The operating model for an ESS
is shown in Equation 1 (Ullah et al., 2023):

SOCESS (t+ 1) = SOCESS (t) +
PESS,chr (t) ∗ ηESS ∗Δt

CapESS
∗
PESS,dis (t) ∗Δt
CapESS ∗ ηESS

(1)

where, SOCESS(t) indicates the SOC of ESS at time t, and ηESS
represents the charging/discharging efficiency of ESS. PESS,chr(t) and
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FIGURE 2
Illustration of GBES strategy: coordinated charging of EVs with concurrent use of ESS and PV.

PESS,dis(t) respectively denote the charging and discharging power of
ESS. CapESS corresponds to the capacity of ESS.Δt is the time step of
the optimization, which in this paper represents 1 h.

The ESS will discharge discontinuously when the SOC drops
below the minimum value and will stop charging when the SOC
surpasses the maximum value to extend the battery life. The battery
constraint of the ESS is represented by Equation 2:

SOCmin
ESS ≤ SOCESS (t) ≤ SOC

max
ESS (2)

where SOCmin
ESS and SOC

max
ESS respectively represent the minimum and

maximum SOC values of the ESS.
The PV is recognized as a green energy source. In order to

maximize the storage of PV power that has not been consumed in a
timely manner, a method for calculating the maximum capacity of
ESS is proposed, as follows:

Cmax
ESS =

365
max
d=1
(
max24t=1|PPV (d, t) − PB (d, t) | ∗ ηESS

SOCmax
ESS − SOC

min
ESS

) (3)

where Cmax
ESS is the maximum capacity of ESS. The variables

PPV(d, t) and PB(d, t) represent the corresponding values of PV

energy and building load at day d, moment t, respectively. The
objective is to ensure that the utilization of PV is maximized.
However, due to the requirement of Equation 3 that EVCS provide
charging data within a year, predicting a significant amount of
EVs charging loads during this period would introduce substantial
errors, thereby significantly impacting the upper limit of the ESS
capacity. Consequently, Equation 3 does not consider the load
associated with EVs.

It should be noted that Equation 3 does not necessarily mean
that the maximum ESS capacity will bring the best optimization
effect.Therefore, we add Equation 4 and continuously try to find the
ESS capacity corresponding to the best optimization result.

CESS (k+ 1) = CESS (k) + cESS,0 ≤ k ≤ K (4)

where, KESS =
Cmax
ESS
cESS

, and cESS is the ESS capacity value interval.
CESS(k+ 1) and CESS(k)represent the values of ESS capacity for the
(k+ 1) and k iterations, respectively.

2.2.2 EVs charging load
The user’s EV charging time is usually after returning to the

charging station, and the charging completion time is usually before

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1517011
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Guo et al. 10.3389/fenrg.2024.1517011

the next departure time. The power consumption can be expressed
as the remaining SOC when the EV arrives at the charging station.
Here,MCS is employed to ascertain the charging load profile of EVs.

Note that, the stochastic charging behaviour of EVs is contingent
upon the user’s travel rule, specifically whether the EV is charged
immediately upon the conclusion of the daily trip. As evidenced in
the literature (Li et al., 2023), the return time (Tr) of the last trip
of the EV is normally distributed. The probability density function
(PDF) approximation of the EV departure time (denoted by Td) can
also be obtained by the same statistical method. In order for the
sequential charging scheduling behaviour of the EV to be completed
before the user leaves, it is necessary for the charging process to
commence before the user departs.

As mentioned in Li et al. (2021), the remaining SOC(SOCini) in
the EV upon its arrival at the charging station is assume to follow a
normal distribution N(0.5,0.12). Then, the charging time of an EV
can be calculated as shown in Equation 5:

Tdur =
(SOCexp − SOCini)CapEV

PEV C (t)ηEV
(5)

where Tdur is the duration of charging. PEV C(t) and ηEV respectively
are the charging power and the charging efficiency of the EV. CapEV
is the battery capacity of the EV. SOCexp is the expected SOC when
leaving the charging station.

The fundamental principle underlying the maximum dispatch
time for EVs is to ensure that the departure time of the EVs is not
affected. This can be guaranteed by the following equation:

To =min{(Td −Tr) ,Tdur} (6)

where To represents the schedulable time for an individual EV.

