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As renewable energy continues to penetrate modern power systems, accurate
short-term load forecasting is crucial for optimizing power generation resource
allocation and reducing operational costs. Traditional forecasting methods often
overlook key factors such as holiday load variations and differences in user
electricity consumption behavior, resulting in reduced accuracy. To address
this, we propose an optimized short-term load forecasting method based on
time and weather-fused features using a ConvLSTM-3D neural network. The
Prophet algorithm is first employed to decompose historical electricity load data,
extracting feature components related to time variables. Simultaneously, the
SHAP algorithm filters weather variables to identify highly correlated weather
features. A time attention mechanism is then applied to fuse these features based
on their correlationweights, enhancing their impact within the time series. Finally,
the ConvLSTM-3Dmodel is trained on the fused features to generate short-term
load forecasts. A case study using real-world data validates the proposedmethod,
demonstrating significant improvements in forecasting accuracy.
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1 Introduction

Accurate electricity load forecasting, particularly short-term electricity forecasting
(STLF), is a vital component of the safe operation of contemporary power systems and
provides significant guidance for energy dispatch (Yang et al., 2022; Si et al., 2023).
However, on the electricity load demand side, with technological advancements and
changing climate conditions, the usage of new electric equipment such as electric
vehicles (EVs), air conditioners, and smart home devices has increased sharply (Ahmad
et al., 2022; Pijarski and Belowski, 2024). This surge in usage introduces greater uncertainty
into electrical load forecasts. Furthermore, electricity load is not only affected by weather
conditions such as temperature, humidity, and precipitation, but also influenced by
residential consumption habits at different times, such as holidays and weekly
seasonality (Yang et al., 2022). Accurate load forecasting is an effective method for
managing energy consumption, facilitating the production of a reliable electricity trade
market, and ensuring the frequency safety and stability of the new power system (Ahmad
et al., 2022). More importantly, as the complexity of power systems increases, the need for
precise forecasts becomes crucial (Abdolrasol et al., 2021). Therefore, it is imperative to
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improve load forecasting accuracy, prompting more researchers to
engage in this area of study.

Early load forecasting methods were primarily based on statistical
models, such as ARMA, ARIMA, and HAR. While these statistical
models have fewer parameters and offer relatively high computational
efficiency, they struggle to process nonlinear data, making it difficult
to meet the current demands of variable power load forecasting
(Ahmad et al., 2022). With the advancement of artificial
intelligence and the increased computing power of modern
systems, load forecasting methods based on artificial neural
networks (ANNs) have gained widespread use (Abdolrasol et al.,
2021). Mainstream ANNs used for power system load forecasting
include models like SVR, GRU, LSTM, and BP neural networks.
Compared to statistical methods, ANN-based models can effectively
capture the temporal characteristics of nonlinear data, leading tomore
accurate predictions (Liu et al., 2018; Wang et al., 2012). However, the
performance of these models is highly sensitive to the choice of
structural parameters and the quality of the training data. This can
result in issues such as overfitting or underfitting. Additionally, these
models require data sets with high integrity and appropriate sampling
rates (Wazirali et al., 2023). The large variations in load data collected
across different devices and regions also place high demands on the
robustness of prediction models. Consequently, despite their
advantages, ANN-based models may struggle to meet the evolving
needs of today’s load forecasting (Ding et al., 2015).

With the continued advancement of artificial intelligence, load
forecasting methods based on deep learning models have been
widely adopted in recent years. Compared to traditional artificial
neural networks, deep learning models feature more hidden layers
and possess powerful feature extraction capabilities. For example,
reference (Dong et al., 2024) proposes a multi-node load forecasting
method for power systems using a deep learning multi-time scale
convolutional model integrated with a Transformer model. This
fused model excels at capturing the temporal and spatial
characteristics of data, resulting in notable improvements in
multi-node power system load forecasting. Similarly, reference
(Zhuang et al., 2023) leverages a graph attention network and a
one-dimensional convolutional neural network to extract the
temporal and spatial characteristics of regional loads, allowing
the model to better explore the spatial dependencies of regional
loads and provide richer feature variables for prediction. Reference
(Huang et al., 2023) introduces a deep learning model combining
Spearman correlation, GCN, and GRU. The Spearman correlation
coefficient quantifies the relationship between loads at different
nodes, while the GCN captures spatial correlations, and GRU
mines the temporal relationships within the data. A well-
designed deep learning model can fully explore the latent features
in data, playing a critical role in enhancing prediction accuracy.
Given the complexity of feature variables involved in short-term
load forecasting—particularly for bus loads—the model employed in
this paper must have strong feature extraction capabilities.

