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With the development of renewable energy, energy storage has become one of
the key technologies to solve the uncertainty of power generation and the
disorder of power consumption and shared energy storage has become the
focus of attention for its cost-effective characteristics. However, it is always
difficult to quantify the coupling relationship between charge and discharge
strategy and life expectancy in energy storage configuration. Based on this, this
paper proposes an industrial user-side shared energy storage optimal
configuration model, which takes into account the coupling characteristics of
life and charge and discharge strategy. Firstly, the life loss model of lithium iron
phosphate battery is constructed by using the rain-flow counting method. In
order to further optimize the user-side shared energy storage configuration in the
multi-user scenario, a two-layer model of energy storage configuration is built,
and the Big Mmethod and the Karush-Kuhn-Tucker (KKT) conditions are used to
equivalently transform the constraints. Based on the predicted life of energy
storage and the dichotomy method, the optimal energy storage configuration
results are obtained. Comparing the energy cost of users under the three
scenarios of no storage configuration, storage configuration according to
fixed storage life, and storage configuration according to the model proposed
in this paper, the results show that the proposed method can help accurately
describe the energy storage model, increase the utilization rate of the power
station, and improve the electricity economy of users.
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1 Introduction

Since the 21st century, establishing low-carbon or even zero-carbon energy systems has
become a global focus. Consequently, the application and proportion of renewable energy
sources like wind, solar, and hydropower in the grid have gradually expanded. However,
renewable energy production inherently exhibits intermittency, volatility, and randomness.
When integrated on a large scale with power systems, these characteristics exacerbate the
imbalance between supply and demand in generation and load, posing a threat to the safe
and stable operation of power systems (Azhgaliyeva, 2019).
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Energy storage, as a device capable of altering the spatial and
temporal distribution of energy, is a key technology supporting the
large-scale integration of renewable energy into the grid and
promoting the green transition of energy. It can effectively
mitigate the instability of renewable energy generation. With the
development and application of energy storage, effective demand-
side management can be realized, promoting the application of
renewable energy and enhancing system operational stability, which
will bring significant changes to power system planning, scheduling,
and control (Deguenon et al., 2023). The application of energy
storage technology will permeate all aspects of power generation,
transmission, distribution, and consumption, alleviating peak load
power supply demands and improving the utilization rate of existing
grid equipment and the operational efficiency of the grid. Zeng et al.
(2024) considering shared energy storage and demand response, a
power system interval optimization model based on shared energy
storage and refined demand response is proposed. This model
effectively enhances the utilization of energy storage and the
economic operation of the system, achieving coordinated
interaction among “source-grid-load-storage.” As a flexible
resource, energy storage can be applied on the generation side
(Wang et al., 2023; Song et al., 2023), grid side (Xie et al.,
2022a), and user side (Qian et al., 2023), thereby achieving a
coordinated unity of “source-grid-load-storage.”

As significant energy consumers, commercial and industrial
(C&I) consumers can play a crucial role by enhancing their
flexibility and participating in demand response initiatives. On-
site renewable energy generation can reduce grid consumption,
while energy storage systems (ESS) can store energy for later use,
supporting variable generation and shifting demand. Both
technologies, when integrated with demand response, can
enhance flexibility and benefits (Yasmin et al., 2024). Installing
energy storage systems effectively addresses uncertainties in
renewable energy sources (RES) and load demands, ensuring the
stable and efficient operation of industrial power systems (Jianwei
et al., 2022). Kwon et al. (2017) proposed a demand-side electricity
procurement approach to minimize energy costs for consumers.
Krishnamurthy et al. (2018) introduced a stochastic optimization
model to maximize user energy arbitrage, considering uncertainties
in day-ahead loads and real-time prices. However, these models
focus on optimizing standalone energy storage for single users.

The low cost and inefficiency of standalone systems hinder the
development of energy storage (Tahir et al., 2022). This has led to the
emergence of shared energy storage solutions (Zhu and Ouahada,
2021). Wang et al. (2024a) developed a new business model that
allows multiple users within an industrial park to share leased energy
storage, proposing a robust optimization framework. Their results
show that shared leasing is significantly more economical than self-
built storage. Aminlou et al. (2022) established a peer-to-peer (P2P)
energy trading model in the context of shared battery energy storage
systems (SBESS), which can save substantial costs for
industrial towns.

Regarding the business models and pricing mechanisms of
shared energy storage, Zhu et al. (2022) proposed a peer-to-peer
(P2P) energy trading system, which integrates energy trading with
energy management, enabling each prosumer to jointly manage its
energy consumption, storage scheduling, and energy trading in a
dynamic manner for smart communities consisting of a group of

grid-connected prosumers with controllable loads, renewable
generations and energy storage systems. Xu et al. (2023) designed
a business model for shared energy storage operators providing
deviation insurance services from the perspective of commercial
insurance; Yang et al. (2023) considered the regulation demands
from the power side and grid side, proposing a distributed shared
energy storage operational model; Lai et al. (2022) presented a two-
stage pricing mechanism between the coordinator operating the
shared energy storage and the prosumers borrowing the shared
capacity from the coordinator; Zhang et al. (2022) studied the
equilibrium state of supply-demand flow in a peer-to-peer
market model for residential shared energy storage units and
proposes a method for service pricing and load dispatching.
Zhang et al. (2024) addressed the interests of different entities in
the operation of Energy Storage Systems and Integrated Energy
Multi-Microgrid Alliances by proposing an optimization method
based on Stackelberg game theory.