3 Optimization model and solution
method

This section will analyze and construct the objective function to
be optimized, as well as the corresponding constraints that are not
mentioned in the previous section.

3.1 Objective function

The goal of optimizing scheduling is to achieve the maximum
economic benefits of GBES. The following equation is the cost of
purchasing electricity from the power grid.

min f1 =
T

∑
t=1

αPbuy (t) − βPsell (t) (7)

where, T represents the total number of periods in the scheduling
horizon, which is set to 24 h in this study, α = {α1,α2} represent the
current price coefficients of the TOU price, α1 is the purchase price
of electricity for building loads that do not participate in regulation
and control; α2 is the price for EVs and ESS purchases. β is the sale
price. Pbuy(t) represents the quantity of electricity purchased from
the grid at time slot t. Psell(t) denotes the quantity of electricity sold
to the grid.

In order to avoid a large number of EVs concentrating on
charging during low tariff hours, the difference between load
peaks and valleys is considered as a second optimization objective
as follows.

min f2 =maxPsum (t) −minPsum (t) (8)

where f2 is the peak-valley difference of the load, maxPsum(t) is the
peak value of the electrical load, minPsum(t) is the valley value of the
electrical load, and Psum(t) = PB(t) + PEV(t).

Considering that f1 and f2 represent completely different goals
and have significant numerical differences. In order to establish a
consistent framework for subsequent optimization. The objective
functions f1 and f2 are calculated based on linear weighting and
normalization as

minF = λ1
f1
f1N
+ λ2

f2
f2N

(9)

Equation 9 represents the objective function after weighting f1N is
the unscheduled charging cost, f2N is the unscheduled peak-off-peak
load fluctuation, λ1 and λ2 represent the weighting coefficients with
satisfying λ1 + λ2 = 1.

3.2 Constraint conditions

3.2.1 Power balance condition
Here, the power balance condition is shown in Equation 10:

PG (t) + PPV (t) = PESS (t) + PEV (t) + PB (t) (10)

where PG(t) is electricity purchased from the grid, and if its value
is negative, it represents power will be sold to the grid; PPV(t)
represents the solar power output at time t, PESS(t) represents the
power of the ESS. When the value of PESS(t) is positive, it indicates
that the ESS is being charged, and when the value is negative, it
indicates that the ESS is being discharged. PEV(t) represents the total
charging power of EVs with PEV(t) =

n
∑
i=1

PEV C(t).

3.2.2 Limitations on the charging power
In practice, the charging power of the EVs and ESS and

the discharging power of the ESS must comply with their
minimum and maximum power limitations. The power constraint
is shown in Equation 11:

0 ≤ P (t) ≤ Pmax (11)

where P(t) = {PESS,chr(t),PESS,dis(t),PEV(t)}, Pmax = {Pmax
ESS,chr,P

max
ESS,dis,

Pmax
EV , }, P

max
ESS,chr and P

max
ESS,dis are the upper limitations of the charging-

discharging power of ESS; Pmax
EV represents the upper limit of

charging power for an electric car.

3.3 Optimization algorithm

Next, we will employ a genetic algorithm (GA) and an
elitist reserve strategy to address the aforementioned bi-objective
optimization problem. The initial step involves the computation
of the maximum value for the ESS capacity, which is performed
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FIGURE 3
The proposed bi-objective optimization algorithm framework based on an elite genetic algorithm.

using Equations 3, 4. This is followed by the iterative updating
of these formulas. The algorithm’s inputs comprise the following
daily forecast data: adjacent building load and PV generation,
EVs charging loads predictions (arrival time, departure time and
initial SOC), and purchase and selling prices of electricity. The
schedulable time windows for EVs are determined by Equation 6,
and the optimization process is confined to these specified periods.
Since the adjacent building load and PV are not subject to
scheduling, the decision variables include hourly schedules for
EVs and ESS charging/discharging, as well as power exchange
with external power grid. The proposed optimization algorithm
is shown in Figure 3.

