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With the intelligent development of power systems, the number of relays
continues to increase. Differences in manufacturers, systems, and protocols
lead to growing security risks. Tampering with relay settings could potentially
cause power outages or even system instability. Consequently, relay settings
have gradually become a key target for cyberattacks, particularly in smart grids
where traditional defense measures struggle to effectively address complex and
diverse attack scenarios. To address this issue, this paper proposes a three-layer
optimization defensemodel based on game theory, designed to adapt to various
attack scenarios. The core methodology of this model includes a three-layer
structure: The first layer optimizes the protection level of each relay by allocating
limited defense budgets. The second layer analyzes the potential systemdamage
based on the attacker’s strategy choices. The third layer comprehensively
calculates system losses to evaluate the effectiveness of defense plans. Through
layer-by-layer optimization of budget allocation, the model minimizes the
unsupplied energy loss caused by relay setting attacks. Compared to existing
methods, this model not only improves defense effectiveness under resource
constraints but also addresses multiple complex attack scenarios. Experimental
results demonstrate that this model significantly enhances the system’s defense
capabilities and effectively reduces the impact of attacks on system security
operations.

KEYWORDS

power system, relay setting attack, game theory model, three-layer optimization,
defense strategy, cybersecurity

1 Introduction

With the global development of intelligent power systems, cybersecurity has become
a critical issue in power system operations (Yohanandhan et al., 2020). The widespread
application of smart grids and the integration of Internet of Things devices have
made distribution systems more automated and efficient. However, these advancements
have also introduced severe cybersecurity challenges. In recent years, power systems
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have been frequently subjected to various cyber attacks, with
key equipment such as relays becoming primary targets for
attackers (Abraham et al., 2024). For instance, the cyber attack
on Ukrainian power companies in 2015 resulted in large-scale
power outages, directly affecting hundreds of thousands of users
(Kabeyi and Olanrewaju 2022). Such attacks have exposed the
vulnerability of power system relays and revealed the inadequacies
of traditional defense measures in addressing complex attack
scenarios (Elgazzar et al., 2022).

As power systems grow more complex, cyber attack
methods have become increasingly diverse. Relay setting attacks
have gradually evolved into a highly destructive form of
attack (Ghiasi et al., 2023). Research on defense strategies
against relay setting attacks is crucial for ensuring the secure
operation of power systems. Game theory models provide an
effective theoretical framework for this problem, capable of
simulating the gaming process between attackers and defenders
(Shan et al., 2020). Through optimized defense budget allocation,
the overall system security can be enhanced under limited
resource conditions, reducing system losses caused by attacks
(Lau et al., 2020). This defense strategy can significantly
improve the risk resistance of relays under attack and provide a
theoretical basis for addressing future complex attack scenarios
(Abdelkader et al., 2024).

Relay setting attacks primarily include Active Relay Setting
Attacks (ARSA) and Passive Relay Setting Attacks (PRSA)
(Ganjkhani et al., 2022). In active attacks, parameters such as
relay startup current are tampered with by attackers, causing relays
to misjudge system states and trigger tripping, leading to power
supply interruptions (Zhou et al., 2021). Passive attacks involve
modifying relay operation times or other parameters, resulting
in delayed responses to faults and expanding the scope of system
failures (Altaf et al., 2022). These two attack mechanisms pose
serious threats to system stability, especially when attackers control
multiple relays, potentially causing large-scale power outages and
system collapse (Wang et al., 2024).

In current research, scholars focus on defense model design,
detection and identification methods, and modeling of attack-
defense interactions. These directions are pursued concurrently
to enhance the security of power system relays and reduce their
vulnerability to cyber attacks.

In the field of attack model development, a method was
proposed in Ganjkhani et al. (2022) to simulate system losses
caused by relay setting attacks. Both active and passive relay
setting attacks were considered, and the impact on the power
system was highlighted by optimizing the selection of attack
strategies to maximize energy disruption. An indirect attack
model was proposed in Wang et al. (2023), and a defense
strategy to prevent relay mistripping was designed. This
strategy implements blocking cause identification technology
as a built-in function of relays to resist indirect collaborative
attacks. In (Zhang and Dong 2017), researchers proposed a trip
confirmation scheme based on majority rules through reliability
studies of remote relays, aiming to reduce the possibility of
erroneous tripping.

Regarding detection and identification methods, a data mining-
based detection tool was proposed in Mohamed and Magdy (2022).
This tool utilizes training datasets generated by Monte Carlo

simulation to detect anomalous changes in relay settings. It uses
rough set classification to generate a set of If-Then rules for
checking whether updated settings have been tampered with during
online operations. A deep learning-based system was developed
in Khaw et al. (2020) to identify malicious attacks by detecting
abnormal changes in current and voltage signals. This system first
uses current and voltage measurements to train deep learning
models, which are then used to detect malicious data injected by
attackers. In Ameli et al. (2019), an effective intrusion detection
method was proposed through voltage measurement comparisons,
distinguishing between false signals triggered by attacks and real
internal faults. This method uses unknown input observers and
state-space models to estimate local voltage and compare it with
measured values.

In the area of attack-defense interaction modeling, a game
model based on three-layer optimization was proposed in
Ganjkhani et al. (2022). The focus is on how defenders can
minimize unsupplied energy loss under limited attacker resources.
This model integrates defense budget allocation, attack strategy
selection, and system loss calculation into a comprehensive
optimization framework (Hasan et al., 2020). further explored
game models for dynamic attacks, considering the long-term
impact of attackers’ phased attack strategies on system security.
This research adopted a new attacker-defender model, taking into
account the temporal order of attacks (Macwan et al., 2016). focused
on data injection attacks, proposing a defense mechanism that
detects and mitigates attacks through basic laws in power systems.
This mechanism utilizes Kirchhoff ’s laws and communication
capabilities under the IEC61850 standard to detect and locate data
injection attacks.