In short-term load forecasting, the selection of training features
is crucial to achieving accurate predictions. Current time-series-
based prediction methods typically utilize historical data,
meteorological data, and calendar data for forecasting (Liu et al.,
2020). However, the influence and weight of different
meteorological and calendar data on load forecasting vary
significantly. Using these data directly as features can result in

suboptimal predictions, and an excessive number of features can
introduce redundancy. Furthermore, calendar data generally only
include broad information such as holidays, weekdays, and
workdays, which fails to capture the specific effects of various
time-related factors on load (Dahl et al., 2018). To address these
limitations, reference (Yang et al., 2023) employs multidimensional
time domain features as model inputs for forecasting. First, a load
feature decomposition model based on a periodic trend
decomposition algorithm is constructed to obtain feature
components that reflect the load’s trend, periodicity, and
randomness. Similarly, reference (Zhan et al., 2022) decomposes
load data into a series of sub-modal data with different central
frequencies through variational mode decomposition, and clusters
these sub-modal data to extract feature quantities of different
frequency centers. Reference (Chen C. et al., 2024) introduces
derivative terms, using the difference between vector values as
supplementary features to capture load change characteristics
across different time periods. While these methods have achieved
certain improvements by optimizing feature selection, they do not
comprehensively consider the influence weights of specific features,
such as time and weather features. Thus, further optimization of
feature processing is still needed to enhance the accuracy of short-
term load forecasting.

Building on these approaches, this paper proposes a short-term
load forecasting method that integrates time and weather fusion
features with a ConvLSTM-3D neural network. First, the historical
power load data is preprocessed to align with corresponding
timestamps and labeled with relevant data such as holidays,
years, seasons, months, weeks, workdays, and non-workdays.
Next, the Prophet algorithm is employed to extract time feature
components from the dataset, generating various feature quantities
related to power load. Concurrently, the SHAP algorithm is utilized
to filter weather variables, identifying the most strongly correlated
weather feature components. Based on the correlation weights of
these feature components, a time attention mechanism is applied to
fuse the features, effectively combining the time and weather
components while increasing their respective influence on the
time series. Finally, the fused features are input into the
ConvLSTM-3D model to train the system and produce future
short-term power load forecasts.

2 Time-weather fusion features

2.1 Time component extraction using the
prophet algorithm

Compared to ultra-short-term load forecasting, short-term
power load forecasting operates on a relatively longer time scale.
As a result, power load is influenced by various time-related factors,
such as users’ power consumption habits, holiday patterns, and
power demand across different periods. Additionally, the impact
and significance of these time components on power consumption
vary. Therefore, to enhance the accuracy of short-term power load
forecasting, it is essential to incorporate diverse time components as
key features in the prediction model.

The Prophet algorithm, developed by Facebook, is a time series
forecasting tool designed to handle data with strong seasonality and
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is highly robust to missing data and sudden trend changes (Ceperic
et al., 2013). Compared to traditional algorithms, Prophet offers
simpler parameter tuning and allows users to adapt parameters to
different scenarios. In this paper, the Prophet algorithm is employed
to extract various time components from the original power load
data, including trend components, holiday characteristics, weekly
characteristics, and daily characteristics. The calculation expression
for this process is shown in Equation 1.

y t( ) � g t( ) + s t( ) + v t( ) + ε t( ) (1)
where y(t) represents the original power load, g(t) represents the
trend term, which represents the trend of the time series in the non-
periodic aspect, s(t) represents the periodic term; v(t) is the holiday
term, it represents the impact of the potential non-fixed periodic
holidays in the time series on the predicted value, ε(t) represents the
error term, which represents the fluctuation predicted by the model.