For the configuration and optimization of shared energy storage,
Wang C. et al. (2022) categorized residential flexible loads based on
different demand response patterns and establishes demand
response models for various load types. Xie et al. (2022c) first
proposed a community energy storage collaborative sharing
model that includes multiple transaction types, then established a
community shared energy storage scale and configuration model
based on the cooperative game between community users and
energy storage operators; based on this, the bilateral Shapley
method (Yang et al., 2021) is applied, allocating the annual total
cost based on the marginal expected costs brought by each user. For
the profit distribution using the Shapley value method, Cremers
et al. (2023) conducted a systematic review of the use of Shapley
values in energy-related applications, as well as the literature on
calculating or approximating them. They developed a new method
for accurately calculating Shapley values by clustering producers and
consumers into fewer demand profiles, making it applicable to
communities with hundreds of agents. Wu et al. (2023) proposed
a new profit distribution method based on Shapley values, focusing
on cooperative fairness and encouraging alliance improvements.
Pedrero et al. (2024) introduced Nested Shapley values as a new
sharing mechanism that fairly allocates profits among members of
large alliances, addressing the trade-off between fairness and
scalability. In the area of energy storage scheduling, Yang et al.
(2024) proposed a scheduling method based on multi-stage robust
optimization to address the scheduling problems of energy storage
systems and uncertain energy. Qian et al. (2024) considered the
demand response of electric magnesium loads, an improved
scenario-based typically distributed robust energy and reserve
renewable energy system that significantly reduces the costs of
day-ahead scheduling and rescheduling while enhancing
operational economy without compromising the high reliability
and safety of the Renewable Portfolio Standard (RPS). Wang K.
Y. et al. (2022) presented a dual-layer optimization model for
the configuration and scheduling of integrated energy systems
in multi-microgrids, considering energy storage and demand
response, to enhance renewable energy consumption and reduce
carbon emissions.

However, the aforementioned literature focuses on using game
theory to achieve the configuration of user/park shared energy
storage, neglecting the impact of energy storage losses on
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configuration results (Xie et al., 2022b). In integrated configuration
and scheduling models, the lifespan of energy storage and optimized
charge/discharge strategies are highly coupled, significantly affecting
the economic evaluation of energy storage over its entire lifecycle.
Scholars have conducted relevant research on these issues. In
literature (Wang et al., 2024b), the Rain-flow counting method
(Pan et al., 2021) and iterative methods are used to quantify the
impact of capacity loss on configuration. By offline calculating the
health status of energy storage during each iteration, it is concluded
that when the initial health status value reaches consistency at the
beginning of each year, the iteration converges, resulting in optimal
configuration outcomes. Although the above methods address some
issues and make the economic configuration model of shared energy
storage more precise, the physical significance of the iterative
process is unclear, and the impact of charge/discharge strategies
on expected lifespan and corresponding optimal configuration
results is overlooked.

Therefore, this paper proposes an optimal configuration model
for industrial user-side shared energy storage that considers the
coupling characteristics of lifespan and charge/discharge strategies,
based on cooperative game theory (Mao et al., 2022) and a business
model for users to jointly configure energy storage. First, the Rain-
flow counting method is used to solve the equivalent cycle count of
the energy storage battery, obtaining a relevant model for calculating
battery lifespan loss. Second, a bi-level model is constructed, with the
upper-level objective of minimizing the total cost for the user group
and the lower-level objective of minimizing the cost of purchasing
electricity from the grid for the user group. Finally, the KKT
conditions and Big-M method are used to transform the bi-level
model, combined with a bisection method to iterate the expected
lifespan of energy storage. Shapley value allocation model is applied
to allocate the cost of multi-user alliance.

2 Equivalent life model of ESS

2.1 Rain-flow counting method

The Rain-flow counting method was proposed by two British
engineers in the 1950s. Its core idea is to decompose complex load
curves into multiple load cycles, which are then used for fatigue life
estimation. The Rain-flow counting method is a dual-parameter
cycle memory model with clear physical significance. Therefore, it
can also be used to predict the equivalent cycle life of batteries. The
cycle life of a battery varies with different depths of discharge. By
using the Rain-flow counting method, the number of charge-
discharge cycles and their depths within a typical day for an
energy storage battery can be calculated, which is then used for
battery life estimation.

