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Large-scale distributed renewable energy in the distribution network can result in
reliability issues such as exceeding voltage limits and overloading power lines.
Additionally, the rapid growth of electric vehicles has caused a surge in power
demand in the distribution network. Therefore, how to guarantee the real-time
stability of distribution network voltage under uncertain environment using
available resources is an urgent problem to be solved. To this end, this paper
proposes a cooperative voltage regulation of an on-load voltage regulator and
electric vehicles for a distribution network considering multiple uncertainties.
Firstly, an optimization model of the electric vehicle clusters considering the
charging location and power is established, and the traditional on-load voltage
regulator of distribution networks is also considered along with network
operational constraints. Subsequently, a real-time cooperative voltage
regulation strategy based on approximate dynamic programming is proposed,
which employs segmented linear functions to process the value function to
reduce the distribution network voltage offset and to ensure optimization
accuracy. Numerical simulation results validate the feasibility and the
effectiveness of the proposed cooperative voltage regulation technology
involving electric vehicles and on-load tap changer in the distribution network.
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1 Introduction

As the penetration rate of renewable energy increases, distribution networks shift to
active and proactive forms. A high proportion of renewable energy connected to the grid
may cause problems such as voltage overruns, line overloads, and increased network losses,
thereby reducing the ability of the distribution network to accommodate distributed
renewable energy resources (Mesa-Calle et al., 2023). The stochastic nature of
renewable energy leads to uncertainty in system currents and voltages (Fu et al., 2019),
and the voltage management is crucial for the safe and stable operation of distribution
network (Tang et al., 2018). Traditional voltage regulation methods, such as on-load tap
changer and shunt capacitors, have problems such as slow regulation speed and low
regulator life due to frequent actions (Cheng et al., 2015). Electric vehicles can be used as
flexible resources to participate in grid scheduling, and the orderly guidance of their
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charging and discharging can participate in grid voltage regulation
with engineering and economic benefits (Nakamura et al., 2018).
The on-load tap changer can realize the overall regulation, whereas
the electric vehicle can finely regulate the node voltage, and the two
complement each other’s advantages.

Both stochastic optimization and robust optimization are
currently important methods for optimal scheduling of
distribution networks considering uncertainties. Stochastic
optimization uses uncertainty probability as inputs and evaluates
their impact on the system output (Abdmouleh et al., 2017), and
offers a range of possible solutions with models that are closer to
real-world situations, facilitating operators/consumers to assess the
risks involved in the uncertainty of renewable energy generation
(Zakaria et al., 2020). However, stochastic optimization usually
incurs significant computational costs because of the large
number of scenarios that need to be considered during the
computation (Aien et al., 2014) and suffers from the “curse of
dimensionality” when evaluating multivariate and multitemporal
problems. In contrast to stochastic optimization, robust
optimization does not need a probability distribution function for
the uncertainties, but instead uses the uncertainty ensemble to
represent the range of its variation and seeks a solution that
performs well for all realizations of the uncertainties (Zhang
et al., 2019). Robust optimization makes direct decisions based
on the worst-case scenario in the uncertainty set; therefore, the
optimization results are generally conservative (Ning and You,
2019). The conventional stochastic and robust optimization
methods are usually day-ahead and are also difficult to apply to
real-time regulation scenarios in real applications.

Approximate dynamic programming (ADP), as a real-time
optimization algorithm, has been applied in areas such as rail
transit scheduling (Nguyen and Chow, 2023) and electric vehicle
frequency regulation (Xizhen et al., 2022). It excels in solving large-
scale, sequential decision-making, and high-dimensional problems
(Xizhen et al., 2023) and has been shown to be well-suited for real-
time scheduling scenarios. Based on the above analysis, this paper
investigates a real-time cooperative voltage regulation strategy of
distribution network based on approximate dynamic programming,
and the contributions of this study can be summarized as follows:

1) A new cooperative voltage regulation model of EV clusters and
on-load tap changer for distribution networks is proposed,
which facilitates the utilization of the flexibility of EV clusters
and the capacity of traditional on-load tap changer.