In the trend term, two important functions are employed: one
based on logistic regression (non-linear growth) and the other based
on piecewise linear functions (linear growth). The trend component
base4d on logistic regression can be expressed as Equation 2.

g t( ) � C t( )
1 + exp − k + a t( )Tδ( ) · t − m + a t( )Tγ( )( )( ) (2)

where C(t) represents the carrying capacity, which is a function that
changes with time and limits the maximum value that can grow. k
represents the growth rate, and m represents the offset. In addition,
the trend term expression based on the piecewise linear function is
in Equation 3.

g t( ) � k + a t( )Tδ( ) · t + m + a t( )Tγ( ) (3)

where k represents the growth rate, δ represents the change in the
growth rate, and m represents the offset. Since the short-term
forecast data of the load belongs to nonlinear growth, the growth
term is represented by logistic regression. For the periodic term, the
Prophet algorithm uses Fourier series to represent it, and its
expression is Equation 4.

s t( ) � ∑N
γ�1

aγ cos
2πγt
P

( ) + bγ sin
2πγt
P

( )( ) (4)

ρ � a1, b1, a2, b2,/, aN, bN{ } (5)
In the formula, P is the period in days; ρ is the set of smoothing
coefficients aγ and bγ, which satisfies the normal distribution; N is
the number of smoothing coefficients aγ or bγ, γ is the sequence
number of the smoothing coefficient. The holiday term can be
represented as Equation 6.

v t( ) � Z t( )κ (6)
where Z(t) is the regression matrix, and κ is the prior change
parameter corresponding to holidays.

On the other hand, the hyperparameters of the Prophet model
include the changepoint prior scale (CPS), seasonality prior scale
(SPS), and holiday prior scale (HPS). The CPS dictates the model’s
sensitivity to trend shifts, SPS regulates the strength of the seasonal
components, and HPS governs the magnitude of holiday effects. The
training and optimization process can be summarized as follows.

Define parameter ranges

CPS from 0.001 to 0.5

SPS from 0.01 to 10

HPS from 0.01 to 10

Initialize:

best_params as empty dictionary

best_perf as infinity

For each value in CPS

For each value in SPS

For each value in PHS

Set model parameters (cps, sps, hps)

Fit model on training data

Evaluate model on validation data using RMSE

If current RMSE < best_performance

Update best_performance to current RMSE

Update best_parameters to (CPS, SPS, HPS)

Output best_params and best_perf

Algorithm 1. The training and optimization process of Prophet algorithm.

2.2 Feature selection using SHAP algorithm

Different feature quantities have varying influence weights on
the load. To enhance the interpretability of these feature
components within the prediction model, this paper employs the
SHAP (Shapley Additive Explanations) model to explain the
contribution of each feature (Chen W. et al., 2024). SHAP is
rooted in game theory and not only measures feature
contributions in individual predictions but also aggregates the
overall explanation of the model for local results. By calculating
the Shapley value for each feature, SHAP provides the average
contribution of each feature to the model’s predictions. The
larger the SHAP value, the greater the influence of that feature
on the model. Based on these values, features can be ranked,
allowing us to identify which ones have the most significant
impact on the prediction. For a load model, it can be
characterized as Equation 7.

f̂ x( ) � β0, β1x1, . . . , βpxp( ) (7)

The influence of feature xp on the output result is related to its
corresponding coefficient. Accordingly, the incremental
contribution of feature xp is shown in Equation 8.

ϕj f̂( ) � βjxj − βjE Xj( ) (8)

The Shapley value is calculated based on the average marginal
contribution. For a given feature set S, the Shapley value for feature i
is calculated using the following Equation 9:

ϕi v( ) � ∑
S⊆F| i{ }

S| |! F| | − S| | − 1( )!
F| |! · v S ∪ i{ }( ) − v S( )( ) (9)

where ϕi(v) represents the SHAP value, v(S) represents the
predicted output when the model only uses the feature set S, |S|
is the number of features in the set S, |F| is the total number of all
features, and v(S ∪ i{ }) − v(S) represents the marginal contribution
when feature i is included compared to when it is not including.
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2.3 Feature reconstruction based on
attention mechanism

Since different feature components have varying influences on
the load across different time periods, using the original feature data
for prediction may reduce the influence weight of certain features
over time. To address this, a time attention mechanism is applied to
reconstruct the fused features. This paper employs an attention
mechanism based on the LSTM computing unit to reconstruct the
time series with different feature components, optimizing their
impact on the time scale. The structure of this approach is
shown in Figure 1.

Taking fusion featuresXk � (xk
1 , x

k
2 ,/, xk

L) ∈ RL as an example,
the similarity score between the hidden state and different attributes
in LSTM is calculated based on the hidden state ht-1 at time t-1. This
score is then input into the Softmax function for normalization. The
normalized similarity score is used to update the new feature
sequence. After feature fusion, its expression can be represented
as Equation 10.