Current research on relay setting attacks has several limitations:
1) Defense models lack universality and struggle to adapt to various
systemenvironments. Existingmodels are oftendesigned for specific
attack types or system structures, showing insufficient adaptability to
complex and varied attack scenarios. 2) The real-time performance
and accuracy of detection and identification methods in complex
scenarios need improvement. Current detection algorithms may
face challenges in computational efficiency and accuracy when
processing large-scale, high-dimensional data. 3) Existing attack-
defense interaction models have high computational complexity,
making it difficult to respond to dynamic attacks in large-scale
systems. In practical applications, these models may struggle to
quickly respond to changes in attacker strategies, affecting defense
effectiveness.

To address these limitations, a three-layer optimization defense
model based on game theory is proposed in this paper. A defense
strategy adaptable to various attack scenarios has been designed.
The coremethodology of thismodel includes a three-layer structure:
The first layer optimizes the protection level of each relay by
allocating limited defense budgets. The second layer analyzes the
potential systemdamage based on the attacker’s strategy choices.The
third layer comprehensively calculates system losses to evaluate the
effectiveness of defense plans. Through layer-by-layer optimization
of budget allocation, the unsupplied energy loss caused by relay
setting attacks is minimized. Compared to existing methods, this
model offers the following advantages: 1) It provides a more
flexible and efficient defense framework by integrating a three-layer
optimization model and dynamic budget allocation mechanism,
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capable of adapting to complex relay setting attack scenarios. 2)
It improves defense effectiveness under resource constraints and
can simultaneously address both active and passive relay setting
attacks. The model’s effectiveness has been verified through case
studies on test systems. Experimental results demonstrate that
this model significantly enhances the system’s defense capabilities
and effectively reduces the impact of attacks on system security
operations. This approach provides a more comprehensive and
effective solution for defending against relay setting attacks in
power systems.

The structure of this paper is as follows: Chapter 2 discusses
the mechanisms and impacts of relay setting attacks in power
distribution systems. This chapter analyzes the vulnerability of
relays under different types of attacks, particularly the impact
of active and passive relay setting attacks on system security.
A detailed vulnerability analysis provides the foundation for
subsequent defense model design. Chapter 3 presents the game
theory-based defense model design. This chapter constructs
a three-layer optimization model, systematically describing
the interaction between defense budget allocation and attacker
strategies. The model maximizes system security while minimizing
unsupplied energy loss caused by attacks through optimized
budget allocation. Chapter 4 verifies the model’s practical
effectiveness through experimental design and case analysis. Based
on the IEEE 123-node test system, the defense effects of different
budget allocation strategies under active and passive relay attacks
are evaluated. The role of defense strategies in enhancing system
security is demonstrated, and specific schemes for optimizing
budget allocation are provided. Chapter 5 summarizes the main
conclusions of the research, elaborates on the effectiveness of
game theory in defending against relay setting attacks, and points
out potential directions for future research, such as introducing
dynamic defense mechanisms and strategies for addressing other
types of attacks.

2 Mechanisms and impacts of relay
setting attacks in power distribution
systems

2.1 Relay protection mechanisms in power
distribution systems

Overcurrent protection relays are crucial devices for ensuring
stable operation in power distribution systems. These relays detect
current changes in the system and can promptly trigger circuit
breakers or reclosers, thereby preventing short-circuit faults or other
abnormal conditions from causing greater impact on the system.
The foundation of overcurrent protection lies in the relay’s ability
to quickly issue a trip signal when the current value exceeds a set
threshold, thus protecting downstream equipment. The core of this
process is the relay’s precise judgment of current, ensuring that it can
operate at the appropriate time to avoid system collapse due to slow
response or misoperation.

In practical operation, the protection mechanism of relays
involves principles of overcurrent protection and requires close
coordination with circuit breakers and reclosers. Circuit breakers
execute the opening operation after receiving a trip signal from the

relay, disconnecting the faulty line and protecting other parts of
the system. Reclosers are responsible for reclosing the circuit after
the fault has been cleared, allowing power supply to be restored as
quickly as possible. This collaborative working mechanism greatly
improves the system’s fault tolerance and reduces the scope of power
outages caused by faults. The coordinated action between relays,
circuit breakers, and reclosers is crucial for ensuring the stability of
the power system.

The response speed of overcurrent relays is directly related to
their time dial settings. The time dial determines the operating time
of the relay, which is the delay time from detecting a fault current
to issuing a trip command.The operating time of a relay under fault
conditions is represented by the following formula:

Tr,g = Θr(
αr

(
Ir,g
IThr
)
βr − 1
+ γr)

where Ir,g is the fault current seen by relay r, I
Th
r is the adjusted pickup

current, Θr is the time dial setting, and αr, βr, and γr are constants
representing the characteristics of the curve selected for relay r.
These parameters determine the relay’s response time to various fault
currents, allowing the relay to adjust its operation time automatically
based on the magnitude of the current.

To ensure reliable relay operation in multiple fault scenarios, a
layered coordination approach is typically adopted. This approach
dictates that relays closest to the fault point operate first, while relays
farther from the fault point act as backup protection based on set
time delays. The core of this protection mechanism lies in ensuring
that only the faulty part of the system is isolated, thereby avoiding
widespread power outages due to incorrect tripping. The time dial
values and pickup current settings in the aforementioned formula
directly influence the protection level of the relay, ensuring each
relay operates at the correct time point.

The protective action of relays must also be matched with the
ratios of current and voltage transformers. The ratio settings of
transformers significantly affect the operational accuracy of relays.
Improper transformer ratio settings may lead to inaccurate fault
current judgments by relays, resulting in delayed relay actions
or incorrect tripping. Therefore, when designing relay protection
mechanisms, it is necessary to consider time dial and pickup current
settings and the electrical parameters of the entire system. This
comprehensive approach ensures that relay actions align with the
system’s actual operating conditions.