The rain-flow counting method is widely used in fatigue life
analysis across various fields, such as materials science, and in recent
years, it has also been applied to assess battery life (Xu et al., 2021).
Figure 1 shows the SOC image after rotation, and the process for
obtaining this image is as follows. First, the capacity change data is
collected and plotted to create a curve. This curve is then rotated
90 degrees counterclockwise to fit the requirements of the Rain-flow
counting method. The starting point on the curve is marked as the
origin for simulating “raindrops.” As the simulation progresses,

“raindrops” flow along the curve, and each time they reach a peak
(or “eave”), it is checked whether they can fall. If a “raindrop” falls
and is intercepted by another part of the curve, it continues to fall
until it reaches either the maximum or minimum value of the curve,
at which point it reverses direction. If the value at the endpoint
differs from the starting point when the raindrop reaches the
endpoint, it is considered that the cycle is divided into two half-
cycles, with the division point at the maximum or minimum value of
the complete curve. Figure 1 provides an example of calculating the
number of cycles using the Rain-flow counting method.

Figure 1 shows the capacity change curve of a battery within
24 h. The State of Charge (SOC) of the battery refers to the ratio of
the remaining charge in the battery to the nominal capacity of the
battery, usually expressed as a percentage. The Depth of Discharge
(DOD) of period one is 0.3366, and period two is 0.8415.

2.2 Battery life loss model

It is generally considered that energy storage batteries are
scrapped when their capacity drops below 80% of the initial
capacity. The relationship between the cycle life of lithium iron
phosphate batteries and the DOD is fitted based on the number of
cycles Nctf at different DOD levels.

Nctf � 1 + Ank + Bn2k + Cn3k (1)

In Formula 1 (Gao et al., 2013), A, B, and C are parameters
related to the discharge depth DOD of the Shared Energy Station
(SES); nk represents the number of cycles of the SES at a certain
discharge depth DOD,i.

If the DOD for the i-th charge-discharge cycle is DOD,i, the
equivalent cycle life can be expressed by Equation 2 as:

N DOD,i( ) � Nctf DOD,1( )
Nctf DOD,i( ) (2)

FIGURE 1
Example of calculating the number of cycles of the rain-flow
counting method.
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Tlife of the battery in the working cycle of the energy storage
power station is:

Tlife � ∑DOD�1

DOD�0.01

Nctf DOD,1( )
Nctf DOD,i( ) (3)

In the Equation 3, Tlife represents the equivalent cycle life.
Therefore, it is considered that the life loss of the energy storage

battery is:

T � Nctf DOD,1( )
Tlife

(4)

In the Equation 4, when T = 1, the battery is considered to be
exhausted and needs to be scrapped.

When the calculation period is year, the equivalent cycle life of
shared energy storage in 1 year is the sum of days d:

Tlife,year � ∑365
d�1

Tlife,d (5)

In Equation 5, Tlife, year represents the equivalent cycle life of
shared energy storage in 1 year.

The estimated service life of shared energy storage is:

Tbase � Nctf DOD,1( )
Tlife,year

(6)

In the Equation 6, Tbase represents the cycle life of the energy
storage battery under the typical day (in years).

3 User-side SES configuration model

When users build their own energy storage stations under this
business model, the system structure is shown in Figure 2 (Yan and
Chen, 2022) The objective function of the user-side shared energy
storage model focuses on the cost of electricity purchase and the
construction and operation costs of the energy storage station. The
model aims to minimize the total cost of user investment in the
station and electricity purchase while achieving the lowest electricity
purchase cost for the user.

Therefore, a Bi-level model is established. The upper level aims
to minimize the sum of user investment and electricity purchase

costs, while the lower level aims to minimize the user’s cost of
purchasing electricity from the grid. Based on this, this section will
establish a cost conversion model for the energy storage station
using the Net Present Value (NPV) method and a bilevel model with
the objective of minimizing user costs.

3.1 Upper layer model

3.1.1 Upper objective function
In the upper-level model, users need to consider the costs of

constructing and operating the energy storage station. Since the
construction investment cost of the energy storage station is a one-
time investment, the time value of money must be taken
into account.

minC � ∑W
w�1

Tw Cinv,w + Cgrid,w + Cprotect,w( ) + 12Cgrid,zd,w (7)

In Equation 7, W represents the number of typical days; Tw

denotes the number of days corresponding to the w-th typical day;
Cinv,w is the daily average investment and maintenance cost of the
energy storage station;Cgrid,w is the electricity cost for users from the
grid on a typical day; Cgrid,zd,w is the monthly demand charge for
users from the grid.

The daily average investment cost of the energy storage station is
given by Equation 8:

Cinv,w � My
ηPPess

max + ηSEess
max

NwTwTk
(8)

where My represents the present value annuity factor; ηP is the
power cost of the energy storage station; ηS is the capacity cost of the
energy storage station; Pess

max and Eess
max are the maximum

charge/discharge power and maximum capacity of the energy
storage station, respectively; Nw is the number of typical days
representing different electricity usage patterns within a year; Tw

is the number of days corresponding to the typical day; Tk is the
lifespan of the energy storage station in years; k, k �
0, 1, 2...n(n ∈ N) denotes the iteration count; T0 is the initial
expected lifespan, set to 5 years.

The present value annuity factor is given by:

My � 1 + r( )γ − 1[ ]
r 1 + r( )γ (9)

In Equation 9, r is the annual interest rate of funds; γ is the life
cycle of the device.