Xk � xk
1, x

k
2 ,/, xk

L( ) ∈ RL (10)

where Xk represents the fusion feature with k dimensions, and L
represents the time length of the feature component. The input
component after feature encoding is expressed as Equation 11.

εkt � Vε tanh Wεcct−q +Wεhht−1 + bi( ) (11)

where Vε, Wεc,and Wεh are parameters obtained based on LSTM
structure training. The weight coefficients corresponding to
different feature components can be expressed as Equation 12.

akt �
exp ξkt( )∑n

i�1
exp ξ it( ) (12)

The feature components reconstructed through the attention
mechanism can be represented as Equation 13.

~xt � a1t x
1
t , a

2
t x

2
t ,/, ant x

n
t( )T (13)

The combination of Prophet and SHAP uniquely addresses the
limitations of traditional feature extraction and selectionmethods by
leveraging Prophet’s robust decomposition of complex time series
patterns into trend, seasonality, and holiday effects, while SHAP
provides precise, interpretable feature importance. This synergy

FIGURE 1
Feature reconstruction model based on attention mechanism.

FIGURE 2
Feature reconstruction model based on attention mechanism.
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FIGURE 3
Forecasting model structure based on ConvLSTM. (A) ConvLSTM model structure diagram. (B) Internal structure of ConvLSTM unit.

FIGURE 5
Short-term load forecasting model structure based on fusion features and deep learning.

FIGURE 4
Prediction model structure based on ConvLSTM.
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TABLE 1 Important information of the measured data set.

Details Sampling Rate (min) Latitude and longitude Experimental Division

Load Region1 15 (30.035000, 120.579000) Prediction Performance Validation

Region2 15 (29.695000, 120.840000) Robustness Validation

Region3 15 (29.748000, 120.385000)

Weather Surface Temperature 15 --- Prediction and Robustness Experiments

Wind Speed, Wind Direction 15

Humidity 15

Surface Pressure 15

Total Cloud Cover 15

Solar Irradiance 15

FIGURE 6
Temporal feature components extracted using the Prophet algorithm.

FIGURE 7
Error distribution of the Prophet algorithm for annual load forecasting.
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ensures enhanced interpretability, accurate feature attribution, and
the ability to manage complex, nonlinear interactions, resulting in
more robust and explainable forecasting models. Furthermore, the
fusion features are optimized through the attention mechanism,
effectively refining the impact of various feature components over
different time scales. The process of constructing weather features
based on time and weather fusion used in this paper is shown
in Figure 2.

3 Construction of short-term load
forecasting model

The fusion features constructed using the above method
incorporate both time feature components and important
weather feature components, with all components represented as
time series. As a result, the fusion feature can be viewed as a three-
dimensional feature with a time series dimension (Wang et al.,

2021). To effectively model this, the ConvLSTM-3D deep learning
network, which uses ConvLSTM as its basic structural unit, is
adopted as the prediction model. The short-term load forecasting
model and process developed in this paper are illustrated in Figure 4.

Compared to standard ConvLSTM, ConvLSTM-3D applies
three-dimensional convolution operations in the input gate,
forget gate, output gate, and cell state update, allowing for better
handling of three-dimensional data (Moon et al., 2020; Mohammad
et al., 2023). The input to each gate of the ConvLSTM unit contains
three elements: memory information from the previous unit, output
from the previous unit, and the input at the current time
step. ConvLSTM consists of an input gate, forget gate, output
gate, and memory unit. The model’s network structure is
depicted in Figure 3A, while the schematic diagram of the
internal structure of the unit is shown in Figure 3B (Guo et al.,
2021; Alhussein et al., 2020).

3.1 Input gate

The input gate determines which parts of the current input should
be updated in the memory cell. This process involves two steps: first,
the sigmoid layer determines which information needs to be updated,
and second, the tanh function generates candidate information. The
structure of the input gate can be expressed as Equation 14.

it � σ Wxipχt +WhtpHt−1 +WctpCt−1 + bi( )
~Ct � tanh Wxcpχt +WhcpHt−1 + bc( ){ (14)

where it and ~Ct represent the output of the input gate and the
backup information of the memory unit respectively, xt is the input
data at the current time t, Ct−1 is the state information before the
memory unit,Ht−1 is the output of the previous hidden layer unit of
the ConvLSTM unit, W and b are the weight and bias of the input
gate, respectively. σ represents the sigmoid activation function, tanh
represents the hyperbolic tangent function, and p is the
convolution operation.