2.2 Relay setting attacks

2.2.1 Active relay setting attacks
In ARSA, control over relay settings can be gained by attackers.

The pickup current setting IThr can be maliciously modified, causing
the relay to incorrectly judge the system as being in an overload
or short-circuit state, thereby sending erroneous trip signals. The
pickup current setting determines the current level at which the
relay automatically triggers a trip when detected. By lowering this
setting to a level far below normal operating currents, attackers can
trigger relay trips during normal system operation, leading to circuit
breaker openings and power supply interruptions in the system.
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This type of attack mechanism relies on adjusting relay
parameters and can be described by the following formula:

ITh,bbr = χaIThr , χa <
Ir,g
IThr
− δ

where ITh,bbr represents the pickup current of relay r after ARSA,
χa is the scaling factor of ARSA, and δ represents the tolerance
for measurement errors in the system. The attacker adjusts χa and
δ to ensure that the relay’s setting is reduced to an extremely
unreasonable level, causing the relay to incorrectly detect a fault and
trip even in the absence of an actual fault.

These attacks often directly impact downstream loads in the
system. When relays trigger tripping, the downstream circuit
breakers are forced to open, causing a sudden disconnection of
large loads. The power outage in downstream loads affects end
users and may further trigger cascading reactions such as system
voltage imbalance or frequency fluctuations, increasing system
operational instability. The immediate nature of ARSA implies that
once successful, the system will instantly enter an abnormal state,
placing higher demands on the real-time monitoring and response
capabilities of maintenance personnel.

In distribution systems, the destructive nature of ARSA is
manifested in the erroneous tripping behavior of the relays
themselves and potentially more severe consequences through
coordinated actions between relays, circuit breakers, and reclosers.
Typically, the tripping of one relay can trigger a chain reaction in
related equipment, rapidly expanding the fault area. For large-scale
distribution systems, a single relay’s erroneous operationmay lead to
power outages across entire regions. Particularly during high-load
periods, power outages caused by such attacks affect downstream
equipment and adversely impact upstreampower supply equipment,
further exacerbating system instability.

2.2.2 Passive relay setting attacks
In PRSA, relay settings are modified by attackers to prevent

expected operation during system faults. The characteristic of these
attacks is that their effects are not immediately apparent. Instead,
they cause relay failures when future system faults occur, leading to
delayed or incorrect tripping, thereby expanding the impact range
of faults. These attacks often involve adjustments to the relay’s time
dial and pickup current settings, causing the relay to fail to respond
promptly under fault conditions and disrupting relay coordination.

The key mechanism of PRSA is to violate the time coordination
constraints between relays by adjusting their operation times.
Suppose relay r is responsible for protecting a certain line segment,
with relay r′ as its backup. The time coordination relationship
between them can be expressed by the following constraint:

Tr′,g −Tr,g ≥ ∆T,∀r′ ∈ Sr

where Tr′,g is the operation time delay of the backup relay r′ when
a fault g occurs downstream of relay r, Tr,g is the operation time of
relay r, and ∆T is the required time coordination margin between
them. Under normal conditions, the primary relay r will trip first,
and the backup relay r′ will only operate if the primary relay fails.

In a Passive Relay Setting Attack (PRSA), the attacker
manipulates the settings of relay r, increasing its operation time
delay Tr,g, causing the backup relay r′ to trip before the primary

relay. The attacker disrupts the time coordination by altering the
parameter ∆Tb, as shown in the following equation:

Tbb
r,g = Tr,g +∆Tb, ∆Tb > ∆T+ δ

where Tbb
r,g is the operation time delay of relay r after the attack, and

∆Tb is the additional delay introduced by the attack. δ represents the
tolerance for measurement errors in the system. By increasing the
operation delay, PRSA prevents the primary relay from responding
in time to faults, causing the downstream backup relay to trip
prematurely and thus widening the scope of the outage.

The impact of PRSA on power distribution systems lies in
its increase of system vulnerability during fault conditions. The
consequences of the attack are manifested only when the system
experiences short circuits or other faults after relay settings have
been modified. Compared to active attacks, PRSA is more covert.
Attackers can quietly alter relay parameters without triggering
immediate anomalies. The effects of the attack are revealed only
through relay failures during fault occurrences, often exacerbating
the scope and severity of accidents.

This attack method endangers not only single relays but can
also aggravate fault consequences by affecting multiple relays across
the entire distribution system. Particularly when time settings of
multiple relays are simultaneously tamperedwith, widespread power
outages may occur.

2.3 Vulnerability analysis of relay setting
attacks

The relay protection mechanism in power distribution systems
relies on communication networks, firmware, and local access
interfaces of devices. Vulnerabilities in these aspects provide
attackers with multiple potential pathways to launch attacks
on relay settings. By infiltrating the system through different
means, attackers may cause relay malfunctions or misoperations,
thereby jeopardizing the security and stability of the power
grid. Understanding these vulnerabilities can provide a basis for
formulating defense measures.

2.3.1 Security vulnerabilities in communication
networks

Relays in power distribution systems are typically connected to
control centers via Wide Area Networks (WAN) and use standard
communication protocols (such as IEC104 and IEC61850) for
data transmission. The extensive coverage of these communication
networks exposes them tomultiple potential attack entry points.The
overall failure probability of the system is:

P fail = Pattack · Prelay · (1−Rresponse)

where P fail represents the system failure probability, Prelay indicates
the probability that the attacker controls the relay, Rresponse denotes
the emergency response capability of the control center, and Pattack
is the total attack success probability. The total attack success
probability is calculated as:

Pattack = 1− (Snet · Sprotocol · Sphysical)
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where Snet refers to the security of the network layer, Sprotocol refers
to the security of the protocol layer, and Sphysical refers to the security
of the physical layer.

System networks can be infiltrated by attackers through firewall
vulnerabilities or other weaknesses. Upon successful infiltration,
network protectionmeasures can be bypassed, allowing direct access
to relay control interfaces and alteration of settings (Reda et al.
2022). This may result in relay failures during actual faults.
For instance, relay pickup current or time dial settings can
be modified by attackers, preventing normal tripping during
actual faults (Zhou et al., 2021).

Communication network vulnerabilities are not limited to the
physical layer but are closely related to the security of software,
protocols, and data transmission (Ghiasi et al., 2023). Remote attack
methods may be employed by attackers, such as Distributed Denial
of Service (DDoS) orman-in-the-middle attacks (Wang et al., 2024).
These attacks can sever the connection between control centers and
relays, affecting the normal protective functions of the system.

