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Single-phase grounding fault is the most common fault type in the distribution
network. An accurate and effective single-phase grounding fault identification
method is a prerequisite for maintaining the safe and stable operation of the
power grid. Most neutral points of the active distribution network are grounded
through arc suppression coils. In the active distribution network, the power
supply in the network changes from one to multiple, which may change the
direction of the fault current. In this paper, the superposition theorem is used
to analyze the difference in the boosting effect of different types of distributed
generators (DG) on line mode current in the sequence network diagram when
DG is connected upstream or downstream of the fault point. Secondly, the
composition of the zero-mode transient current of the fault line is analyzed.
A judgment method based on the superposition diagram of transient zero-
sequence voltage and current is proposed. Then, this paper improves the
ResNest network and modifies the classifier of the last fully connected layer to
SVM. Finally, the model in PSCAD is used to simulate single-phase grounding
faults to obtain the training set and validation set. These datasets are used to
train and test AlexNet, ResNet50, ResNeSt, and ResNeSt-SVM. The results show
that under different fault points, transition resistances, DG access upstream
and downstream of the fault point, and different fault initial phase angles, the
ResNest-SVMmodel method can accurately identify the fault line and has better
anti-noise ability than the other three network structures.

KEYWORDS

active distribution network, zero-mode transient, single-phase grounding fault,
distributed line selection, neural network, ResNest-SVM

1 Introduction

With the large-scale integration of inverter-interfaced distributed generators (IIDGs)
into the distribution network, a new type of active distribution network with wind
and solar power (ADNWS) has emerged, distinct from traditional rotational power
sources (Meng et al., 2024; Shi et al., 2023; Yan et al., 2024). As the penetration
of distributed generation into the distribution network continues to increase, it
is important to study its impact on single-phase ground fault detection methods.
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In ADNWS, a small current grounding method is typically used,
and in such systems, the probability of single-phase ground faults
reaches up to 80%, similar to conventional distribution networks.
Arc extinguishing coils are generally used to extinguish arcs, and
to ensure safety, over-compensation is typically employed (Li et al.,
2023). This makes the characteristics of faulty and non-faulty lines
similar, thereby necessitating the development of new methods for
detecting single-phase ground faults in ADNWS.

Currently, the types of distributed generation in active
distribution networks are primarily focused on photovoltaic
(PV) systems and wind turbines. The commonly used models
for wind turbines are mainly divided into two types: one is
the distributed generation model with asynchronous motor
characteristics, and the other is the model with synchronous
generator characteristics (Yan et al., 2023). Since the DC power
generated by PV systems needs to be connected to the AC
distribution network through inverters, PV power sources are
classified as inverter-interfaced distributed generators. The use of
inverters introduces higher-order harmonics, so filters are often
installed between them and the main grid (Sajadi et al., 2023).
The presence of both PV systems and wind turbines in ADNWS
complicates the network and presents significant challenges for fault
identification.

In traditional distribution networks, fault identification
methods are typically classified based on electrical quantity
characteristics into steady-state methods and transient methods.
Steady-state methods usually rely on the magnitude or polarity of
fault electrical quantities and different power flow directions for
fault detection and line selection. Transient methods, on the other
hand, utilize the magnitude and direction of transient electrical
quantities (Pirmani et al., 2024). In (Li et al., 2021), the transient
zero-sequence admittance method is employed, using the principle
that the transient zero-sequence impedance upstream of the fault
point is always greater than the transient zero-sequence impedance
downstream of the fault point for the fault location. In (Li et al.,
2020), the discrete wavelet transform algorithm is chosen to extract
the wavelet energy entropy of zero-sequence currents as a criterion
for detecting high-impedance grounding. This algorithm has led
to an improvement in the accuracy of high-impedance grounding
identification.