4 Experiment results and analysis

4.1 Experiment description

Considering the charging demand of 200 EVs at a single
charging station, andwith only one adjacent building, the load curve

is shown in Figure 4A. The optimization step for the ESS capacity
allocation is set to 200 kWh.Themaximumvalue of the ESS capacity
allocation is calculated to be 1,200 kWh according to Equation 3.
The TOU tariffs are shown in Figure 4A (Liu et al., 2023), and
the parameters related to EVs and ESS are shown in Table 1. The
forecasts for adjacent building load, PV and EVs load are shown
in Figure 4B. The arrival time and departure time of EVs at the
charging station follow the distributions N(19,1.52) and N(7.45,12)
respectively (Xiaodong et al., 2016). The EVs charging power is
set to 7.6 kW (Kang et al., 2023). The daily charging load of EVs is
obtained by the MCS method.

This article aims to analyze and compare the impact of TOU
electricity pricing on the load curve of EVs, as well as the overall
performance of GBES systems, mainly comparing the two objective
functions in Section 3.1. To this end, three scenarios are proposed:

In Case 1, it is assumed that there is no ESS at the EVCS and that
the charging of EVs is conducted in an unordered charging manner.
The purpose is to obtain the unordered charging load curve of EVs,
which can be used as a benchmark for comparison with the ordered
charging load curve in the future.
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FIGURE 4
(A) Time-of-use electricity price. (B) Day-ahead load forecast.

TABLE 1 Corresponding parameter settings.

Parameters Valuea Valueb

Battery capacity 82 kWh 0–1200 kWh

SOC upper limit 1 0.9

SOC lower limit 0.1 0.1

Charging efficiency 0.9 0.9

aSimulation settings for EVs, parameters.
bSimulation settings for ESS, parameters.

In Case 2, it is assumed that there is no ESS at the EVCS,
but the EVs are charging in an orderly manner, that is, optimizing
according to the Bi-objective optimization in Section 3.1. The
obtained curve can be comparedwithCase 1 to verify the advantages
after optimization.

In Case 3, the EVCS has an ESS and the EVs are being charged
in an orderly manner. The purpose of this case is to compare with
Case 2 and demonstrate that the GBES with ESS can achieve better
optimization results.

4.2 Optimal ESS capacity

In the proposed GBES, considering the upper limit of ESS
capacity calculated by Equation 3, values are taken every 200 kWh
from 0 to 1200 kWh to obtain the corresponding bi-objective
optimization results, as shown in Figure 5A. The final configuration
results, obtained through weighted calculations, indicate that the

selected ESS capacity is 1,000 kWh. This configuration is optimal
in terms of electricity purchase costs and peak-to-valley load
differentials for the GBES. It can be seen that not the maximum ESS
capacity can achieve the best optimization results, which also reflects
the role of our proposed Equation 4.

As shown in cases 1 to 3, the benefits of orderly charging and
the greater improvement after adding an ESS can be compared in
sequence. The corresponding bi-objective optimization results for
the three cases mentioned in section 4.1 are shown in Figure 5B.
It can be observed that both Case 2 and Case 3 show a reduction
in the difference between peak and valley loads, indicating an
improvement in the load curve, which is beneficial for the power
grid system in the region. However, the cost of purchasing electricity
in Case 2 is higher than that in Case 1. This is attributed to the
inevitable charging that occurs during periods of high electricity
prices, which increases costs but helps reduce peak to valley load
differences. This is also a benefit of dual objective optimization,
which can comprehensively consider the optimization plan from
both economic and stability aspects. Case 3 demonstrates the
effectiveness of the proposed optimization model in reducing
costs and smoothing loads, as it simultaneously has the minimum
two objective values, indicating that energy storage systems can
further improve optimization effects on the basis of orderly
charging for EVs.

4.3 Comparison of case results

From Figure 4B, it can be observed that a new load peak
occurs when the unordered charging load of EVs in the charging
station is superimposed on the load of adjacent building, posing
new challenges to the power system in the region. In comparison

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1517011
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Guo et al. 10.3389/fenrg.2024.1517011

FIGURE 5
(A) Comparison of optimal ESS capacity configuration results for bi-objectives. (B) Comparison of bi-objective optimization structures across
different cases.