2.3.2 Exploiting firmware vulnerabilities in relays
Thefirmware of relays, which serves as their core operating logic,

can be targeted by attackers through the injection of malicious code.
Firmware attacks may occur during the production, installation
phases, or even during firmware updates. The final probability of a
successful firmware tampering can be expressed as:

Psuccess = Ptamper ·
Rattacker · Lknowledge

Esecurity

where Rattacker represents the resources available to the attacker,
Esecurity denotes the effectiveness of security measures, Lknowledge
reflects the depth of the attacker’s understanding of the firmware
logic, and Ptamper is the probability of firmware tampering.

The probability of firmware tampering is calculated as:

Ptamper = 1− (Supdate · (1− Pimplant))

where Supdate represents the security of the firmware update channel,
and Pimplant indicates the probability of successfully implanting
malicious code by the attacker.

As firmware updates for many relays are conducted through
online channels, malware can be intercepted and implanted by
attackers during updates (Amin et al., 2021). Malicious firmware
typically includes triggers and payloads. Triggers activate malicious
operations based on specific events or signals, while payloads
are the actual attack behaviors (Li et al., 2024). Once firmware
is tampered with, relays can be remotely controlled or triggered
at specific times by attackers, causing malfunctions or erroneous
actions at critical moments (Trevizan et al., 2022). For instance,
relay response times might be delayed by attackers, preventing
timely tripping during system faults and disrupting protection
coordination (Wang et al., 2021). To defend against such attacks,
digital signatures and encryption can be used to verify the integrity
of firmware updates. Regular auditing and upgrading of firmware
can also reduce the possibility of malicious code implantation.

2.3.3 Local access attacks on relays
Although many relay devices are located within physically

well-protected substations, relays distributed along distribution

lines often lack strict physical protection (Vahidi et al., 2023).
Through physical contact, attackers can directly connect to device
interfaces andmodify relay settings (Rajkumar et al., 2020). In some
cases, attackers might even use techniques such as electromagnetic
interference to disrupt internal circuits or data storage of relays,
leading to abnormal device operation (Trevizan et al., 2022). The
formula for calculating the probability of successful local attacks is:

Plocal =
Nprots · PEMI

Ephysical

where Ephysical represents the effectiveness of physical protection
measures, Nprots refers to the number of exposed physical ports,
and PEMI denotes the success rate of electromagnetic interference
(EMI) attacks.

Direct connection to device interfaces and modification of
relay settings can be achieved by attackers through physical
contact (Wlazlo et al., 2021). In some cases, techniques such as
electromagnetic interference might be used by attackers to disrupt
internal circuits or data storage of relays, leading to abnormal
device operation. Although local access attacks require physical
contact, they pose higher risks in unattended outdoor equipment.
Relay normal operation can be affected by attackers through
forceful damage or high-tech tools like electromagnetic pulses.
Additionally, exposed physical ports provide attackers with ways
to bypass other protective measures (Kampourakis et al., 2023). To
defend against local attacks, measures can be taken to strengthen
relay external packaging, install anti-tampering detection devices,
or reduce the possibility of local attacks through more advanced
physical protection means (Yu et al., 2023).

3 Game theory-based defense model
for relay setting attacks

3.1 Design and optimization of the game
theory model

The stability and reliability of the power system are directly
affected by the security of relay settings. In the face of potential
cyber-attack threats, both defenders and attackers need to make
optimal decisions in the game process. Two game models are
analyzed in this paper: incomplete information game model
and complete information game model, to discuss defense and
attack strategies under different information conditions. In
incomplete information games, strategies of both parties have
asymmetry and uncertainty, while in complete information
games, both parties have a clearer understanding of each other’s
strategies and resources. Through a three-layer optimization
model in the game theory framework, this paper will discuss the
budget allocation of defenders and strategy selection of attackers
from these two scenarios respectively, ultimately maximizing
system security.

3.1.1 Defense and attack strategy modeling
The strategic interaction between defenders and attackers can

be described using game theory models. The defender’s goal is to
reduce the Expected Energy Not Supplied (EENS) under attack
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through rational budget allocation. The attacker aims to maximize
system losses by selecting specific attack strategies. The strategies
of defenders and attackers interact: the defender’s budget allocation
directly affects the attacker’s success rate, while the attacker’s strategy
selection influences the system’s operational state and security.

3.1.1.1 Two game scenarios:

a) Incomplete InformationGame: In real situations, attackers and
defendersmay not fully understand all strategies and resources
of their opponents. Attackers might be unaware of the
defender’s focus on protecting certain relays, while defenders
may struggle to predict specific attack targets and resource
constraints of attackers. This asymmetric information reflects
real-world complexity, so the game model needs to consider
how this information incompleteness affects decisions and
outcomes. In this scenario, defenders and attackers must make
optimal decisions based on expectations of their opponent’s
type and behavior.

b) Complete Information Game: In some scenarios, it is assumed
that defenders and attackers have complete knowledge of
each other’s resources, strategies, and objectives. Here, strategy
selection in the game can be simplified to a zero-sum
game, with both parties directly confronting each other
under complete information conditions. This type of scenario
is more suitable for situations where information about
the opponent is fully known, optimizing budget allocation
and strategy selection to maximize one’s own benefits or
minimize losses.

To adapt to these two different information conditions,
subsequent chapters of this paper will explore the Bayesian game
model under incomplete information games, and the simplified
bi-level optimization under complete information games. This
approach will provide optimal decision support for defenders and
attackers under different information conditions.