3.2 Forget gate

The forget gate selectively discards unnecessary information
from the memory unit from the previous time step. The forget gate
can be expressed as Equation 15.

ft � σ Wxfpχt +WhfpHt−1 +WcfpCt−1 + bf( ) (15)

whereWxf represents the weight of the information of the input layer
flowing into the forget gate at this moment,Whf represents the weight
of the final result of the previous hidden layer neural unit when the
forget gate is input, Wcf represents the weight of the memory unit
state at the previous moment flowing into the forget gate, and bf
represents the bias parameter when the forget gate is calculated.

3.3 Memory cell

The current memory unit state information Ct is updated by
describing the past long-term state and the current state. The process

FIGURE 8
Feature component contribution analysis based on SHAP values.

FIGURE 9
Feature importance ranking based onmean absolute value SHAP.
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FIGURE 10
Comparison of forecasting results from different methods across different periods. (A) weekday load forecasting results. (B) holiday load
forecasting results.

FIGURE 11
Comparison of forecasting results from different methods across different periods. (A) weekday load forecasting results. (B) holiday load
forecasting results.
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of updating the state information can be specifically expressed as
Equation 16.

Ct � ftpCt−1 + itp~Ct (16)

3.4 Output gate

The output gate also consists of two parts. One part is the
information input Ot,obtained by combining the short-term
memory with the current input information (the output of the
output gate at the current moment), and the other partHt is the final
output after combining the long-term memory (the output of
ConvLSTM at the current moment) which can be expressed as
Equation 17.

Ot � σ
Wxopχt +WhopHt−1+

WcopCt + bo
( )

Ht � otp tanh Ct( )

⎧⎪⎨⎪⎩ (17)

Compared with the traditional ConvLSTM model, this paper
changes the loss function of the traditional ConvLSTM to make it
more suitable for data features based on three-dimensional feature
sequences. Its calculation is Equation 18 (Wang et al., 2021):

SSIM x, y( ) � l x, y( )[ ]a• c x, y( )[ ]β• s x, y( )[ ]γ (18)
where l(x, y), c(x, y), and s(x, y) represent brightness similarity
index, contrast similarity index and structure similarity index
respectively. The structure of the prediction model is shown in
Figure 4. The short-term load forecasting process based on fusion
features and ConvLSTM-3D model is shown in Figure 5.

4 Case analysis

4.1 Data description and experimental
simulation platform

To verify the effectiveness of the fusion features and deep
learning models proposed in this paper for short-term load
forecasting, relevant measured data from a power grid company
in a region of Zhejiang is used. The load data covers the power

consumption of certain areas in the region from 2021 to 2023, with a
sampling rate of one data point every 15 min. The weather data
includes information such as surface temperature, wind speed, wind
direction, and humidity from various areas within the region, also
recorded at the same sampling rate. Key information about the load
and meteorological data is summarized in Table 1.

For verification, this paper uses the total social load data of a city
in the region, with 80% of the data used as the training set and the
remaining 20% for the test set. Additionally, to verify the robustness of
the proposed method, load data from three other regions is used as
supplementary verification, with corresponding meteorological data
from these regions included. To compare and assess the
computational efficiency of different experimental methods, all
experiments are conducted on a unified experimental platform.
The software platform is built using Python-based TensorFlow and
PyTorch, while the hardware platform consists of an Intel Core i7-
11700 (CPU) and an NVIDIA GeForce GTX 1660 Ti (GPU).

4.2 Evaluation metrics

In order to verify the prediction effect of the fusion features and
deep learning model proposed in this paper on short-term power
load, this paper uses the root mean square error (RMSE), mean
absolute percentage error (MAPE) and determination coefficient (R
square, R2) as the evaluation of the prediction model. Among them,
RMSE is used to measure the distance between the actual value and
the predicted value. MAPE is used to measure the percentage of the
difference between the actual value and the actual value. R2 is used to
measure the degree of explanation of the model for data changes. Its
range is 0–1, and the larger the value, the better the model fits the
sample (Wang et al., 2020; Bashir et al., 2022). The related
calculation formulas are as Equations 19–21.

RMSE �
�����������
1
n
∑n
i�1

yi − ŷi( )√
(19)

MAPE � 1
n
∑n
i�1

yi − ŷ

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣p100% (20)

R2 � 1 −
∑n
i�1

yi − ŷ( )2
∑n
i�1

yi − �y( )2 (21)

where yi is the actual observation value, ŷi is the predicted value, �y is
the average of the actual observation values, and n represents the
total number of observation points.