2) A real-time voltage regulation strategy based on ADP with
segmented linear functions to process the value function
considering renewable uncertainties is presented. This
strategy has also been verified to be more advantageous
than other real-time methods.

2 EV cluster dispatch features

The main research focuses on a distribution network system
containing distributed renewable energy generation, EV charging
stations, and traditional on-load tap changer.

Usually, charging stations are configured at multiple nodes in a
distribution system, and how EVs selection of charging stations for

charging and power control during charging and discharging is the
key to the optimization problem. At present, EVs are widely
distributed, and their charging demands are usually
uncontrollable due to their traffic attributes and user behaviors,
i.e., different EVs access charging stations at different times, in
different quantities and with different charging and discharging
powers (Trinh et al., 2023; AlNahhal et al., 2022). It is neither
economical nor difficult to realize that EVs connected to the
distribution network are dispatched individually, and the
accessible capacity that individual EVs can provide to participate
in the dispatch is limited. Therefore, large-scale EVs participation in
the dispatch is required to improve the voltage offset of the grid.

Facing the above problems, this paper considers the group of
EVs with similar models and charging demands as an EV cluster for
uniform scheduling, and converts the individual variables of a single
EV into the group variables of each class of EVs, and the relationship
between the EV individual variables and the group variables is
shown as follows.

LetNEV EVs be grouped into I classes, the number of vehicles in
each class is NI, and VEV

clu is a set of EV groups. Each individual
variable of an EV can be converted into a group of variables
as follows.

∑NI � NEV

Pi
c,t � PI

c,t/NI

Pi
d,t � PI

d,t/NI

SOCi
t � SOCI

t/NI

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

,∀i ∈ I,∀I ∈ VEV
clu (1)

where Pi
c,t and P

I
c,t are the individual and population variables of the

EV charging power at time t, respectively; Pi
d,t and PI

d,t are the
individual and population variables of the EV discharging power at
time t, respectively; and SOCi

t and SOCI
t are the individual and

population variables of the EV electricity at time t, respectively.
Through the above conversions, the number of EV variables is

significantly reduced, which shortens the calculation time and lays
the foundation for the subsequent establishment of a concise and
efficient real-time voltage optimization model for
distribution networks.

3 Distribution network voltage Co-
optimization model

In this section, based on the above EV cluster (EVC) scheduling
characteristics and considering constraints such as EV-related
constraints, on-load tap changer operation constraints, renewable
energy output constraints, and tidal current constraints, a voltage
cooperative optimization model for distribution networks is
constructed with the objective function of minimizing the system
voltage offset.

3.1 Regulation constraints

3.1.1 EVC regulation constraints
The selection of the EV charging location is constrained by those

of existing charging stations, and it is also assumed that one class of
EVs will be charged at only one charging station, and the charging

Frontiers in Energy Research frontiersin.org02

Gu et al. 10.3389/fenrg.2024.1512832

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1512832


location of each class of EVs will not be changed in the subsequent
time periods after the decision is made in the first time period. The
charging and discharging power of the EV is limited by the time of
accessing the charging station and the maximum charging and
discharging power, in addition, the EV cannot be charged and
discharged at the Type equation here.same time. Therefore, the
EVC charging, discharging, and location constraints are
expressed in (Equation 2).

UI
loc ≤Ustation

∑UI
loc � 1

0≤PI
c,t ≤UI

tU
I
locU

I
c,tP

I
c,max, t

I
arr ≤ t≤ tIdep

0≤PI
d,t ≤UI

tU
I
d,tP

I
d,max, t

I
arr ≤ t≤ tIdep

UI
c,t + UI

d,t ≤ 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

,∀I ∈ VEV
clu (2)

whereUI
loc is a 0–1 variable for the charging location of EVs in class I

clusters, Ustation denotes the location of nodes where charging
stations are already present in the distribution network, and EVs
can be charged and discharged only at nodes where charging stations
are present.UI

c,t andU
I
d,t are the charging and discharging flag bits of

the class I cluster EV in time period t, respectively; UI
t is the

0–1 variable of the class I cluster EV accessing the charging
station in time period t; PI

c,max and PI
d,max are the maximum

charging and discharging power of the class I cluster EV,
respectively; and tIarr and tIdep are the times of arrival and
departure of the class I cluster EV from the charging station,
respectively.