3.1.2 Mathematical description of the three-layer
optimization model

The interaction between defenders and attackers is described
by the three-layer optimization model. It integrates defense
budget allocation, attack strategy selection, and system loss
calculation into a comprehensive optimization framework. The
three-layer structure consists of:

(1) Defense Budget allocation Layer (First Layer): The defender’s
probability of relay failure is reduced through the allocation
of limited defense budgets. The decision variable for
the defender is the budget allocation dr, for each relay,
with the objective of minimizing the system’s EENS. The
defender’s budget allocation is represented by the vector
d = [d1, . . .,dr, . . .,dR], where dr represents the defense
budget allocated to relay r. The defender’s total budget Dmax is
subject to the following constraint:

R

∑
r=1

dr ≤ Dmax

The total budget constraint is represented by the setD:

D = {d ∈ ℝR+|
R

∑
r=1

dr ≤ Dmax}

This set indicates that the defender’s total budget Dmax needs
to be allocated across all relays, and the sum of budget allocations
cannot exceed the defender’s available budget.

The EENS calculation formula is:

EENS = ∑
r∈S

ρr(dr,d
s) · θr

where dr represents the defense budget allocated to relay r, ds

represents the system-level defense budget, and θr is the load loss
caused by the failure of relay r. S is the index set of all relays r in
the power system, where failures or losses may occur.The higher the
EENS, the greater the power supply loss under attack.Therefore, the
defense strategy should prioritize reinforcing high-load nodes.

Defense strategies are typically divided into device-level and
system-level. Device-level defense aims to enhance the local
security of each relay, mainly including strengthening physical
barriers, upgrading firmware security, introducing multi-factor
authentication, adding firewalls for each relay, etc. These measures
improve overall system security by reducing the failure probability
ρr(dr) of specific relays, typically described using an exponential
decay model:

ρr(dr) = e
−μrdr

where μr is the sensitivity coefficient of relay r, representing the
degree to which the defense budget allocated to that relay affects its
failure probability.

System-level defense focuses on the security of the entire system,
mainly including encryption of network-wide communication,
system monitoring upgrades, integration of attack detection
systems, etc. The system-level defense budget ds System-level
defense focuses on the security of the entire system, mainly
including encryption of network-wide communication, system
monitoring upgrades, integration of attack detection systems, etc.
The system-level defense budget

ρr(dr,d
s) = βe−μrdr + (1− β)e−ξd

s

where β is the weighting factor between the device-level and system-
level budgets, ξ represents the effectiveness parameter of system-
level defense, dr is the local defense budget allocated to each relay
to reduce its failure probability, and ds is the system-level defense
budget used to enhance the protection capability of the entire
system. Reasonable allocation of defense budgets requires a balance
between device-level and system-level to minimize overall failure
probability.

(2) Attacker’s Strategy Selection Layer (Second Layer): k ∈K =
{1,⋯,K} is defined as the attack scenario, where K is the set
of all attack scenarios, and K is the total number of scenarios.
The number of possible attack combinations is calculated by:

(
x
y
) = x!

y!(x− y)!
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where x represents the total number of relays, and y is the number
of relays attacked simultaneously.

The attacker selects one or more relays as attack targets within
the limited resource constraint. The attacker’s goal is to disrupt the
system bymaximizing load loss.The attacker selects the attack target
set Sc and optimizes their attack strategy to maximize system loss.
The specific optimization problem is described as:

max
Sc
∑
r∈Sc

ρr(dr,d
s) · θr

subject to:

∑
r∈Sc

cr ≤ C

where θr represents the load loss caused by the failure of relay r.
The attacker’s selection is limited by the total available resources C,
and cr denotes the resources required to attack relay r. The attacker
maximizes system loss by selecting the relay set Sc.

Due to limited resources, both the defender and attacker need
to make optimal decisions within their budgets. The attacker selects
the target relay combination Sc to maximize the system’s load loss
θr, while the defender allocates budget dr to reduce the relay failure
probability ρr(dr,d

s) to minimize losses.

(3) System Loss Calculation Layer (Third Layer): The system loss
ϕc(d) is jointly determined by the defense budget d and attack
strategy Sc. The loss function is expressed as:

ϕc(d) = ρr(dr,d
s) · θr

The core problem of the entire three-layer structure can
be represented by a typical Min-Max optimization problem. The
defender’s goal is to minimize system loss under the worst-case
attack scenario:

min
d∈D

max
k∈K
[ϕc(d) ·T

R(dt)]

where the system recovery time TR(dt) represents the time required
for the system to return to normal operation after an attack. It
depends on the budget dt allocated by the defender for identifying
and restoring the system. By optimizing dt, the defender can
accelerate the recovery process and reduce the total system loss.
After an attack, the defender must also consider how to optimize the
recovery time TR(dt), which is related to the identification system’s
budget dt:

TR(dt) = Ti −T(dt)

T(dt) = 2∆TR
1+ e−γ(d

t−Dt)

where Ti represents the recovery time of the distribution system
without an identification system, T(dt) is the time reduced by
deploying an identification system, ∆TR is the reduced recovery
time after installing the identification system, Dt is the minimum
budget required to install the identification system, and γ is a
parameter controlling the smoothness of the function. When the
budget dt exceeds a certain threshold Dt, the identification system
can significantly shorten the recovery time. However, when the
budget is insufficient, the reduction in recovery time is limited. By
optimizing dt, the defender can accelerate system recovery speed,
thereby reducing the total system loss.

3.2 Budget allocation strategy for security
measures

In power system defense strategies, rational defense
budget allocation is crucial for ensuring system security and
resilience. As relay security directly determines the system’s risk
resistance under cyber attacks, budget allocation must consider
both device-level and system-level defenses. Through mathematical
modeling, this paper explores how to allocate budgets for these
two types of defense measures under limited budget conditions to
optimize overall defense effectiveness. While the proposed model
assumes rational decision-making by both attackers and defenders,
we recognize that real-world scenarios often involve irrational or
unpredictable strategies by attackers. Attackers may not always
follow optimized or predictable paths due to limited information,
resource constraints, or other contextual factors. To address this
complexity, future extensions of this model could incorporate
stochastic elements, introducing randomness into the attacker’s
strategy selection. This would allow for a more robust defense
model that reflects the uncertainty and variability of real-world
cyber-physical system attacks.

3.2.1 Simplification and modeling of the
budget allocation problem

In the budget allocation problem, defenders need to find a
balance between device-level and system-level defenses to minimize
the EENS of the entire system.