4.3 Forecasting results analysis

4.3.1 Temporal feature extraction results
In the experiment, the Prophet algorithm was first applied to

extract various time components of the region, with the results
shown in Figure 6. And the error distribution of the
Prophet algorithm for annual load forecasting is shown in
Figure 7. As seen in the figure, the trend, holiday, week, and day
components all have a significant impact on the overall power load
in the region. Based on these observations, the trend, holiday, week,

TABLE 2 Forecast results derived from the GFC-2014 model.

Periods Models RMSE MAPE (%) R2

Weekday LSTM 71.3 6.4 0.81

CNN-LSTM 65.7 5.5 0.83

ConvLSTM 61.9 5.2 0.84

ConvLSTM-3D 68.8 5.3 0.88

Holiday LSTM 61.7 5.9 0.87

CNN-LSTM 64.5 6.8 0.84

ConvLSTM 59.3 3.9 0.91

ConvLSTM-3D 58.5 3.7 0.92
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and day components were selected as the key time characteristics for
the region.

In addition, the SHAP algorithm was used to identify important
weather feature components. SHAP quantifies the contribution of
each feature to the forecast results, enabling the identification and
explanation of weather features that significantly impact the model’s
predictions (Yang et al., 2024). This method not only enhances the
transparency of the model but also provides a scientific basis for
further meteorological research and decision-making. The results of
the SHAP analysis are shown in Figure 8.

As seen in the figure, temperature changes have the greatest
impact on power load among the weather characteristics. Significant
fluctuations in output occur as the temperature increases or
decreases. It is worth noting that total cloud cover has a much
smaller impact on the output compared to the other six
characteristics. Due to its minimal contribution, it is difficult to
quantify using the SHAP algorithm and thus is not displayed in the

figure. To more intuitively assess the importance of different
meteorological components on the load, the average absolute
SHAP value of each weather characteristic is used to rank their
importance. The results of this ranking are shown in Figure 9.

The weather features were determined and selected based on the
SHAP threshold value. In this study, a SHAP threshold of 200 was
applied to distinguish the main contributors to feature importance
from features exhibiting a rapid decline in importance.
Consequently, the selected weather features in this research
include temperature, irradiance, and surface pressure.

4.3.2 Forecasting result analysis
To verify the superiority of the method proposed in this paper, an

ablation experiment was conducted to compare different feature sets
and prediction models. For feature selection, the comparison includes a
single time feature component, a single weather feature component, and
the fusion feature component recommended in this study. Regarding

FIGURE 12
Forecasting results for different feature components and different time period. (A) Prediction result curves under different feature quantities during
the non-holiday period (April 1 to April 3). (B) Prediction result curves under different feature quantities during the holiday period (May 1 to March 3).

FIGURE 13
10 Average prediction error distribution under different feature components.
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the prediction models, a comparative analysis was performed between
LSTM, CNN-LSTM, ConvLSTM, and ConvLSTM-3D (the model used
in this paper). Additionally, to determine whether different time periods
capture the characteristics of Chinese holidays, power load data from
May 1st to May 3rd (during National Day) was compared with power
load data from non-holiday periods in the region to evaluate the
prediction performance. The 72-hour-ahead prediction comparison
results are illustrated in Figure 10.

Figure 10A shows the load forecast curve from April 1 to 3 April
2023, representing the forecast results for non-holiday periods, while
Figure 8B displays the load forecast curve fromMay 1 to 3 May 2023,
representing the forecast results for holiday periods. By comparing
and analyzing Figures 10A, B, it is evident that the power load in this
area shows a noticeable upward trend during the holidays.
Additionally, the load forecasting model proposed in this paper
demonstrates superior performance in predicting power loads
during both holiday and non-holiday periods.

To further validate the superior capabilities of the proposed
forecasting models, supplementary experiments were conducted
using a publicly available dataset from the Global Energy
Forecasting Competition 2014 (GFC-2014), as referenced in
research (Hong et al., 2016). The results of these additional
forecasting experiments are presented in Figure 11.

And the statistic of the forecasting performance of these
comparison methods are summarized as Table 2.