Daily maintenance cost of energy storage power station:

Cprotect,w � ∑N
i�1
∑NT

t�1
Pess,c,w,i t( ) + Pess,d,w,i t( )( )δprotect (10)

In Equation 10,N represents the number of users;NT represents
the number of time periods; Pess,d,w,i(t) is the power drawn by the
i-th user from the energy storage station during period t on a typical
day; Pess,c,w,i(t) is the power charged by the i-th user to the energy
storage station during period t on a typical day; δprotect is the
operation and maintenance cost paid by users when storing and
retrieving electricity from the energy storage station.

FIGURE 2
User-built shared energy storage system structure diagram.
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The electricity cost for users purchasing electricity from the grid
is given by:

Cgrid,w � ∑N
i�1
∑NT

t�1
τ t( ) · Pgrid,w,i t( ) · t (11)

In Equation 11, τ(t) represents the electricity cost for users
purchasing electricity from the grid; Pgrid,w,i(t) is the power
purchased from the grid by the i-th user during period t on a
typical day.

The demand charge for users purchasing electricity from the
grid is given by Equation 12:

Cgrid,zd,w � ∑N
i�1
τzd · Pgrid,zd,w i( ) (12)

where τzd represents the demand charge for users purchasing
electricity from the grid; Pgrid,zd,w(t) is the monthly peak power
demand for the i-th user on a typical day.

According to the demand charge payment rules, users only need
to pay the demand charge based on the maximum load from the grid
in that month, in addition to the basic electricity cost. The demand
charge rate in China varies depending on the user type and typically
ranges from 30 to 50 ¥/kW.

3.1.2 Upper constraint
In configuring the energy storage station, constraints on user

electricity purchases, station charge/discharge operations, and grid
power flow need to be imposed to achieve a rational planning of the
user-owned energy storage station business model.

Constraints on the charging and discharging power of the
energy storage battery:

0≤Pess,abs t( )≤Uabs t( )Pess
max (13)

0≤Pess,relea t( )≤Urelea t( )Pess
max (14)

Uabs t( ) + Urelea t( )≤ 1 (15)
Uabs t( ) ∈ 0, 1{ } (16)
Urelea t( ) ∈ 0, 1{ } (17)

∑NT

t�1
Pess,abs t( ) + Pess,relea t( )( )≤NDoDDidealEess

max (18)

In the above equations, Pess,abs(t) represents the charging power
of the energy storage station, Pess,relea(t) represents the discharging
power of the energy storage station, Uabs(t) represents the charging
status of the energy storage station as a binary variable (0 or 1),
Urelea(t) represents the discharging status of the energy storage
station as a binary variable (0 or 1). Equation 15 signifies that either
Uabs(t) or Urelea(t) cannot be 1 at a given time, indicating that the
battery cannot be charged and discharged simultaneously. NDoD

represents the estimated daily charging and discharging cycles of the
energy storage battery,Dideal represents the ideal maximum depth of
discharge for the battery. Equation 18 imposes constraints on the
daily depth of discharge and the number of cycles for economic
reasons, which ensures that the energy storage will not over-charge
or over-discharge within a day.

Constraints on the upper and lower limits of energy storage
battery capacity:

10%Eess
max ≤Eess t( )≤ 90%Eess

max (19)
In Formula 19, Eess(t) indicates the energy stored in the energy

storage system at time t. This constraint implies that the maximum
energy within the storage system at any given time cannot exceed
90% of the total capacity, and the minimum energy cannot fall below
10% of the total capacity.

The energy storage state constraint for t ESS is shown in
Equation 20.

Eess t( ) � Eess t − 1( ) + ηabsPess,abs t( ) − 1
ηrelea

Pess,relea t( )[ ]Δt (20)

In the above equation, ηabs and ηrelea represent the charging and
discharging efficiencies, respectively.

The constraint on the electricity flow between each user and SES:

0≤Pess,c,w,i t( )≤Pess
max · Ucha,w,i t( ) (21)

0≤Pess,d,w,i t( )≤Pess
max · Udis,w,i t( ) (22)

Ucha,w,i t( ) + Udis,w,i t( )≤ 1 (23)
Ucha,w,i t( ) ∈ 0, 1{ } (24)
Udis,w,i t( ) ∈ 0, 1{ } (25)

whereUcha,w,i(t) represents the energy storage status of the i-th user,
indicating whether the user is charging the energy storage station
(taking values of binary), whileUdis,w,i(t) represents the status of the
i-th user drawing energy from the energy storage station (also taking
values of binary). Equation 23 signifies thatUcha,w,i(t) andUdis,w,i(t)
cannot both be 1 simultaneously, meaning the i-th user cannot both
charge from and discharge to the energy storage station at
the same time.

The energy storage power balance constraint is shown in
Equation 26.

∑N
i�1

Pess,d,w,i t( ) − Pess,c,w,i t( )[ ] � Pess,relea t( ) − Pess,abs t( ) (26)

This constraint signifies that the total sum of the difference in
energy exchange values between each user and the energy storage
station must equal the change in energy stored in the battery during
that time period.