The defender’s core objective is to minimize the system’s
expected loss by rationally allocating budgets dr and ds within
the budget constraint Dmax. The optimization problem can be
formulated as the following min-max problem:

min
d∈D

max
k∈K
[∑
r∈Sc

ρr(dr,d
s) · θr]

Where the attacker maximizes the system’s load loss θr by
selecting attack scenarios Sc, while the defender minimizes these
losses through budget allocation strategies dr and ds.

To simplify this bi-level optimization problem, it can be assumed
that the attacker chooses the worst-case attack scenario S

∗
c , i.e., the

attack strategy that maximizes system loss. Under this assumption,
the defender’s goal is transformed intominimizing system loss under
the worst-case attack scenario:

min
d∈D
∑
r∈S∗c

ρr(dr,d
s) · θr

The defender’s optimization process can be solved using
standard optimization algorithms (such as linear programming or
nonlinear programming). Based on the importance of each relay and
its load loss after failure, the defender rationally allocates defense
budgets dr and ds to ensure system loss is minimized when an
attack occurs.

3.2.2 Game strategies under incomplete
information

In scenarios with incomplete information, defenders and
attackers may not accurately understand each other’s full strategies.
Therefore, traditional complete information game models fail
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to accurately reflect real situations. In such cases, randomness
and expectation analysis in decision-making become particularly
important. Defenders can dynamically adjust their defense strategies
based on risk assessments of potential attack targets, while attackers
can choose optimal attack paths by inferring the defender’s strategy
from historical data. Tomore precisely characterize this uncertainty,
a Bayesian game model is introduced in this paper, enabling
defenders to make optimal decisions under uncertainty.

The Bayesian game model is used to describe how
participants make optimal strategic decisions based on each
other’s behaviors and type information under incomplete
information conditions. In Bayesian games, each participant’s
type is private information, and other participants can
only make strategic decisions based on known type
distributions.

Let the attacker’s type be θA and the defender’s type be
θD, both drawn from their respective type spaces with known
distributions. Each participant chooses the optimal strategy based
on their observed type and expectations of other participants’
types. This framework better aligns with real-world power systems,
as defenders may not know the attacker’s exact targets, and
attackers may be unclear about the specific protection strength for
certain relays.

The defender’s goal is to minimize system loss under incomplete
information. Assuming the attacker’s attack intensity on each relay
depends on their type θA, the defender allocates defense budgets dr
and ds according to their type θD. The defender’s loss function can
be expressed as:

LD(d,θD) = ∑
r∈S

ρr(dr,d
s) · θr

Under incomplete information, the defender can only estimate
expected losses based on the distribution of the attacker’s type P(θA).
Thus, the defender’s expected loss function is:

𝔼θA[LD(d,θA)] = ∫θA
LD(d,θA)P(θA)dθA

This expected loss function considers the loss weights brought
by different attacker types θA and is an important basis for the
defender’s decision-making.

The attacker’s goal is to choose the optimal attack strategy Sc
to maximize system loss. Assuming the attacker attacks based on
the defender’s type θD and defense strategy dr, their loss function
LA(d,θA) is expressed as:

LA(d,θA) = ∑
r∈S

ρr(dr,d
s) · θr

Under incomplete information, the attacker does not know the
defender’s exact defense strategy and can only estimate expected
losses based on the distribution of the defender’s type P(θD).
Therefore, the attacker’s expected utility is:

𝔼θD[LA(d,θD)] = ∫θD
LA(d,θD)P(θD)dθD

Based on this expected loss, the attacker chooses the optimal
attack combination Sc without knowing the defender’s strategy.

In the Bayesian game model, participants make optimal
decisions based on their own types and beliefs about other

participants’ types. Defenders and attackers make decisions based
on expected losses and utilities, aiming to find the Bayesian
Nash Equilibrium. The Bayesian Nash Equilibrium is the optimal
strategy combination made by participants after considering all
information (including the distribution of the opponent’s type and
their own type).

The conditions for Bayesian equilibrium can be expressed as:

d∗ = argmin
d∈D
𝔼θA[LD(d,θA)]

S∗c = argmax
Sc∈K
[LA(d,θD)]

Under Bayesian equilibrium conditions, the defender’s strategy
d
∗
minimizes expected losses across all possible attack types, while

the attacker’s strategy S
∗
c maximizes expected losses across all

possible defense types.

3.2.3 Optimization strategies under complete
information game theory

In practical scenarios, complete and incomplete information
games are applicable to different situations. For cases where
both attackers and defenders have a clear understanding of each
other’s resources and strategies, the incomplete information game
can be simplified to a complete information game. In complete
information games, as both parties have consistent knowledge of
system parameters, resources, and strategies, uncertainty need not
be considered, and the game can be directly transformed into a
zero-sum game problem. Next, the simplification of the bi-level
optimization problem using the Lagrange multiplier method within
the complete information game framework will be explored.

To transform the attacker’s budget constraint into a constraint in
the defender’s optimization process, the Lagrange multiplier λ_c is
introduced, forming the following Lagrangian function:

L(d,λc) = ∑
r∈Sc

ρr(dr,d
s) · θr + λc(C− ∑

r∈Sc

cr)

This Lagrangian function transforms the bi-level optimization
problem into a single-level optimization problem under the
attacker’s resource constraint ∑r∈Sc

cr ≤ C. The defender chooses
the optimal budget allocation strategy considering all possible
attack scenarios Sc, minimizing system losses in the worst-case
scenario. Through this approach, the defender can solve complex
game problems through simpler computationalmethods, enhancing
system security and robustness.