FIGURE 6
(A) Comparison of daily electric load between Cases 1 and 2. (B) Comparison of daily electric load between Cases 1 and 3.

to the unordered charging scenario presented in Case 1, the
combined adjacent building load and EVs charging load curve
in Case 2, where charging is conducted in an orderly manner, is
depicted in Figure 6A. The overall load profile is characterised by
smaller fluctuations. It can be observed that between 00:00 and
09:00, the Case 2 scenario demonstrates superior utilization of the
lower load hours, effectively reducing the power peak between
15:00 and 24:00.

A comparison between Case 3 and Case 1 yields the same result,
as shown in Figure 6B. This indicates that both Case 2 and Case 3,

when charged in an orderlymanner, bring significant improvements
compared to the unordered charging of EVs.

Although Figures 6A, B show similar optimized load curves,
based on the previous Figure 5B, we can conclude that there is
still a significant difference in the purchase cost between the two
cases. The proposed GBES, identified as Case 3, represents the
optimal solution.

In addition, the optimization effects of different cases can also be
obtained from the trading of electricity with external power grids.
Figure 7A shows the amount of electricity purchased by GBES from
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FIGURE 7
(A) Comparison of GBES power purchases from the grid in four different scenarios. (B) Comparison of GBES cost from the grid in four different
scenarios.

the external power grid in four cases, including cases 1–3 and the
case without PV. It has been observed that in the absence of PV,
GBES is required to purchase all power demand through the external
power grids, resulting in significant costs. In Case 1, due to the
mismatch between EVs charging times and PV generation periods,
excess PV energy is fed back to the grid at a low price between 09:00
and 16:00. For charging station operators, this is uneconomical. Case
2 illustrates that the orderly charging of EVs can utilize a greater
proportion of PV, resulting in a reduction in the amount of PV
sold to the grid between 09:00 and 16:00. Case 3 shows that PV
can be utilized by both ESS and EVs, with ESS charging from the
external power grids during low price periods and discharging to the
external power grid during high price periods. Figure 7B presents
a cost/benefit analysis of power exchange between GBES and the
external power grid under four different cases. It demonstrates that
Case 3 not only exhibits the lowest electricity purchase costs but also
generates the highest profit from electricity sales. With regard to the
first optimization objective, namely the cost of purchased electricity
as expressed in Equation 7, it can be observed that Case 2 is 10.3%
higher than Case 1, while Case 3 is 33.2% lower than Case 1. The
addition of an ESS to Case 3 not only allows for the storage of excess
PVpower, but also enables the storage of electricity during periods of
low tariff.This results in a notable reduction in the cost of purchased
electricity.

With regard to the second optimization objective, namely the
load peak and off-peak difference as expressed in Equation 8,
Case 2 demonstrates a reduction of 45.7% in comparison to
Case 1, while Case 3 exhibits a decrease of 47.6% in relation to
Case 1. This evidence suggests that the orderly charging of EVs
is an effective strategy for reducing the peak and valley values
of loads.

In conclusion, the GBES and its bi-objective optimizationmodel
demonstrate advantages in terms of both cost and load profile.

5 Conclusion

In this paper, GBES integrating charging stations and adjacent
buildings is developed. The strategy encompasses the energy
transaction between GBES and the external power grid, as well as the
energy exchange within GBES, with a particular focus on the energy
exchangebetweenEVCSandadjacentbuildings.OnthebasisofGBES,
a bi-objective model is proposed, with the first objective focused on
minimizing the system’s power purchase cost. To prevent excessive
concentration of charging load during low price periods, the second
objective aims to reduce thepeak-to-valleydisparity in the system load
curve. In this model, the impact of ESS capacity on the optimization
outcomes is also taken into account, and a formula for calculating the
upper limit of capacity is derived, as illustrated in Equation 3. Finally,
the efficacy and superiority of the proposed method were validated
through comprehensive comparative experiments. The integration
of charging stations and adjacent buildings has the dual benefit
of reducing the cost of purchased power and narrowing the gap
between peak and valley loads.

The exploration of EVCS in this article is not yet comprehensive.
For instance, EVs may offer ancillary services to the external
power grid, such as frequency regulation. It is evident that further
advancement is required in the field of EVs charging strategies.
Moreover, there are uncertainties related to PV generation, EVs
charging demands, and electricity prices in the power market.
Consequently, it is advisable to examine the impact of these
uncertainties to attain more desirable outcomes in the future work.
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