In an ADNWS system, researchers have analyzed how the
integration of different types of distributed generation alters the
line-mode network of a small current grounding system. The
fault indicator is determined based on the relative rate of change
between the zero-sequence current and the zero-sequence voltage
(Zhang et al., 2022). In networks with inverter-based power sources,
an active signal injection method is proposed to enhance the fault
characteristics, making it easier to identify the faulty line (Xu et al.,
2024). From the perspective of high-order harmonics generated
by inverter-interfaced power sources, literature (Rustemli et al.,
2023) notes that inverters produce the fifth and seventh harmonics,
which improves the reliability of harmonic identification. However,
the photovoltaic model is overly idealized and does not account
for the effects of filters connected after the inverter in real
scenarios. With the rise of artificial intelligence, some researchers
have also utilized it for fault identification. Literature (Yuan and
Jiao, 2023) employs the fundamental and harmonic components,
along with wavelet energy from electrical transient quantities,

to perform network fault detection. Due to the slow training
of deep networks, literature (Wang, 2022) uses the artificial bee
colony optimization algorithm to tune parameters of deep neural
networks (DNNs) and improves the bee colony algorithm with
network weight optimization methods. Literature (Yu et al., 2023)
proposes a semi-supervised learning model based on Generative
Adversarial Networks (GANs) to reliably identify fault feeders,
enhancing fault detection accuracy through the adversarial game
between the discriminator and the generator. Using neural networks
from the perspective of image feature extraction is less common;
literature (Zhang et al., 2023) constructs a fault line selection
model with a convolutional neural network incorporating an
attention mechanism, which first learns the zero-sequence current
at the feeder’s initial segment before fault recognition. Literature
(Guo et al., 2017) applies continuous wavelet transform (CWT)
to the transient zero-sequence currents of each feeder to obtain
the wavelet coefficient grayscale images for each feeder. These
images are then fed into a convolutional neural network (CNN) for
fault line selection. Literature (Hong et al., 2020) applies discrete
wavelet packet transform (DWPT) to the three-phase voltages,
zero-sequence voltage, and three-phase currents for time-frequency
decomposition, resulting in time-frequency spectrograms. These
spectrograms are then used as inputs to a convolutional deep belief
network (CDBN) for fault identification. The article constructs
the three-phase voltage and current data into two-dimensional
matrices, which serve as input data for aCNN for fault identification.
Literature (Wu et al., 2023) proposes using transient images as input
to a multi-head Long Short-Term Memory Convolutional Neural
Network (LSTM-CNN) for fault recognition, a method that can
improve issues with white noise. Despite these advancements, there
is still room for further improvement in the accuracy of AI-based
fault recognition methods.

It can be seen that the identification of single-phase grounding
faults in distribution networks is still primarily focused on
traditional networks, with limited research on active distribution
network scenarios. Meanwhile, the application of artificial
intelligence methods in detecting single-phase faults in active
distribution networks is still in its early stages. Therefore, this paper
proposes a method for identifying single-phase grounding faults in
active distribution networks based on an improved neural network
architecture. Compared to existing neural network architectures,
the proposed new architecture effectively improves the accuracy of
the validation set.

This paper first introduces specific models of wind turbines
and photovoltaics. Based on this, an active distribution network
architecture is constructed, using the superposition theorem to
illustrate the impact of distributed generation on line-mode current
at the fault location. Subsequently, the characteristics of zero-
mode current in fault lines within ADNWS are analyzed. Using
the superimposed plots of zero-sequence current and voltage
as a dataset for image recognition, an improved convolutional
neural network method for identifying single-phase grounding
faults in ADNWS is proposed. In the validation section, the
improvement in accuracy of the enhanced model compared
to previous models is analyzed. Considering the noise impact
brought by inverters and other power electronic components
in the ADNWS system, the method’s adaptability to noise is
further verified.
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2 The model of a wind-solar hybrid
active distribution network

2.1 Wind turbine model

The wind turbine model used in this study is an asynchronous
squirrel-cage motor. The model consists of the wind source,
wind turbine, pitch angle control, and the asynchronous squirrel-
cage motor. The model of the asynchronous generator is
illustrated in Figure 1.

2.2 Photovoltaic model

The photovoltaic model consists of a solar PV array, Maximum
Power Point Tracking (MPPT), DC-DC converter, and DC-AC
inverter modules.TheMPPT tracking algorithm used is the perturb
and observe method. The inverter control strategy employs the
PQ control method. After a single-phase ground fault occurs on
the line, the phase-locked loop in the control section acquires the
initial phase angle during the fault, allowing the control strategy
to adapt accordingly (Li, J. et al., 2022). The PQ control method
can independently and accurately regulate the active and reactive
power output of the inverter. By setting reference values for p and
Q separately, the inverter can flexibly respond to changes in load
demand and the grid’s reactive power adjustment requirements,
thereby helping to maintain voltage stability in the system. The
model shown in Figure 2 is used for integrating IIDG into the
distribution network.