All types of EVCs cannot exceed their upper and lower limits at
any time period. When an EV leaves a charging station, the SOC
should conform to the user’s expected SOC. However, the rolling
decision-making nature of the real-time optimization process makes
it difficult to ensure that the above condition is achieved; thus, the
upper and lower bounds of the SOC must be reformulated. First, the
SOC energy bounds for each cluster EV type are calculated based on
the EV operating parameters (i.e., tIarr, t

I
dep , SOCi

arr , SOCi
dep

and PI
c,max):

SOCI
t,min �

max {NISOCi
arr,N

I(SOCi
dep−

tidep − t( ) Pi
c,max − ΔPi( ) − ΔPi

flex)}
SOCI

t,max � NISOCi
dep

tIarr ≤ t≤ tIdep

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀i ∈ I,∀I ∈ VEV
clu (3)

SOCI
t � NISOCi

arr + ηPI
c,t − PI

d,t/η, t � tIarr
SOCI

t � SOCI
t−Δt + ηPI

c,t − PI
d,t/η, tIarr < t≤ tIdep

⎧⎨
⎩ (4)

where SOCi
dep is the desired charge when the ith EVC leaves the

charging station, and SOCi
arr is the initial charge when the ith EVC

arrives at the charging station. SOCI
t−Δt is the amount of electricity of

class I during time period t − Δt; η is the EVC charging and
discharging efficiency factor.

3.1.2 On-load tap changer constraints
The on-load tap changer realizes output voltage regulation by

changing its junction point to adjust the ratio, which has discrete
and step regulation characteristics. In this study, the model is
simplified, with the transformer model as a node, without
considering the internal branch structure of the transformer,
which is an adjustable variable, as follows:

αt � ∑
n

TOLTC
t,n αn

∑
n

TOLTC
t,n � 1

⎧⎪⎪⎨
⎪⎪⎩ (5)

TOLTC,IN
t + TOLTC,DE

t ≤ 1
TOLTC
t − TOLTC

t−1 ≤TOLTC,IN
t KOLTC − TOLTC,DE

t

TOLTC
t − TOLTC

t−1 ≤TOLTC,IN
t − TOLTC,DE

t KOLTC

⎧⎪⎨
⎪⎩ (6)

where αt is the regulator ratio at time t, αn is the on-load tap
changer gear position, and TOLTC

t,n is the 0–1 variable of the on-
load tap changer gear position n at time t. TOLTC,IN

t and
TOLTC,DE
t are the 0–1 variables of the on-load tap changer

gear position rise and fall, respectively, at time t, respectively;
KOLTC is the maximum adjustment amount of the gear position
at a single time. Equation 5 indicates that the gear position of the
on-load tap changer is selected by its 0–1 variable, and that the
on-load tap changer is only in one of the gear positions at
any moment.

3.1.3 Distribution network operational constraints
There are upper and lower constraints on the output of

renewable energy sources, such as wind and solar energy, at all
times of the day. The following general constraints exist in the
branch flow model:

Pnew,gmin ,t ≤Pnew,g,t ≤Pnew,g,max ,t

vf,t � ve,t − 2 refPef,t + xefQef,t( ) + r2ef + x2
ef( )ief,t

∑
k: f→k

Qfk,t − ∑
e: e→f

Qef,t − xefief,t( ) � Qf,t,∀f

∑
k: f→k

Pfk,t − ∑
e: e→f

Pef,t − refief,t( ) � Pf,t,∀f

ve,tief,t � P2
ef,t + Q2

ef,t

U2
e,min ≤ ve,t ≤U2

e,max

I2ef,min ≤ ief,t ≤ I2ef,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where: Pnew,g,max ,t and Pnew,g,min ,t are the upper and lower limits of
the output of the renewable energy unit g in tme period t,
respectively; Pnew,g,t is the output of the renewable energy unit g
in time period t. e, f, k are the node numbers; ve,t and vf,t are the
squares of the voltage amplitudes of node e and node f at time t,
respectively; Pf,t and Qf,t are the active and reactive power injected
into node f at time t, respectively; xef and ref are the reactance and
resistance values of branch ef, respectively; Pef,t and Qef,t are the
active and reactive power flowing at the first end of branch ef at time
t, respectively; Pfk,t and Qfk,t are the active and reactive power
flowing at the first end of branch fk at time t, respectively; ief,t is the
square of the amplitude of the current flowing in the branch ef at
time t. U2

e,max and U2
e,min are the upper and lower limits of the

squared voltage modulus at node e; I2ef,max and I
2
ef,min are the upper

and lower limits of the squared current modulus at branch ef,
respectively.