In addition to relay setting attacks, the optimization framework
could be extended to address other types of cyber threats, including
False Data Injection Attacks (FDIA) and Denial of Service (DoS)
attacks. FDIA,whichmanipulates data tomislead systemoperations,
could be integrated into the second layer of the model by
adding mechanisms for data validation and anomaly detection.
Meanwhile, DoS attacks, which impair communication networks,
could be addressed by incorporating network redundancy and
prioritizing critical communication channels in the system-level
defense budget allocation.
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4 Case study

4.1 Experimental design

The IEEE 123-node test system is a classic distribution network
test system used to study and verify various power system
optimization methods and defense strategies. The system comprises
123 nodes, forming a complete distribution network topology,
including main substations, lines, loads, and protective relays.
Through experiments on this test system, the impact of attack
and defense strategies on grid security, stability, and reliability can
be evaluated. In practical applications, the assumption that both
attackers and defenders act rationally may not always be valid.
Attackersmight deploy suboptimal or randomized strategies, driven
by motivations beyond simply maximizing system disruption. To
mitigate this, integrating probabilistic elements into the defense
strategy could further strengthen the system’s resilience. By
allowing the defense model to account for random or suboptimal
attacker behaviors, the overall effectiveness of the system’s defense
mechanism can be improved under unpredictable attack conditions.

The primary objectives of the experimental design are to
evaluate the effectiveness of various defense budget allocation
strategies and their ability to reduce EENS during ARSA and PRSA.
Specifically, the experiments aim to quantify the reduction in system
losses as a result of different budget allocations, and analyze the
system’s resilience under both single-relay and multi-relay attack
scenarios.

The experimental design is based on several key assumptions.
First, it is assumed that critical relays, such as those near substations,
are more vulnerable to attacks and thus require higher priority for
defense budget allocation. Second, the experiments assume a limited
total defense budget, which must be optimally allocated between
device-level and system-level defenses. Finally, it is assumed that
attackers are rational and aim to maximize system loss by selecting
optimal attack combinations, while defenders aim tominimize these
losses through strategic budget allocation.

Figure 1 shows the single-line diagramof the IEEE 123-node test
system. The system serves 85 concentrated loads with a total active
load of 3,490 kW(kW). Circuit breakers and reclosers are configured
at critical nodes to protect the main substation and its branch lines.
Each relay provides protection for specific line segments and serves
as a backup protection device for other relays. When certain relays
fail, others can take over their protective tasks, ensuring system
continuity and reliability.

To enhance the experiment’s realism, seven protective relays
were added to line segments (13–18), (13–52), (18–135), (67–97),
(67–72), and (76–86). These relays’ settings consider differences in
line load, distance, and conditions to ensure timely fault isolation
at critical nodes when attacked. The failure of each relay may lead
to load interruption, making rational defense budget allocation the
core of the experimental design. The experiment assumes that relay
R1 is located at the main substation and has undergone initial
reinforcement measures, with its failure probability approaching
zero, denoted as ρ1 ≈ 0. Other relays have no initial reinforcement
measures and have higher failure probabilities.

To optimize budget allocation, the experiment also assumes
the installation of an attack identification system. This system can
accelerate system recovery after an attack. The budget required for

the system is set at 30 (Dt = 30), reducing the system recovery
time from an initial 5 h (ρi = 5) to 3 h (∆TR = 2). The installation
of the attack identification system can significantly reduce power
supply restoration time. Attacks are divided into ARSA and PRSA.
ARSA directly modifies relay settings to trip under normal working
conditions, while PRSA delays relay response time during fault
conditions, expanding the system’s fault impact range.

Defense budget allocation must consider the importance of
relays in the system. Relays at the system’s core, such as those near
the main substation, will receive priority for more defense budget.
The successful attack probability ρdr for these relays can be reduced
to near 0 through reinforcement measures. For relays in secondary
system areas, basic protection is provided, and their successful attack
probability may remain at a higher level. This experimental design
ensures a comprehensive evaluation of attack and defense strategies.
System performance under attack is assessed through experimental
results under different defense configurations.

4.2 Results analysis

This section explores the impact of two types of attacks on system
performance through the analysis of single-relay and multi-relay
attack scenarios. The experiments were based on the IEEE 123-
node test system, combining different budget allocation strategies
to evaluate the changes in EENS under various attack scenarios,
thereby optimizing the defense budget allocation strategy.

4.2.1 Single-relay attack
In the experiments, the performance changes of individual relays

under attack were first analyzed. By comparing the performance of
various relays under ARSA and PRSA, the differences in the impact
of different attacks on system load loss were determined.

Figure 2 shows the Load Loss (LL) for each relay under ARSA
and PRSA with no defense measures. The figure reveals that PRSA
causes significantly higher load losses for relays R2, R5, R6, and
R7 compared to ARSA. For instance, PRSA attacks on R2 result
in load losses approaching 2.2MW, while ARSA losses are about
1.2 MW. This indicates that R2 is more significantly affected under
PRSA attacks, especially when this relay is upstream, where PRSA
can easily cause more widespread cascading outages. For relay R3,
the situation is reversed, with ARSA causing greater load losses than
PRSA,mainly because R3 is downstreamand its load ismore directly
affected by ARSA.

The experimental results reveal differences in the vulnerability
of single relays under different attack types, with PRSA being more
destructive to the system. Therefore, system protection strategies
should allocate different defense resources based on the importance
of different relays, with priority measures taken for critical relays
such as R2 and R5 to reduce their vulnerability under PRSA.

4.2.2 Multi-relay attack
In addition to single-relay attacks, multi-relay simultaneous

attacks were simulated to analyze their impact on system EENS.
Three groups of relays were selected for simultaneous attacks,
comparing the destructive power of ARSA and PRSA in these
scenarios.
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FIGURE 1
IEEE 123-node test feeder.

FIGURE 2
Comparison between ARSA and PRSA under different relay
protection devices.

Figure 3 illustrates the maximum EENS changes when one, two,
or three relays are simultaneously attacked. The results indicate
that in multi-relay attack scenarios, PRSA’s destructive power
significantly exceeds that of ARSA. For instance, when R3, R6, and
R7 are simultaneously subjected to PRSA attacks, the EENS reaches
17 MWh, while the same relay combination under ARSA attacks
only results in an EENS of 16 MWh. Particularly in the combined
attack onR2, R3, andR5, the load loss caused byPRSAnearly reaches

the system’s maximum limit, reflecting the high risk of multi-relay
PRSA attacks to the system.