2.3 Small current grounding system with
wind and solar integration

Active distribution networks often use small current grounding
systems to detect ground fault lines by collecting current and voltage
data from the lines. A distribution network structure with integrated
distributed generation sources is illustrated in Figure 3.

In Figure 3, F represents the ground fault point, with k feeders
connected to a 10 kV bus. T1 is the main transformer with a
transformation ratio of 110/10. The high-voltage side of the main
transformer is grounded through an arc suppression coil, indicating
that this system is a small current grounding system. T1 … Tk
represents grounding transformers, with a transformation ratio of
10/0.48 when DGn is an inverter-interfaced DG and 10/0.23 when
DGn is a rotationalDG. Fault points are shownon feeder 1, depicting
the situation both upstream and downstream of the DG connection,
while other lines are connected to several DGs.

3 Analysis of voltage and current
waveform characteristics after DG
integration

After integrating distributed generation sources into the existing
small current grounding system, it is necessary to analyze the line-
mode and zero-sequence currents and voltages. Voltage can be
derived from the current multiplied by the impedance through

FIGURE 1
Model of an asynchronous generator.

which the current flows; therefore, this study primarily focuses on
the analysis of electrical quantities related to current.

3.1 Equivalent impedance analysis of DG
and grid-connected transformers

The equivalent impedance of the feeder section with DG
integration is generally the combined impedance of the DG and
the grid-connected transformer. The combined equivalent positive-
sequence impedance of the DG and the transformer is ZDGx,
as shown in Equation 1.

ZDGx = (ZT +Zs)//Zm (1)

In the formula, ZT = RT + jωLT and Zm = Rm + jωLm represent
the leakage impedance and excitation impedance of the transformer,
respectively, and Zs = Rs + jωLs represents the equivalent
impedance of the DG.

When a rotating-type DG is connected, its role in the line mode
network is similar to that of a small-capacity power source (i.e.,
the main transformer), with the parallel impedance approximating
the transformer’s leakage reactance. In this case, Equation 2 can be
expressed as.

ZDGx ≈ ZT (2)

When an inverter-based DG is connected, its equivalent
impedance Zs is much larger than the line impedance and the
transformer’s magnetizing impedance. In this case, the equivalent
impedance Zs in the analysis of ground faults can be considered
nearly infinite. Thus, the impact of the DG’s impedance on the fault
current is negligible, as shown in Equation 3:

ZDGx ≈ Zm (3)
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FIGURE 2
Photovoltaic model.

FIGURE 3
Distribution network structure with DG access.

The role of inverter-based DG in the linemode network is similar
to that of a large-capacity load, having little to no impact on the line
mode network.This Section 3.2 mainly focuses on rotating DG.

3.2 Analyzing the impact of DG integration
on fault line current through sequence
network diagrams

By analyzing the sequence network diagram of the line,
the impact of multi-source distribution networks on the line
mode current at the fault point is evaluated. In the distribution
network structure shown in Figure 3, the DG on Feeder one is
connected either upstream or downstream of the fault point. The
equivalent circuit of a single-phase grounding fault in the line is
illustrated in Figure 4A.

Figure 4A, u f represents the virtual source at the fault point,
while u1 f , u2 f and u0 f denote the positive-sequence, negative-
sequence, and zero-sequence voltages at the fault point, respectively.

R f is the transition resistance at the fault point. Z1b1 and Z1b2
are the positive-sequence impedances from the DG (Distributed
Generation) access point to the fault point and the end of the
line, respectively, when the DG is connected downstream. Z1a1
and Z1a2 are the positive-sequence impedances from the DG
access point to the bus and the fault point, respectively, when
the DG is connected upstream. Z1Ln1 and Z1Ln2 are respectively
the positive-sequence impedances from the DG access point to
the bus and the end of the line, assuming that DG exists in
other lines. Z1L2 represents the positive-sequence impedance of the
healthy line without DG, and Z1T represents the positive-sequence
impedance of the main transformer. Z1d1, Z1d2 and Z1dn represent
the positive-sequence impedances of the faulted line, healthy line
L2, and healthy line Ln, respectively. ZDG1x, ZDG2x represent the
combined positive-sequence impedances of the DG and its grid-
connected transformer when connected upstream and downstream,
respectively. Z0a, Z0b represent the zero-sequence impedances of
the upstream and downstream segments of the faulted line at the
fault point, C0a and C0b represent the zero-sequence distributed
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FIGURE 4
Diagram of Current Phase Sequence Composition.

capacitances of the fault lines L2 and Ln. C02, C0n represent
the zero-sequence distributed capacitances of the fault lines L2
and Ln.