Equation 7 contains quadratic terms, which are nonconvex
nonlinear constraints, and the exact solution algorithm is
ineffective in solving optimization problems with nonconvex
nonlinear constraints. Therefore, it is necessary to relax it to a
convex linear form using second-order cone relaxation.

2Pef

2Qef

ief − αe

�����������

�����������
2

≤ ief + ve (8)
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3.2 Optimization objectives

In this study, the system voltage offset is reduced by co-
regulating the on-load tap changer and EVC. Here, the sum of
the offsets of each node voltage relative to the reference voltage at
each time period is used to characterize the system voltage offset
(Zhou et al., 2023).

minC � ∑
T

t�1
∑
Ne

e�1

αe,t − U2
n

U2
n

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (9)

where C is the sum of the voltage offsets for all the optimization
periods, Un is the reference voltage, Ne is the number of system
nodes, T is the total optimization period.

4 ADP-based real-time voltage
regulation strategy for
distribution networks

4.1 Markov decision process reconstruction

The optimization model in the previous section is based on
the condition that the exact state information of the full-time
period is known, which is difficult to achieve in a real-time
optimization process. Therefore, this study adopts the Markov
decision process (MDP) to reconstruct the voltage cooperative
optimization model of the distribution network, transforms the
full-time optimization problem into a single-time optimization
problem, and then solves the single-time optimization problem
time-by-time using the constraint coupling relationship between
time periods.

The MDP process of the distribution network voltage
optimization model includes St, xt, and Wt. The state variable St
is defined as St = {Pnew,gmax ,t, SOCI

t , U
I
t , P

load
f,t , Q

load
f,t , T

OLTC
t,n }. Define

the decision variable xt = {Pnew,i,t, P
grid
f,t , Qgrid

f,t , UI
loc, U

I
c,t, U

I
d,t, P

I
c,t,

PI
d,t, T

OLTC,IN
t , TOLTC,DE

t , αe,t, βef,t, Pef,t,Qef,t}. There is a prediction
error for renewable energy output and conventional load; therefore,
the external information for time period t is defined as Wt =
{P̂new,g,max ,t, P̂

load
e,t }.

The relationship between the state variable St, decision variable
xt, and external information Wt, that is, the transfer function, is
determined by (Equations 1–8) above. First, at any time period, the
state variable St of the distribution network in the current time
period is obtained, and the decision variable xt is derived through
the current system state. According to the state and decision
variables in the current time period, the state variable Sxt after
decision can be obtained, after which the state variable St+Δt in
the next time period is updated according to the external

information Wt+Δt in the next time period. The update process is
illustrated in Figure 1.

After modeling the distribution network voltage optimization
model as an MDP, the optimal decision sequence for this problem
can be obtained by solving the Bellman equation using the dynamic
programming (DP) method as follows:

Vt � min Ct St, xt( ) + Vx
t Sxt( ){ } (10)

whereVt is the state value function at time t, Ct is the system voltage
offset at time t as (Equation 9) shows, and Vx

t is the state value
function after decision making at time t.

The dynamic programming method transforms the multi-stage
optimization problem (Equation 10) into a series of single-stage

FIGURE 1
Diagram of Markov decision process.

FIGURE 2
Real-time voltage regulation strategy process of distribution
network based on ADP.

FIGURE 3
The simulation case based on the IEEE-33 node system.
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decision problems, and then utilizes the transfer and constraint
relationships between stages to solve the single-stage optimization
problems one by one. Based on the real-time state of the system,
dynamic decisions are given to achieve the simplification of complex
problems. In the application of dynamic programming theory, it is
necessary to traverse all the state and decision spaces to obtain the
value function at each stage and each state, and in the stochastic
environment, the system in a certain state at a certain stage may
transfer to an infinite number of different states in the next stage,
resulting in the “dimension explosion” problem, which has been
explained in more detail in (Powell, 2007).