The unidirectional power transmission constraint within the
power grid:

0≤Pgrid,w,i t( )≤Pgrid,zd,w i( ) (27)

In Formula 27, the power transmitted through the power grid
should be a positive value and less than the maximum
transmission capacity.

3.2 Lower layer model

3.2.1 Upper objective function
The lower objective considers the lowest cost of electricity for

users and is expressed by Equation 28 as:

minC � ∑W
w�1

Tw · Cgrid,w + 12Cgrid,zd,w[ ] (28)
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3.2.2 Lower constraint
User power balance constraints:

Pgrid,w,i t( ) + PPV,w,i t( ) + Pess,d,w,i t( ) − Pess,c,w,i t( ) − Pload,w,i t( )
� 0, λ1,i,t,w (29)

In Equation 29, PPV,w,i(t) represents the solar power generation
of the i-th user during time period t on a typical day, while
Pload,w,i(t) represents the power load of the i-th user during time
period t on a typical day. The purchased electricity by the user needs
to balance with their own load, self-generated power, and the energy
exchange with the station. λ1,i,t,w is the Lagrange multiplier
corresponding to this constraint in the subsequent solving process.

The user’s power purchasing constraint:

0≤Pgrid,w,i t( )≤Pgrid,zd,w i( ): u1,i,t,w
min , u1,i,t,w

max (30)

In Equation 30, u1,i,t,wmin , u1,i,t,wmax represents the Lagrange multiplier
corresponding to this inequality constraint in the subsequent solving
process. This constraint implies that the power purchased by the i-th
user during time period t on a typical day should not exceed the
maximum power purchased from the grid for that typical day.

The peak shaving load constraint:

Pload,w,i t( ) − PPV,w,i t( )
+ Pess,d,w,i t( ) − Pess,c,w,i t( )[ ]≤ 1 − μ( )Pload,max ,w i( ), u2,i,t,w

max (31)

In Equation 31, μ represents the peak shaving rate, and
u2,i,t,w max represents the Lagrange multiplier corresponding to
this inequality constraint.

3.3 The cost allocation model based on the
Shapley value method

The revenue distribution model uses the Shapley value method
to fairly consider each member’s contributions. This helps allocate
assets appropriately. Specifically, this model utilizes the Shapley
value method to distribute revenues among a coalition composed of
n industrial users.

In the calculation process, the marginal contributions made by
each member are taken into account, and the revenues are allocated
to each member in a reasonable manner, allowing each member to
receive corresponding benefits. For a coalition of n industrial users,
the allocated revenue for user i, denoted as Xi, is given by:

χi � ∑
Q⊂nn− i{ }

Q| |! nn| | − Q| | − 1( )!
nn| |! υ Q ∪ i{ }( ) − υ Q( )( ) (32)

In Equation 32: Xi represents the allocated revenue for user i; Q is
any sub-coalition formed by the total coalition excluding user i; nn is
the total coalition; i{ } is the individual coalition formed independently
by user i; |Q| is the number of users in the sub-coalition; |nn| is the
number of users in the total coalition; and v is the total revenue. The
revenue distribution must satisfy the condition that the total revenue
of the coalition remains unchanged before and after the distribution,
as shown in Equation 33:

∑n
i�1
χi � υ nn( ) (33)

4 The solution process of the
configuration model

4.1 Upper layer model processing

In the upper-level model, the non-linear constraints arising from
the multiplication of binary (0–1) variables and linear variables are
handled using the Big-M method for Equations 13–17 and
Equations 21–25 (Ding et al., 2020). The processed equations are
shown in Equations 34–41.

0≤Pess,abs t( )≤Pess
max (34)

0≤Pess,abs t( )≤Uabs t( )M (35)
0≤Pess,relea t( )≤Pess

max (36)
0≤Pess,relea t( )≤Urelea t( )M (37)

0≤Pess,c,w,i t( )≤Pess
max (38)

0≤Pess,c,w,i t( )≤Ucha,w,i t( )M (39)
0≤Pess,d,w,i t( )≤Pess

max (40)
0≤Pess,d,w,i t( )≤Udis,w,i t( )M (41)

4.2 Lower layer model processing

Due to the dual-level structure of the model under study, it is
necessary to appropriately handle the lower-level model to ensure it
serves as a constraint for the upper-level model. In this process, we
employ the KKT conditions, which are crucial for obtaining the
optimal solution in nonlinear programming. By introducing the
KKT conditions, even in the face of optimization problems with
inequality constraints, we can still utilize the Lagrange multiplier
method to continue the solution process, thereby ensuring the
accuracy and effectiveness of the model.