Figure 4B illustrates the composite network model for low-
current grounding faults: From the perspective of the fault point,
Z1a(Z1b), Z2a(Z2b) and Z0a(Z0b) represent the first, second, and
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FIGURE 5
Simulation diagram of the fault point at the upstream.

0th mode impedances upstream (downstream) of the fault point,
respectively; i1a(i1b), i2a(i2b) and i0a(i0b) represent the first, second,
and 0th mode currents upstream (downstream) of the fault point,
respectively.

When the fault line does not include a distributed generator
(DG), the upstream line mode impedance Z1a at the fault point can
be expressed as:

Z1a = Z1a2 +Z1a1 +Z1T1//⋯//(Z1di +Z1Li)

//⋯//[Z1Ln1 +Z1DGx
//(Z1Ln2 +Z1dn)] (4)

Z1DGx
represents the line mode impedance of the DG and its

transformer connected in the normal feeder. In the line mode
equivalent network of a conventional distribution network without
DG, the line mode impedance of themain transformer is very small,
so the impedance of the healthy line can be ignored. The equivalent
impedance Z1DGx

of a single DG is significantly larger than the line
mode impedance of the transformer. Therefore, Equation 4 can be
approximated as Z1a2 +Z1a1 +Z1T1.

When the fault line contains DG and the DG is connected
downstream of the fault point, the upstream impedance at the fault
point can be expressed as:

Z1a = Z1a2 +Z1a1 +Z1T1//⋯//(Z1di +Z1Li)

//⋯//(Z1Ln +Z1dn) ≈ Z1a2 +Z1a1 +Z1T1 (5)

Based on Equations 4, 5, it can be seen that the impedance
upstream of the fault point remains approximately unchanged,
regardless of whether the DG is connected. When the fault line does
not contain DG, the downstream sequence impedance Z1b at fault
point, as shown in Equation 6:

Z1b = Z1b1 +Z1b2 +Z1d1 (6)

When the fault line contains DG and the DG is connected
downstream of the fault point, the downstream impedance at the
fault point can be expressed as:

Z1b = Z1b1 + (Z1b2 +Z1d1)//Z1DG2 (7)

Since the impedance of a rotating DG Z1DG2 is much smaller
than that of the load and the line mode impedance, the downstream
line mode impedance at the fault point can be approximated as the
sum of the line mode impedance between the fault point and the
DG, and the combined linemode impedance of the DG and its grid-
connected transformer. Therefore, Equation 7 can be approximated
as Z1b1 +Z1DG2, which is smaller than the downstream impedance
in the absence of DG.

When the fault line contains DG and the DG is connected
upstream of the fault point, the upstream impedance at the fault
point can be expressed as:

Z1a = Zla2 + (Zla1 +ZlT1)//Z1DG1 (8)

From Equations 8, 4, it is evident that the upstream impedance
decreases when DG is connected upstream of the fault point. In this
case, the downstream impedance remains the same as it was without
the DG connection.

In summary, the integration of DG alters the line-mode network
of low-current grounding faults, reducing both the resistive and
inductive components of the line-mode impedance at both upstream
and downstream of the fault point. Consequently, when a rotating-
type DG is connected upstream of the fault line, the line-mode
current at the fault point is slightly larger compared to the situation
without DG.

As an example of DG integration upstream of the fault point,
the simulation results of the line-mode current in the faulted line
are shown in Figure 5.

From the analysis and simulations, it can be observed that
when the fault point is upstream, the rotating DG significantly
increases the line-mode current in the faulted line. In contrast, when
the inverter-interfaced DG is integrated, the line-mode current in
the faulted line remains almost unchanged. This indicates that the
integration of distributed generators affects the fault current in the
distribution network. When the fault point is downstream, both
the rotating DG and inverter-interfaced DG have an impact on
the single-phase ground fault line-mode current ̇I f , but the effect
is minimal.

To study the characteristics of transient zero-sequence current,
it is necessary to analyze the transient fault process. The simplified
zero-sequence transient equivalent circuit diagram of a normal
line, based on Figure 3, is shown below.