The experimental results demonstrate that under multi-relay
attacks, PRSA is often more destructive than ARSA, especially
when multiple critical relays are simultaneously attacked. The
chain reaction caused by PRSA may lead to global power supply
interruptions. Therefore, when formulating defense strategies, the
system should adequately respond to the special effects of PRSA,
ensuring high system stability even when multiple relays are
simultaneously attacked.

4.2.3 Optimization effect of budget allocation
strategies

To further enhance the system’s attack resistance, the
performance of optimal and non-optimal budget allocation
strategies under different attack scenarios was evaluated through
experiments. The results indicate that rational budget allocation
strategies can significantly reduce EENS and improve the system’s
defense effectiveness.

(1) Comparison of Optimal and Non-optimal Allocation
Strategies

Figure 4 compares the impact of ARSA and PRSA on system
EENS under different budget allocation strategies. The figure shows
EENS changes under three different budget allocation strategies.The
red solid line represents the optimal allocation strategy considering
both ARSA and PRSA. As the budget increases, EENS gradually
decreases. When the budget reaches 30, the EENS reduction is most
significant, indicating that the system’s defense effect reaches its
optimal state at this point. As the budget further increases, EENS
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FIGURE 3
Comparison of maximum EENS under different attack scales for ARSA and PRSA methods.

changes become more gradual, indicating that the system’s overall
recovery capability is significantly improved under higher budgets.
The blue dashed line represents the defense strategy considering
only ARSA. Under higher budgets, this strategy shows good control
over system EENS, but at lower budgets, EENS exhibits higher
values, especially when the budget approaches 30, where the defense
effect is clearly inferior to the optimal allocation strategy. When
only ARSA is considered, the system shows greater vulnerability to
PRSA attacks and cannot effectively reduce EENS.The green dashed
line represents the defense strategy considering only PRSA. This
strategy performs excellently at lower budgets, with a large decrease
in EENS, but as the budget increases, its defense effect gradually
approaches that of the optimal allocation strategy. In terms of overall
defense effectiveness, it is still slightly inferior to the optimal strategy
considering both ARSA and PRSA.When the budget reaches higher
values, the PRSA strategy cannot achieve the optimal defense effect.

(2) Optimization Direction of Defense Strategies

Figure 5 illustrates the resource allocation proportions for
various systems and relays under different budget levels.The vertical
axis represents the budget allocation percentage for each defense
measure, ranging from 0% to 100%. The horizontal axis represents
budget size, varying from 50 to 500 units. Different colored areas
correspond to relays and systems, showing their dynamic allocation
proportions in the total budget as the budget changes.

At low budgets, the attack identification system (dt) occupies the
majority of the allocation proportion. As the budget increases, the
proportion of dt gradually decreases. This trend reflects that under

FIGURE 4
Comparison of EENS variations with budget changes under different
strategies.

limited resources, defense strategies focus more on ensuring basic
attack identification capabilities. However, as the budget increases,
the resources required for dt gradually decrease, shifting the focus
of resource allocation.
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FIGURE 5
Resource allocation trends at different budget levels.

Concurrently, the allocation proportion for system-wide defense
measures (ds) significantly increases with budget growth. At low
budgets, ds receives almost no resource allocation, but as the budget
increases, its proportion gradually expands, eventually becoming
the main object of resource allocation in high-budget situations.
This indicates a gradual shift in defense strategy from single-point
protection to comprehensive system protection to improve overall
defense levels.

Critical relays such as d2, d3, and d5 maintain relatively stable
allocation proportions across the entire budget range. Regardless of
budget increases, these relays consistently receive certain resources,
reflecting their continued importance in system security. In contrast,
d4, d6, and d7 have smaller resource allocation proportions but
receive some resources as the budget increases, reflecting further
expansion of system defense at higher budgets.

To further assess the robustness of the proposed defense model,
a sensitivity analysis was conducted to explore the effects of varying
budget levels and allocation strategies on system resilience. Three
different budget scenarios were considered: low-budget, medium-
budget, and high-budget.The sensitivity analysis revealed that while
higher budgets naturally lead to improved resilience and lower
EENS, the allocation strategy plays a critical role in maximizing the
effectiveness of the defense. Under low-budget conditions, focusing
resources on critical relays such as those near the main substation
resulted in significant reductions in EENS, while in higher-budget
scenarios, more resources could be distributed across secondary
relays, further improving system resilience.

The three-layer optimization defense model offers practical
applicability in various power system environments, especially those
facing resource constraints. By dynamically allocating the defense
budget across device-level and system-level protections, the model
ensures that critical relays receive priority in budget allocation,while
also addressing system-wide security measures. This adaptability
allows the model to be deployed in real-world scenarios, where
resource availability may fluctuate. Additionally, the model can be

easily integrated with existing power system security frameworks
due to its modular nature.

5 Conclusions and prospects

This research proposes a three-layer optimization model based
on game theory framework for defending against relay setting
attacks in power systems. By considering two types of attacks,
ARSA and PRSA, the allocation of defense budgets is optimized to
minimize expected energy losses under different attack scenarios.
The study utilizes zero-sum game theory concepts to establish a
strategy interaction model between defenders and attackers, further
verifying the effectiveness of this defense strategy in the IEEE 123-
node test system through experiments.

Through theoretical derivation and simulation experiments, the
following conclusions are drawn:

(1) Rational allocation of defense budgets can effectively reduce
expected energy losses when the system is subjected to relay
setting attacks.

(2) Active and passive attacks have significantly different impacts
on relays, especially in scenarios where multiple relays are
simultaneously attacked, with PRSA being more destructive.

(3) Experiments show that in low-budget situations, device-
specific defense measures contribute more to system security,
while in high-budget situations, system-wide defensemeasures
become more important.

This research primarily focuses on defending against relay
setting attacks, specifically ARSA and PRSA. However, other types
of cyberattacks, such as FDIA and DoS attacks, are also prevalent in
power systems. The current model does not directly address these
attack vectors. Future extensions of this work could adapt the three-
layer optimization model to cover a broader range of cyber threats
by integrating defense mechanisms against FDIA and DoS attacks,
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which target different system vulnerabilities such as data integrity
and network availability.
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