The specific steps are as follows:
The lower-level objective function and constraints, along with

their Lagrange multipliers, are multiplied to form the Lagrange
function, as shown in Equation 42:

L � ∑W
w�1

∑N
i�1
∑NT

t�1
TwΔt τ t( )Pgrid,w,i t( )[ ] + 12τzdPgrid,zd,w i( ){ }

+ λ1,i,t,w
Pgrid,w,i t( ) − Pload,w,i t( )−
Pess,c,w,i t( ) + Pess,d,w,i t( )[ ] − u1,i,t,w

min Pgrid,w,i t( )

+ u1,i,t,w
max Pgrid,w,i t( ) − Pgrid,zd,w i( )[ ]

+ u2,i,t,w
max

Pload,w,i t( ) + Pess,abs t( )−
Pess,relea t( )[ ]−
1 − μ( )Pload,max ,w i( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (42)

The variables present in the lower-level objective function are
differentiated to create new equality constraint conditions, which is
shown in Equation 43:

Tw · τ t( ) + 12 · τzd · Pgrid,zd,w i( ) + λ1,i,t,w + u1,i,t,w
max − u1,i,t,w

min

− u5,i,t,w
max · 1 − μ( ) · Pload,max ,w i( ) � 0 (43)

The modified inequality constraint conditions from the original
lower-level model are retained and become the new constraint
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conditions of the transformed single-level model, as shown in
Equations 44–46:

0≤ u1,i,t,w
min ⊥ Pgrid,w,i t( )≥ 0 (44)

0≤ u1,i,t,w
max ⊥ Pgrid,zd,w i( ) − Pgrid,w,i t( )( )≥ 0 (45)

0≤ u2,i,t,w
max ⊥ ( 1 − μ( )Pload,max ,w i( ) − Pload,w,i t( ) + PPV,w,i t( )

− Pess,d,w,i t( ) − Pess,c,w,i t( )[ ])≥ 0 (46)

The rewritten inequality constraint conditions from the previous
step need to be processed using the Big-M method, Mj

min, j �
1, 2...n(n ∈ N) is sufficiently large constants, vj,i,t,wmin , vj,i,t,wmax , j �
1, 2...n(n ∈ N) are binary (0–1) variables. The resulting processed
constraint conditions are given by Equations 47–52:

0≤ u1,i,t,w
min ≤M1

min v1,i,t,w
min (47)

0≤Pgrid,w,i t( )≤M1
min 1 − v1,i,t,w

min( ) (48)
0≤ u1,i,t,w

max ≤M1
maxv1,i,t,w

max (49)
0≤Pgrid,zd,w i( ) − Pgrid,w,i t( )≤M1

max 1 − v1,i,t,w
max( ) (50)

0≤ u2,i,t,w
max ≤ M2

maxv2,i,t,w
max (51)

0≤ 1 − μ( )Pload,max ,w i( ) − Pload,w,i t( ) + PPV,w,i t( )
− Pess,d,w,i t( ) − Pess,c,w,i t( )[ ]≤M2

max 1 − v2,i,t,w
max( ) (52)

4.3 The solution process for SES
configuration considering the coupling of
lifespan and charge-discharge

In MATLAB simulation software, a dual-layer model for shared
energy storage configuration, composed of minimizing total user
cost and minimizing user electricity cost, is constructed. The CPLEX
12.10.0 solver is employed for optimization. To determine the
optimal battery life, binary search can be used to repeatedly test
midpoints within a known range. This approach allows for quick
identification of the best lifespan. The ultimate goal of this method is
to reduce the number of tests and increase efficiency (Ding et al.,
2023). The solution process, as illustrated in Figure 3, is detailed
as follows:

Step 1: Users intending to participate in the shared energy storage
project are identified. Historical load data for each user is
analyzed, and the load profiles for typical days within a
year are extracted.

Step 2: A dual-layer model for energy storage optimization is
established to optimize the capacity and maximum
charge-discharge power of the energy storage system.
The total annual operational cost for all users
throughout the lifespan of the energy storage system is
calculated.

Step 3: Using the energy storage data configured in Step 2, the
equivalent cycle life of the battery in the energy storage
station is calculated by applying the Rain-flow counting
method. The calculated results are compared with the
expected battery life under the configurationmodel in Step
2, and if the condition for iterative convergence is met and
the configuration is accepted by all users, the shared

energy storage is configured accordingly. Otherwise,
proceed to Step 4.

Step 4: Due to the irrationality of the configuration model, the
configured result is not feasible. Employing the
bisection method, the expected battery life is adjusted
towards the result obtained from the Rain-flow
counting method in Step 3 to obtain a new expected
lifespan. Based on this new expected lifespan, Step 2 is
repeated to obtain a new optimal configuration result.
The comparative process is repeated until the final
configuration result is obtained.

The specific solution flow chart is shown in Figure 3.

FIGURE 3
Energy storage configuration flow chart with lifetime and
charge-discharge coupling.
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5 Case studies

5.1 Parameters Setting

The case study is oriented towards a multi-user energy storage
project consisting of three users. The industrial time-of-use
electricity prices, as shown in Table 1, are based on the price list
for commercial users represented by State Grid Zhejiang Electric
Power Company. The demand charge is 48 ¥/kWh, collected on a
monthly basis. The number of battery cycles at different DODs is
referenced in Table 1. The energy storage battery selected is a lithium
iron phosphate battery, and the number of battery cycles at different
DODs is referenced in Table 1 (Gao et al., 2013). Time-of-Use (Tou)
Prices for industrial and commercial users is referenced in Table 2.
The unit cost for user investment in energy storage station
construction and unit capacity cost are referenced from the
literature (Liu et al., 2021), with values of 1,000 ¥/kW and 1,200
¥/kWh, respectively. Considering the time value of money, the
annual interest rate is 4%. Users are responsible for the operation
and maintenance costs of their self-built power stations, calculated
as follows: each time there is an electricity flow between a user and
the station, the user is required to pay an operational fee of 0.05
¥/kWh. The expected lifespan of the station is initialized to 5 years.
The lower limit for the state of charge of the energy storage is 0.1,
and the upper limit is 0.9. The initial state of charge and the state of
charge at the final time period satisfy the continuity constraint of the
energy storage device state. The number of typical days is 1.