4.2 Approximation of value functions based
on segmented linear functions

Aiming at the problem of “dimension explosion” in solving real-
time cooperative voltage regulation models of distribution networks
using dynamic programming methods, this study proposes an ADP-
based real-time cooperative voltage regulation strategy for
distribution networks. The state value function Vx

t in (10) can be
approximated in many ways, and the ADP based on the
approximation of the segmented linear function (Zhang et al.,
2023; Li et al., 2022; Lin et al., 2022) has good results for linear
models or mixed-integer linear models with energy storage
0–1 variables (Nascimento and Powell, 2013). Therefore, in this
study, the segmented linear function related to EV electricity is used
to approximate the state-value function, which in turn solved the
Bellman equation and obtained the near-optimal decision sequence.
The state value function can be rewritten as the following equation:

Vx
t Sxt( ) ≈ �V

x
t Sxt( ) � ∑ �V

x,I
t SOCI

t( )
�V
x,I
t SOCI

t( ) � UI
t ∑
M

m�1
vx,Im,tSOC

I
m,t

0≤ SOCI
m,t ≤ SOCI

dep − SOCI
arr( )/M

SOCI
t � ∑

M

m�1
SOCI

m,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, I ∈ VEV
clu (11)

where �Vx
t (Sxt ) is the approximation function at time t; M is the

number of segments of each class of EVC; vx,Im,t is the slope of themth
segment of class I at time t; and SOCI

m,t is the power of the mth
segment of class I at time t. As shown above, the power of each class
of EVC equals to the sum of the power of its segments, and thus the
power of each segment will not exceed the upper and lower limits.

The decision variable for this problem can be solved by the
following equation:

xt � argmin Vt{ } ≈ argmin Ct St, xt( ) + �V
x
t Sxt( )}{ (12)

The slope of the approximate value function (Equation 11)
significantly affects the accuracy of the solution result; therefore,
it is necessary to update the slope by training to improve the
solution accuracy.

Differential way to calculate the slope sampling value, in order to
ensure the accuracy of the calculation of the slope sampling value,
different cases need to take different slope sampling value
calculation method, the specific calculation method is shown below:

v̂n,x,Im,t �
�V
x,n−1
t

∣∣∣∣∣SOCI
t+ΔSOCI

− �V
x,n−1
t

∣∣∣∣∣SOCI
t

ΔSOCI
, t � tIarr (13)

where ΔSOCI is the differentiation of the SOC when solving for
the slope.

Based on (Equation 13), the slope can be updated using the
following method:

vn,x,Im,t � 1 − α( )vn−1,x,Im,t + αv̂n,x,Im,t (14)

where vn,x,Im,t is the slope of the mth segment of class I at time t of the
nth training and α is the slope update step.

The ADP-based real-time cooperative voltage regulation strategy
(Equation 12) for distribution networks is divided into two parts: offline
training and online optimization. The specific process is illustrated in
Figure 2. Offline training is carried out a few days before, and a series of
offline training scenarios are first generated based on the predicted
values and prediction error distributions of renewable energy outputs
and conventional loads. The slopes are calculated based on the above
constraints and the ADP algorithm as (Equation 14) shows.
Subsequently, the trained slopes of the segmented linear functions
are used for the online optimization of the distribution network
dispatch. Online optimization does not need to update various types
of forecast information for rolling optimization decisions, which
reduces the impact of forecast errors on the optimization results.

5 Calculus analysis

5.1 Basic data

In this section, the effectiveness of the proposed real-time
cooperative voltage regulation strategy to improve the voltage
excursion in the distribution network is verified through the
IEEE-33 node system example. All optimization problems are
solved in the MATLAB platform using the Gurobi solver, and
the simulation model is shown in Figure 3.

In the IEEE-33 nodal system, the voltage reference value is
12.66 kV, and the base power of the system is 100 MVA. The root
node is equipped with an on-load tap changer, and the regulating

TABLE 1 Parameters of EVCs.