3.3 Transient zero-sequence current
characteristics

Since the high-voltage side of the step-up transformer for the
DG integrated into the grid is configured in a delta connection, and
the low-voltage side in a star connection, the zero-sequence circuit
of the DG is not connected to the grid, regardless of whether it
is an inverter-interfaced DG or a rotating DG integrated into the
ADNWS. Therefore, the steady-state and transient processes of the
zero-sequence current experience minimal changes. Consequently,
the analysismethods for small current grounding systems can still be
applied to ADNWS networks. In this study, the distinction between
faulted and normal lines is made using the waveform characteristics
of zero-sequence voltage and zero-sequence current.
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FIGURE 6
The zero-sequence transient equivalent circuit diagram when no fault occurs.

FIGURE 7
The images of zero-sequence voltage and zero-sequence current superposition when a fault occurs or does not occur on the line.

To study the characteristics of transient zero-sequence current,
it is necessary to analyze the transient fault process. The simplified
zero-sequence transient equivalent circuit diagram of the normal
line is shown in Figure 6A.

U0 represents the zero-sequence fault voltage, and it is assumed
that U0 = Um sin (ωt+ θ). C represents the line’s capacitance to
ground, while L and R represent the line’s inductance and resistance,
respectively.The current in a normal line is generally represented by
the capacitive current i0.

Based on the equivalent circuit diagram shown above,
the following differential equation can be formulated,
as shown in Equation 9:

R0ic + L0
dic
dt
+ 1
C
∫ icdt = Um sin (ωt+ θ) (9)

The solution for the current in the normal line, derived from the
differential equation provided earlier, as shown in Equation 10:

i0(t) = iCm[(
ω f

ω
sin θ sin ωt− cos θ cos ω ft)e−δt + cos (ωt+ θ)]

(10)

In this equation, iCm represents the amplitude of the transient
capacitive current, and δ(δ = (R/2L)) is the attenuation factor, ω
stands for the system’s power frequency, while ω f is the main
resonance frequency of the transient. Finally, θ denotes the initial
phase angle at the moment the fault occurs.

Based on Figure 3, the simplified zero-sequence transient
equivalent circuit diagram for a faulted line in a system
grounded through an arc suppression coil is shown in
Figure 6B.
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FIGURE 8
ResNest-SVM network structure diagram.
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FIGURE 9
Fault identification flow chart based on ResNest-SVM.

In this diagram, U0 represents the set zero-sequence fault
voltage, and it is assumed that U0 = Um sin (ωt+ θ). CΣ represents
the line’s capacitance to ground, while L0 and R0 represent the
line’s inductance and resistance. Lx and Rx are the inductance
and resistance of the arc suppression coil, respectively. The
zero-sequence current in the faulted line can be expressed
as the sum of the capacitive current from other lines ic and
the inductive current through the arc suppression coil iL,
as shown in Equation 11:

i0(t) = ic(t) + iL(t) (11)

The differential equation corresponding to the equivalent
circuit diagram shown above is expressed as follows,
as shown in Equation 12:

{{{
{{{
{

R0ic + L0
dic
dt
+ 1
C0
∫ icdt = Um sin (ωt+ θ)

RxiL + Lx
diL
dt
= Um sin (ωt+ θ) 

(12)

The solution for the faulted line current is given by,
as shown in Equation 13:

i0  (t) = (ICm − ILm) cos (ωt+ θ)

+ ICm ×(
ω f

ω
 sin θ sin ωt− cos θ cos ω f t) e

− t
τc

+ ILm cos θe−
t
τL (13)

In this equation, ICm and ILm represent the amplitudes of the
transient capacitive and inductive currents, respectively. τC and

τL are the decay time constants for the capacitive and inductive
circuits, ω is the system’s power frequency, ω f is the main resonance
frequency of the transient, and θ denotes the initial phase angle
at the moment of the fault. From the above equation, it can be
inferred that the transient zero-sequence current in a healthy line
is primarily composed of transient capacitive current, whereas the
transient zero-sequence current in a faulted line includes both
transient capacitive and inductive currents. Therefore, there is a
significant difference between the transient zero-sequence currents
of healthy and faulted lines.