5.2 Configuration result analysis

5.2.1 Initial configuration result
When the expected service life of the battery is initialized to

5 years, the model yields the following results: The optimal capacity

of the energy storage station is 1018.2328 kWh, with a maximum
charge and discharge power of 150.71 kW. The total cost for the user
group is ¥66209617.2443, and the total cost for electricity purchase
by the user group is ¥65916347.7008.

The charge and discharge status of the energy storage station at
this time is shown in Figure 4. Energy storage tends to charge during
off-peak hours, such as from midnight to 8 a.m., and then discharge
during peak demand periods to reduce user load and engage in peak-
valley arbitrage. However, it has also been observed that users are
not very willing to participate in peak shaving with energy storage.
This is due to the relatively short lifespan of energy storage systems
and the significant daily investment required.

TABLE 1 Cycle life of lithium iron phosphate battery at different DOD.

DOD Number of battery cycles

100% 3669.064

80% 4406.474

60% 5080.935

40% 5953.237

TABLE 2 TOU prices for industrial and commercial users.

Period Time Electricity price (¥/kWh)

Peak hour 12:00–13:00 1.4028

Peak period 9:00–11:00 0.9644

14:00–16:00

Valley period 1:00–8:00 0.4145

17:00–19:00

19:00–24:00

FIGURE 4
Charge and discharge of the energy storage station with a battery
life of 5 years.

FIGURE 5
Battery life iteration details.
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5.2.2 Life iteration process
Based on the preset battery life, the battery charge and discharge

status are shown in Figure 4, and it is input into the battery life
degradation model for calculation. The battery cycling within a
typical day consists of two full cycles and one-half cycle, with the
battery’s charge and discharge depth being:

DOD,1 � 0.0162

DOD,2 � 0.0997

DOD,3 � 0.6830

The calculated equivalent cycle life of the battery is 6.362 years.
Using the bisection method, the preset battery life is updated to
obtain the new battery life:

T1 � T0 + Tbase

2
� 5.681

The optimization model configuration process for the energy
storage system is repeated. The total number of iterations is 13, and
the iteration data for the battery life is shown in Figure 5.

5.2.3 Analysis and comparison of optimal
configuration results

When the battery service life is 12.72 years, the operational
results of the multi-user shared energy storage dual-layer model
are as follows: The optimal capacity for the energy storage station
for this year is 106507.5029 kWh, and the optimal maximum
charge and discharge power for the energy storage station is
11694.06 kW. The total cost for the user group’s annual grid

FIGURE 6
Power purchase of users after battery life renewal.

FIGURE 7
User 1’s power access after battery life renewal.

FIGURE 8
User 2’s power access after battery life renewal.

FIGURE 9
User 3’s power access after battery life renewal.
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electricity purchases is ¥47134790.454, and the total annual
electricity cost for the user group is ¥60772021.6139. Figure 6
depict the grid electricity purchases by the typical daily users after
updating the battery service life.

Figures 7–9 illustrate the charge and discharge status of electricity
between the user group and ESS.

Compared with the initial configuration results, it is evident that
there has been no change in the overall electricity purchasing strategy
within the user group. In contrast, the capacity and power of the
energy storage system have increased significantly. This is due to the
extended lifespan, which has been raised from 5 years to 12.72 years
after iteration, resulting in a substantial reduction in the daily
investment for the energy storage system. Consequently, users are
more inclined to deploy larger capacity and power storage devices.
Furthermore, thanks to the increased capacity and power, the current
monthly demand charges are lower compared to the initial
configuration results. The most notable changes are as follows:

In the optimal configuration results, User 1 purchases less electricity
during the 9:00–16:00 period, with a purchase of 3375.4 kW at 11:00,

compared to 3896.1 kW at other times. In the initial configuration, User
2 does not purchase electricity at 10:00, buying 5362 kW from 11:00 to
12:00, while in the optimal configuration, User 2 purchases 810.1 kW at
10:00 and nothing at 11:00. Additionally, User 2 does not purchase
electricity from 11:00 to 16:00, but increases purchases during off-peak
hours to 5169.14kW, except for a purchase of 443.62 kW at 20:00,
storing the excess electricity in the station from 1:00 to 8:00 and 17:00 to
24:00. User 3 purchases less electricity during the 9:00–16:00 period and
at 20:00, with all other periods at 6133.53 kW.