EV type tarrive tdeparture SOC Initial SOCexpected Percent

EVC1 8:00 18:00 10 kWh 60 kWh 18.46

EVC2 9:00 18:00 5 kWh 50 kWh 31.54

EVC3 20:00 7:00 (+1day) 5 kWh 40 kWh 27.85

EVC4 19:00 7:00 (+1day) 10 kWh 60 kWh 22.15
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FIGURE 4
External status information of the distribution system. (A) wind. (B) photovoltaic. (C) load power.

TABLE 2 Optimized results of scenarios with different regulating measures.

Scenario Voltage offset/p.u Minimum voltage/p.u Charging position

Scenario 1 4.68757 0.9242 4,12,4,12

Scenario 2 2.12691 0.9695 25,21,25,21

Scenario 3 2.10699 0.9698 25,21,25,21
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stops αn = {0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05}
have a total of 11 stops, and the large regulating amountKOLTC = 2 at
a single time, whereas nodes 7 and 15 are connected to 100 kW
capacity wind turbines, respectively, and nodes 23 and 30 are
connected to 100 kW capacity PV systems. Charging stations

exist for EV charging at nodes 4, 12, 18, 21, 25, 28, and 33.
Considering the variability of EV user behavior, it is assumed
that the time for EVs to access and leave the charging station
obeys a Poisson distribution (Bae and Kwasinski, 2012), and the
expected time for four classes of EVC to arrive and leave the

FIGURE 5
EVC charging power and SOC curves of each cluster in each scenario. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3.
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charging station can be obtained through Poisson process modeling,
and the parameters of each class of clustered EVC are shown in
Table 1. The optimization time period is 24 h, the initial value of the
slope is set to 0, and the update step is α = 0.3. Maximum charging
and discharging power of 10 kW for all EV types.

It is assumed that the prediction errors of the wind and light
output and conventional loads obey a normal distribution, both of
which have a specific distribution of N (0, 0.052). Two hundred
training scenarios are generated using the Monte Carlo sampling
method, as shown in Figure 4.

5.2 Basic results of different
regulating measures

To verify the effectiveness of the ADP-based real-time
cooperative voltage regulation strategy for distribution networks
proposed in this study, three optimization scenarios are set up for
analysis, in which the number of EVs is 300, and the specific
scenarios are set up as follows:

Scenario 1: There are conventional loads and EVC loads in the
system, which perform equal power charging, and the charging
position of each EVC is fixed at nodes 4, 12, 4, and 12, and the on-
load tap changer is used for voltage regulation.

Scenario 2: Conventional loads and EVC loads exist in the
system, and the EVC charging positions and charging power are
optimized to reduce voltage fluctuations.

Scenario 3: Conventional loads and EVC loads exist in the
system, and an on-load tap changer is used for joint voltage
regulation with the EVC.

To analyze the superiority of this strategy, one of the above
200 scenarios is selected as the external information for the
subsequent comparison algorithms, as shown in Figure 4 with a
marked solid line. The optimization results for each scenario are
shown in Table 2, where the EVC charging locations in scenarios
2 and 3 are not changed for subsequent periods after the decision.

Scenario 1 does not optimize the charging power and charging
location of the EVC, and only the on-load tap changer is used for
voltage regulation; therefore, the voltage offset is the largest under the
full time period, with the lowest voltage of 0.9242, which threatens the
stable operation of the distribution network. In Scenario 2, after the
optimization of the EVC charging power and charging location, the
minimum voltage at end nodes 18 and 33 is significantly increased,
while the system voltage offset is significantly reduced by 54.6%. The
EVC chooses to charge at the charging stations at nodes 21 and
25 near the root node to avoid a significant voltage drop, whereas the
minimum system voltage is increased to 0.9695, effectively avoiding
voltage overruns. In Scenario 3, the EVC and on-load tap changer
work together to regulate the voltage, and the system voltage offset is
further reduced, while the charging locations of all classes of EVC are
concentrated in node 25,21 charging station, which is close to the root
node to avoid the voltage drop on one hand, and close to the
photovoltaic power generation node, to realize renewable energy
consumption in site.