It can be observed that the method ConvLSTM-3D proposed in
this research get the best performance across different period. This is
because the superior capability capturing the spatial-temporal
correlations of the fusion feature datasets. By comparison, the
LSTM get the worst performance across the holidays as the load
consumption behaviors cannot be captured by solely temporal
models. And the CNN-LSTM forecast better than LSTM, because
the CNN module can fill this gap. ConvLSTM better captures
spatiotemporal features by directly modeling spatial and temporal
dependencies through convolutional operations, while CNN-LSTM
may lose information by separating spatial and temporal modeling.
And ConvLSTM-3D enhances ConvLSTM by using 3D convolutions
to capture spatiotemporal dependencies simultaneously, providing
superiormodeling of complex dynamics in tasks like video processing.

4.3.3 Ablation study based on feature analysis
To further validate the performance improvement of the short-

term load forecasting method based on time-weather fusion features
proposed in this paper, a comparative analysis was conducted. This
analysis includes time features based on Prophet feature
components, weather features derived from weather components,
and fusion features combining both time and weather components.
The experiment was performed using identical model parameters
and training data for consistency.

The load forecast results were compared for non-holiday periods
(April 1st to April 3rd) and holiday periods (May 1st toMay 3rd), with
the forecast result curves presented in Figure 12. Additionally, to
further analyze the error distribution across different feature
components, Figure 13 displays the average forecast error for the
two forecast periods.

The results indicate that the prediction error distribution when
using only Prophet feature components or only weather feature
components is relatively divergent, whereas the prediction error
with time-weather fusion features is more concentrated. This
observation can be attributed to the inherent differences in power
load characteristics among users during different time periods in
short-term load forecasting. For instance, residents’ power
consumption habits vary significantly between weekdays and
holidays and demonstrate a correlation with weather conditions.
Employing a model that relies solely on weather features or time

TABLE 3 The experimental results of ablation based on feature analysis.

Forecast Region Period RMSE MAPE (%) R2

Prophet Features April 1 - April 3 70.2 6.3 0.82

May 1 - May 3 63.5 5.8 0.85

Weather Features April 1- April 3 62.1 5.4 0.83

May 1 - May 3 67.4 6.1 0.75

Economic and Demographic Features April 1- April 3 63.2 5.8 0.85

May 1 - May 3 65.2 6.3 0.82

Time-Weather Fusion Features April 1 - April 3 58.2 3.8 0.92

May 1 - May 3 58.8 3.6 0.91

TABLE 4 Five-fold cross validation test results.

Forecast Region Fold RMSE MAPE (%) R2

Region 2 1 58.3 3.6 0.93

2 60.2 4.2 0.91

3 59.1 3.5 0.92

4 63.5 3.7 0.92

5 64.1 4.0 0.93

Region 3 1 57.6 4.0 0.90

2 55.9 4.1 0.91

3 58.2 3.9 0.91

4 59.3 3.9 0.92

5 58.6 4.2 0.91
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features may lead to underfitting, ultimately resulting in lower
prediction accuracy. The specific prediction statistical indicators
are summarized in Table 3.

It is important to note that historical load data have been
incorporated with the aforementioned features. The results

demonstrated that the time-weather fusion features provided the
most accurate forecasts across various periods, as this combination
offers comprehensive insights into electrical consumption behaviors
and the influence of weather conditions. In contrast, features relying
solely on weather or social factors fail to capture a holistic

TABLE 5 Performance comparison across different time intervals with various baseline models.

Model category Model name 10 min/point 20 min/point

MAE (↓) RMSE (↓) MAPE (%) (↓) MAE (↓) RMSE (↓) MAPE (%) (↓)

Statistical methods ARMA 31.23 48.23 28.35 35.32 50.45 31.36

ARIMA 30.62 42.24 25.22 32.56 46.36 28.84

HAR 25.34 40.15 22.34 26.32 41.21 24.43

Based on RNN model method LSTM 14.38 24.59 12.13 14.14 23.84 12.25

GRU 14.56 25.13 12.32 14.52 24.43 12.33

CNN-LSTM 12.39 22.64 10.15 14.41 24.24 11.14

Transformer model-based approach Transformer 12.21 20.05 8.38 12.24 21.36 9.96

Informer 12.35 21.12 8.35 12.32 20.12 9.28

Autoformer 12.22 20.47 8.23 12.14 20.11 9.15

Methods in this article 6.36 14.13 5.35 7.62 18.12 8.14

Model Category Models 30 min/point 60 min/point

MAE(↓) RMSE(↓) MAPE (%) (↓) MAE(↓) RMSE(↓) MAPE (%) (↓)