Under a reasonable electricity management strategy among users,
User 2’s cost reduction measure of not purchasing electricity during
peak and high-demand periods has been more thoroughly
implemented. This strategy not only ensures that User 2 does not
incur high electricity purchase costs during peak demand periods but
also optimizes the overall electricity usage pattern, further reducing the
collective electricity costs for the entire user community. The charge
and discharge situation of the station after updating the battery life is
shown in Figure 10 Overall, compared to the initial configuration, the
energy storage station shows a stronger desire to participate in load
regulation. It has greater capacity and power, significantly enhancing its
ability to shave peaks and fill valleys, as well as its capability for demand
reduction, resulting in more noticeable benefits.

Compared to the configuration results with the preset 5-year
battery life, the updated battery exhibits a reduced number of charge
and discharge cycles, with the cycling period consisting of two cycles.

DOD,1 � 0.0044

DOD,2 � 0.7946

Overall, the energy storage station’s charging activity from 1:00 to
8:00 and 17:00 to 24:00 prepares for load reduction from 9:00 to 16:00.

Table 3 provides a comparison between the initial configuration
results and the optimal configuration results.

From the data in the table, it is evident that both before and after
updating the battery life in the configuration of the shared energy
storage station, the electricity costs for users have decreased
compared to when the system was not configured.

Considering the energy losses in the station’s batteries, the
required station capacity should increase. With the station’s service

FIGURE 10
Charging and discharging of the power station after battery
life renewal.

TABLE 3 Comparison of configuration results.

Optimization index Initial configuration result Optimal configuration result No ESS configured

Rated power/kW 150.71 11694.06 0

Optimal capacity/kWh 1,018.2328 106507.5029 0

User purchase cost/¥ 6.59 × 107 4.71 × 107 6.63 × 107

Total user cost/¥ 6.62 × 107 6.08 × 107 6.63 × 107

TABLE 4 Cost allocation based on the Shapley value method.

Energy storage Configuration type Cost for User 1. (¥ × 105) Cost for User 2. (¥ × 105) Cost for User 3. (¥ × 105)

Unconfigured storage 2,419 2,381 1,831

Independent Storage 2,192 2,179 1,738

Shared Storage 2,190 2,168 1,719
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life updated to 12.72 years, the annual construction cost per year
decreases. The increase in the station’s charge and discharge power
signifies an improved utilization rate, leading to a further reduction in
users’ electricity costs compared to the initial configuration results,
resulting in a significant overall cost reduction for the users.

Based on Table 3, the total costs of cooperative energy storage
configurations for the three industrial user types in different
combinations all satisfy the Super additivity condition. This
indicates that by forming a cooperative alliance, the three
industrial user types achieve cost reductions, resulting in
cooperative surplus and consequently, excess profits.

According to Table 4, it is evident that the total costs for the three
industrial user types through cooperative energy storage configuration
are lower than the total costs without energy storage and those of
individual energy storage configurations. Compared to not having
energy storage, the total cost for Industrial User 1 decreases by
approximately 2.39 million yuan, for Flat User 2 by approximately
2.13 million yuan, and for Industrial User 3 by approximately
1.12 million yuan, indicating a significant reduction in total costs
for each user. It is apparent that this distribution result satisfies both
collective rationality and individual rationality.

Based on the above, it can be concluded that the possibility and
stability of forming a cooperative alliance among the three industrial
user types are ensured.

6 Conclusion

The configuration of shared energy storage needs to be adjusted
according to the actual situation of the construction project in the region.
Therefore, there is a necessity to discuss the issue of energy storage station
configuration considering the capacity loss of the energy storage system.
This paper optimizes the configuration of shared energy storage for
multiple users, taking into account the factor of battery capacity loss
during the configuration process. The calculation of battery degradation
can iteratively update the device’s life cycle for energy storage projects,
thereby obtaining the most economical, environmentally friendly,
reasonable, and practical optimal energy storage station configuration.

1) The Rain-flow counting method is utilized to decompose the
battery capacity change curve, and the decomposed important
parameters are used for life cycle calculation. A battery life
degradation calculation model is established using specified
parameters of lithium iron phosphate batteries.

2) The objective is to minimize the total cost of energy storage
project construction and electricity usage for all users within a
year, considering both the optimal electricity cost for all users
and the overall optimal cost of energy storage project
construction and electricity usage. A bi-level model is
established to achieve the lowest total cost under the
condition of optimal electricity cost. In the solution process,
the Big-M method and KKT conditions are used to handle the
model, ultimately transforming the nonlinear programming
problem into a mixed-integer linear programming problem.

3) The results of the bi-level model configuration are updated with
the battery life degradation model. Through multiple iterations of
optimizing the shared energy storage configuration, the charging
and discharging of the shared energy storage device becomes

more reasonable. The extension of the shared energy storage
device’s lifespan not only reduces the waste of power resources
and construction materials but also creates more collective
economic benefits for multiple users.

4) For the alliance cost of multiple users, a Shapley value allocation
model is established for fair distribution. By analyzing and
comparing the costs of different users without energy storage
configuration andwith independent energy storage configuration,
the superiority of multiple-user cooperative configuration of
shared energy storage is verified, providing assurance for the
maintenance and long-term stability of the cooperative alliance.
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