Figure 5 shows the charging power changes of each EVC under
the three scenarios, with Scenario 1 being constant-power charging.
In Scenario 2 and Scenario 3, when EVC participate in voltage
regulation, the charging power of EVC is significantly reduced
during the regular peak load hours of 12:00–14:00 and 20:00–22:
00 to prevent the occurrence of “peak on peak.”

Figure 6 shows the on-load tap changer gear change curves for
Scenarios 1 and 3; the on-load tap changer is not optimized in Scenario
2. In Scenario 1, the EVC charging power is unchanged, and the on-load
tap changer is always in the highest gear to reduce the occurrence of
voltage overruns. In Scenario 3, the EVC charging power is lower in the
early morning load trough time from 0:00–6:00, and the on-load tap
changer blocking is reduced to reduce voltage fluctuations.

5.3 Sensitivity analysis of ADP algorithm
parameters

The optimization effect of the ADP algorithm is affected by the
nature of the solved problem and the parameters of the algorithm.
The problem in this paper is a real-time optimization problem with
sequential decision-making and inter-temporal coupling
constraints, which is highly compatible with the ADP algorithm.
The adjustable parameters affecting the performance of the ADP
algorithm are mainly the slope update step α. The step α determines
the speed of the slope update; when α is larger, the external error
distribution information can be embedded into the slope of the
segmented linear function faster, thus accelerating the convergence,
but too large α leads to large oscillations in the offline training; when
α is smaller, the speed of the external error distribution information
embedded into the slope of the segmented linear function is slower,

FIGURE 6
OLTC gear change curve.

FIGURE 7
Off-line training results.
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resulting in a slower convergence. Slower convergence, but the
magnitude of the oscillations generated in the subsequent offline
training process is smaller. Although the value of the step α has an
impact on the convergence speed of offline training, as long as it is
within a certain range and the number of training times is sufficient,
the external error distribution information can be embedded into
the slope, so the step α within a reasonable range has little impact on
the accuracy of the solution.

In order to verify the above conclusions, 200 offline scenarios are
trained using update steps of 0.1, 0.3, and 0.5, respectively, and the

same 200 randomness test scenarios are used for testing, the offline
training process is shown in Figure 7, and the statistical results of the
test scenarios are shown in Figure 8.

Since each iteration uses data from a random scene, the objective
function will oscillate to some extent during the iteration process,
but the oscillation amplitude is different. From Figure 7, it can be
seen that the larger the step size, the faster the convergence speed,
and the larger the amplitude of the oscillations generated by the
subsequent offline training. From the statistical results of the test
scenarios in Figure 8, it can be seen that the optimization accuracies
corresponding to step sizes 0.1, 0.3 and 0.5 are 99.87%, 99.84%, and
99.79%, respectively, and the gap between them is negligible, thus
verifying the previous conclusion.

5.4 Efficiency analysis of the
proposed strategy

Commonly real-time optimization methods include myopic and
model predictive control (MPC), and the optimization results of the
proposed strategy are compared with these optimization methods

FIGURE 8
Statistics results of unsynchronized long testing. (A) Step is set as 0.1. (B) Step is set as 0.3. (C) Step is set as 0.5.

TABLE 3 Precision comparison of real-time optimization methods.

Arithmetic Voltage
offset/p.u

Optimizing
accuracy/%

desirable 2.1039 —

Myopic 2.1896 95.93

MPC(4 h) 2.1458 98.01

ADP 2.1086 99.78
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for voltage in distribution network systems. Scenarios with 800 EVs
are introduced for the comparison, and the ideal case with an
accurate prediction technique is used as the benchmark. The
comparison results are shown in Table 3. The Myopic method
only makes decisions based on the external information of the
current time period, and therefore has the lowest accuracy. The
MPC method makes decisions by considering the external
information of the future time periods, and therefore has a
higher accuracy than the myopic algorithm, which is 98.01%.
However, the MPC algorithm relies on the prediction accuracy of
external information and lacks consideration of the entire time
period, while the ADP algorithm takes into account the impact of
the current decision on the future time period and does not rely on
the prediction accuracy of external information; thus, the decision
obtained by the ADP is almost globally optimal, and the
optimization accuracy reaches 99.78%.