Statistical methods ARMA 40.24 51.12 38.45 42.12 55.75 40.12

ARIMA 38.88 50.35 37.23 40.35 52.24 38.88

HAR 35.25 47.14 35.12 39.21 50.21 34.48

Based on RNN model method LSTM 23.74 40.35 26.65 30.46 47.84 28.84

GRU 24.12 40.21 26.56 60.55 92.37 29.56

CNN-LSTM 21.11 38.89 22.54 22.35 35.56 24.33

Transformer model-based approach Transformer 20.78 37.77 21.36 22.14 30.25 23.35

Informer 20.84 37.55 20.28 21.12 28.87 23.01

Autoformer 19.89 35.58 19.92 20.05 27.90 22.99

Methods in this article 15.44 21.34 14.22 19.36 35.21 17.3

FIGURE 14
Post-hoc Nemenyi statistics of prediction results of different prediction models.
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representation of load consumption across different periods,
neglecting variations in residents’ electricity usage patterns. The
analysis of the experimental results clearly indicates that the
proposed time-weather fusion feature significantly outperforms
individual time-based or weather-based feature components.

4.3.4 Model robustness analysis
To verify the robustness and anti-interference capability of the

model, 5-fold cross-validation was employed to evaluate the
prediction results. Specifically, the dataset was divided into five
distinct subsets. In each validation round, one of the subsets was
designated as the validation set, while the remaining four subsets
constituted the training set. The model was trained using the
training set and subsequently evaluated using the validation set.

Performance was assessed using metrics such as mean square error
and prediction accuracy, calculated after each validation round. This
process yielded five sets of performance evaluation results, enabling
analysis of the stability and generalization ability of the various
prediction models. Since the robustness test assesses the performance
of the model itself, independent of the training data, all comparison
models utilized the same dataset. The validation was conducted using
load data from regions 2 and 3, along with the corresponding
meteorological data. The prediction results are presented in Table 4.

The prediction accuracy of the short-term load forecasting
method recommended in this paper matches the performance
observed in the other two regions, demonstrating stability across
different test and validation sets. This indicates that the method
adopted in this paper is robust.

To thoroughly illustrate the improvements brought by the proposed
method in short-term load forecasting, the experimental section
compares and analyzes the prediction results of various models.
Considering the differences between devices in different regions and
the potential impacts of varying data sampling rates on new energy
sources, this paper employs a downsampling method to enhance the
model’s prediction performance across different sampling rates. The
results are presented in Table 5. Additionally, post hocNemenyi tests are
used to statistically analyze the prediction performance across multiple
cross-experiments, with the statistical results depicted in Figure 14.

The horizontal axis in the chart represents the average ranking of
each method, displayed from right to left, with a color gradient
transitioning from black to blue. If the average ranking difference
reaches the critical difference (CD), it is highlighted with a red line.
For instance, the proposed model in this paper significantly
outperforms the GRU, RNN, HAR, ARIMA, and SARIMA
models. Similarly, the Autoformer model shows significantly better
performance than the RNN, HAR, ARIMA, and SARIMA models.
These statistical results underscore the superiority and robustness of
the method proposed in this paper for short-term load forecasting.

5 Conclusion

In existing short-term load forecasting approaches, the accuracy of
load predictions across regions (both temporally and spatially) is often
inadequate. This is primarily due to the lack of consideration for factors
such as holiday load variations and differences in user electricity
consumption behavior, making it challenging for prediction models
to extract correlations among complex feature variables. This paper

proposes a short-term load forecasting framework that integrates time
and weather fusion features with a ConvLSTM-3D deep learningmodel.

The framework consists of two key components: the construction
of time-weather fusion features and the development of the
ConvLSTM-3D prediction model. In the first stage, the
Prophet algorithm is employed to extract various time feature
components, followed by the selection of important weather
feature components using the SHAP algorithm. Finally, based on
the importance of the different feature components, the selected time
and weather features are reconstructed using an attentionmechanism.

In the second stage, the traditional ConvLSTM model is
enhanced to create a ConvLSTM-3D prediction model that is
suitable for the fused features, allowing for effective training and
prediction with the constructed fusion features. By comparing the
load prediction results across different algorithms, the proposed
method demonstrates advancements in short-term load forecasting
performance and the robustness of the model.
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