The final, formatted version of the article will be published soon.
REVIEW article
Front. Energy Res.
Sec. Solar Energy
Volume 12 - 2024 |
doi: 10.3389/fenrg.2024.1509437
A Critical Review of the Thermophysical Properties and Applications of Carbon-Based Hybrid Nanofluids in Solar Thermal Systems
Provisionally accepted- University of Johannesburg, Johannesburg, South Africa
This review focuses on the potential of carbon-based hybrid nanofluids to enhance the performance of solar thermal energy systems. Solar thermal technology is pivotal in transitioning towards renewable energy sources, offering sustainable alternatives to conventional fossil fuels. However, traditional heat transfer fluids (HTFs) often exhibit limitations in thermal conductivity (TC), which hinders the overall efficiency of solar collectors. The introduction of nanofluids, particularly hybrid nanofluids that combine two or more types of nanoparticles, has emerged as a promising solution to address these challenges. Among various nanomaterials, carbon-based materials such as graphene and multi-walled carbon nanotubes (CNTs) have garnered significant attention due to their exceptional thermal properties. This review critically analyses the thermal and rheological characteristics of carbon-based hybrid nanofluids and their effects on solar thermal applications, including flat-plate collectors and parabolic trough collectors. The unique synergy achieved by integrating carbon-based nanoparticles with metallic nanoparticles results in improved TC, enhanced heat transfer rates, and greater stability compared to single-component nanofluids. Despite the notable advantages, challenges such as increased viscosity and the need for long-term stability under operational conditions remain pertinent. Future research directions should prioritize optimizing nanoparticle concentrations, exploring cost-effective alternatives, and investigating the long-term performance of hybrid nanofluids in dynamic environments. The findings of this review underscore the transformative potential of carbon-based hybrid nanofluids in improving the efficiency and effectiveness of solar thermal systems, thus supporting the broader adoption of renewable energy technologies. This exploration is essential for advancing solar thermal applications and addressing the ongoing challenges of energy sustainability and efficiency in the face of growing global energy demands.
Keywords: Carbon Nanomaterial1, Hybrid Nanofluid2, Carbon nanotube3, graphene4, Solar Collector5, Efficiency6
Received: 10 Oct 2024; Accepted: 20 Dec 2024.
Copyright: © 2024 Borode, Tshephe and Olubambi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Adeola Borode, University of Johannesburg, Johannesburg, South Africa
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.