The simulation results yield the superimposed plots of zero-
sequence current and zero-sequence voltage for both types of lines.
Analyzing Figure 7, it is observed that as the time approaches the
moment of fault occurrence, the zero-sequence current and the
derivative of the zero-sequence voltage in the faulted line are in
the same direction, whereas in the healthy line, they are in the
opposite direction (Gao et al., 2018; Su X et al., 2023).This indicates
a significant difference in transient characteristics between faulted
and non-faulted conditions, suggesting that neural networks can be
employed for fault identification.

In summary, the impact of both synchronous DG (Distributed
Generation) and inverter-based DG on the line-mode current
is minimal when the fault point is either upstream or
downstream. However, the transient process during the fault
contains a wealth of characteristic information, and these
transient components are not affected by the neutral grounding
method. Therefore, this study selects a time window after
the fault occurrence as the observation period to analyze the
transient quantities and extract characteristic components.
Compared to using steady-state information, this approach
offers higher feasibility for fault identification in low-current
grounding systems.

4 Fault identification based on
Convolutional Neural Networks

4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a type of
machine learning method used for image recognition. Classic
CNN models include LeNet-5 (LeCun et al., 1998), AlexNet
(Krizhevsky et al., 2017), and the ResNet neural network
introduced by Kaiming He (He et al., 2016; Mirza et al., 2023),
among others.

CNNs focus on capturing local features through the
convolution of kernels and reduce the number of model
training parameters while extracting local features from
images using pooling kernels or global pooling kernels
(Huang et al., 2023). In current CNN architectures, unsaturated
nonlinear functions, such as the ReLU function, are commonly
used as activation functions in convolutional layers. The
mathematical formula for the ReLU function is as follows,
as shown in Equation 14:

fcov(x) =max (0,x) (14)

CNN learns image features through a combination of linear
layers and nonlinear activation functions.
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FIGURE 10
Simulation model.

TABLE 1 Line parameters.

Line Type Phase sequence R/(Ω/km) L (H/km) C(F/km)

Overhead lines
Positive sequence 0.0127 9.34E-4 1.27E-8

Negative sequence 0.3860 4.13E-3 7.75E-9

Cable lines
Positive sequence 0.2700 2.55E-4 3.39E-7

Negative sequence 2.7000 1.02E-3 2.80E-7

TABLE 2 Ground fault parameters of the training dataset.

Fault conditions Parameter

Fault location 0.5, 1, 1.5, 2, 2.5, 3, 3.5 km from the first section of feeder 1, point②, point③

DG access to faulty line The distance between DG and the upstream and downstream is 1.5 km. When the distance is 0.5 and 3.5 km from the first section, the
distance is changed to 0.25 km

Fault phase angle 0°,30°,60°,90°,120°,150°

Fault point grounding resistance 0Ω,50Ω,100Ω,150Ω,200Ω,250Ω,300Ω,500Ω,750Ω,1000Ω

4.2 Overview of SVM basic principles

Support Vector Machines (SVM) are binary classification
models that operate as linear classifierswithmaximummargin in the
feature space, distinguishing them from perceptrons (Wang et al.,
2023). SVMs also incorporate kernel techniques, which

fundamentally transform them into nonlinear classifiers. The
learningmethod of SVMaims tomaximize themargin, which can be
formulated as a convex quadratic programming problem, equivalent
to minimizing a regularized hinge loss function. Essentially, SVM
learning methods are optimal algorithms for solving convex
quadratic programming problems.
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FIGURE 11
The diagram showing the changes in accuracy and loss values during
the training process of the AlexNet neural network.

The reference indicates that the Radial Basis Function (RBF)
kernel has a broad convergence range,making it adaptable to various
sample distributions (Anyanwu et al., 2023). Unless the unique
distribution of the samples is well understood and a specific kernel
function is chosen accordingly, the RBF kernel is considered an ideal
mapping function. Additionally, the RBF kernel is well-suited for
addressing binary classification problems.

4.3 ResNest and its improvements

Although ResNet stacks many network layers, its effective
depth remains insufficient. The network’s receptive field is not
large enough, which may lead to overfitting in certain cases. To
address these issues, researchers have proposed the ResNest50
neural network, which introduces a split-attention module and
divides the base group into R smaller groups (Wang et al., 2020).
This adjustment ensures that the channel dimension input into each
residual block is G = K×R . Finally, each residual block outputs the
required dimension for the next block through weighted fusion.

FIGURE 12
The diagram showing the changes in accuracy and loss values during
the training process of the Resnet50 neural network.