The Monte Carlo method is further used to generate 200 test
scenarios to simulate the random changes of actual various
uncertainties, and the myopic, MPC, and ADP algorithms are used
to optimize the above scenarios; the statistics of the optimization results

are shown in Figure 9. In the 200 test scenarios, the average accuracy of
the myopic algorithm is 87.83%, which could not meet the
requirements of real-time optimization, and the average accuracy of
the MPC algorithm is greatly improved to 95.27% compared with that
of themyopic algorithm, but it is still difficult to meet the requirements
of real-time optimization when the prediction accuracy is insufficient.
The average accuracy of the ADP algorithm is further improved to
99.90% compared to that of the MPC algorithm and does not depend
on external information such as wind and light output forecasts, which
meets the requirements of real-time optimization.

Currently, some kind of distribution is generally used to
characterize the prediction error of new energy output, such as
beta distribution (Bludszuweit et al., 2008) normal distribution
(Zhang et al., 2018) and t location-scale distribution (Ding et al.,
2013), etc., while the prediction error of load profile usually obeys
normal distribution. In order to verify the generalizability of the
real-time voltage regulation strategy for distribution networks
proposed in this paper, two sets of online test scenario sets are
set up: 1) Assuming that the wind power prediction error obeys the
beta distribution B (4.5,4.5), and the load profile prediction error

FIGURE 9
Statistics results of 200 test scenarios. (A) Myopic. (B) MPC. (C) ADP.
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obeys the normal distribution N (0,0.052), and 200 online test
scenarios are generated by Monte Carlo sampling method, which
is the first set of online test scenario sets; 2) Assuming that the wind
and light output prediction error obeys the t location-scale
distribution T (0,0.052,10), and the load curve prediction error
obeys the normal distribution N (0,0.052), 200 online test
scenarios are generated by Monte Carlo sampling method,
i.e., the second group of online test scenario set. The
optimization results are shown in Figure 10, and the average
optimization accuracies of the two sets of online test scenarios
are 99.88% and 99.86%, respectively. Therefore, the
generalizability of the real-time voltage regulation strategy for
distribution networks proposed in this paper is verified.

In terms of solution time, the average single-step solution
time of each scenario is shown in Figure 11: the average single-

step solution time of the 200 offline training scenarios is 0.069 s,
and the average single-step solution time of the 200 online test
scenarios is 0.026 s. Therefore, the proposed distribution network
voltage regulation strategy of this paper also meets the
requirements of real-time optimal dispatch in terms of
solution time.

6 Conclusion

In this study, a real-time cooperative voltage regulation
strategy of electric vehicles and on-load tap changer for
distribution networks based on approximate dynamic planning
is proposed, and the following conclusions can be drawn from the
case studies:

FIGURE 10
Optimization accuracy under different prediction error distribution. (A) beta distribution. (B) t location-scale distribution.

FIGURE 11
Solution time statistics.
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1) Compared with the use of an on-load tap changer and EVC
regulation alone, the system voltage offset is reduced by 54.6%
and 0.94%, respectively, when using an on-load tap changer
and EV cooperative voltage regulation, which effectively
improves system security and stability.

2) In terms of coping with renewable energy output and load
stochasticity, the real-time optimization method of
approximate dynamic programming adopted in this paper
can achieve an optimization accuracy of 99.90%, which is
better than that of the MPC algorithm of 95.27% and the
Myopic algorithm of 87.83%, and it has a good generalization.
Thus, the proposed strategy has good accuracy and rapidity
and meets real-time voltage regulation requirements.

In this study, we mainly investigated a real-time cooperative
regulation strategy for EVs and on-load tap changer in the
distribution network considering uncertainties. However, the
regulation process incurs regulation costs, including the incentive
costs for EVs and the regulation costs for on-load tap changer, which
indicates the direction of our future researches about comprehensibly
balancing the dispatch costs and economic incentives of EVs, accurate
aggregation methods, and the system reliability. Meanwhile, the
participation and regulation strategies of other potential flexible
resources in distribution network also remains further exploration.
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