This paper is inspired by theResNest50 network architecture, the
SVM-RBF classifier, and the self-calibrated convolution (SCConv)
module in SCNet. In our approach, we replace the convolutions in
the group module with self-calibrated convolutions. Additionally,
we connect the SVM classifier with an RBF kernel after the final
fully connected layer to output the probability of the label, where the
highest probability indicates the fault line identified by the machine
learning model. The ResNest50-RBF-SVM network structure is
illustrated in Figure 8. The network first performs convolution
using a 7 × 7 kernel, followed by 16 residual layers. After passing
through a fully connected layer and a classifier layer, it outputs
the identification results. The residual layers incorporate the self-
correcting convolution module from SCNet.

The processing formula for self-calibrated scale space is as
follows, as shown in Equation 15 and Equation 16:

A′1 = Up(Down(A) ×K2) (15)

B′1 = F3(A1) + σ(A1 +A
′
1) (16)

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1501737
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Lian et al. 10.3389/fenrg.2024.1501737

FIGURE 13
The diagram showing the changes in accuracy and loss values during
the training process of the ResNest neural network.

Where A′1 represents the input and B′1 denotes the output
features. “Down” and “Up” refer to the downsampling and
upsampling operations, respectively, while K is the scale
transformation coefficient.

The self-calibrated branch significantly enhances the perceptual
range of the output features, leading to richer feature information.
This branch primarily focuses on spatial positional information,
which helps avoid overlooking data from areas that do not
require management, thereby reducing time consumption. The
self-calibrated branch has the capability to encode feature
information at various scales, making the feature content more
comprehensive. By utilizing the RBF-SVM, the model can better
leverage the information from the fully connected layer for binary
classification tasks.

4.4 Identification process

Thanks to the high sensitivity of secondary devices, zero-
sequence voltage and zero-sequence current on the feeder can
be obtained during the initial stages of a fault. The fault

FIGURE 14
The diagram showing the changes in accuracy and loss values during
the training process of the ResNest-SVM neural network.

identification process illustrated in Figure 9 ultimately provides
the line judgment results. The specific identification steps are
as follows.

(1) Simulation Data Acquisition: Using the simulation
model in PSCAD, zero-sequence voltage and
zero-sequence current are calculated from the
electrical quantities at the beginning of each
feeder. The identification algorithm is triggered if
the zero-sequence voltage exceeds a predetermined
threshold, typically set to be greater than 0.15UN
(Wang et al., 2019; Fan et al., 2021).

(2) Data Visualization and Preprocessing: After the algorithm
is initiated, data from the first quarter cycle of the zero-
sequence voltage and zero-sequence current are recorded,
with a sampling frequency of 40 kHz. Preprocessing includes
denoising, normalization. The denoising method used
is the moving average method, and the normalization
method is the maximum value normalization. The
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TABLE 3 High resistance ground fault parameters.

Fault conditions Parameter

Fault location 0.5, 1, 1.5, 2, 2.5, 3, 3.5 km from the first section of feeder 1, point②, point③

DG access to faulty line The distance between DG and the upstream and downstream is 1.5 km. When the distance is 0.5 and 3.5 km from the first section, the
distance is changed to 0.25 km

Fault phase angle 0°,30°,60°,90°,120°,150°

Fault point grounding resistance 1100Ω,1200Ω,1300Ω,1400Ω,1500Ω,1600Ω,1700Ω,1800Ω,2000Ω

TABLE 4 High resistance ground fault test results.

Accuracy Alexnet Resnet50 ResNest ResNest-SVM

λ (%) (include DG) 93.1 96.78 98.21 98.43

λ (%) (exclude DG) 93.43 96.82 98.35 98.86

formula for maximum value normalization is as follows,
as shown in Equation 17:

X∗ =
XTn

XT_ max
(17)

XTn
represents the magnitude of the electrical quantity at the

current time point, and XT_ max is the maximum magnitude of the
electrical quantity within the period T.

And finally resizing the images to 224 × 224 pixels, resulting
in images that overlay the zero-sequence voltage and zero-sequence
current waveforms.

(3) Model Training and Validation: The training dataset is input
into the ResNest network, allowing the network to learn the
features of the images and output judgments for each feeder
(with a fault line labeled as one and a normal line labeled as 0).
The trained model is then saved. A validation set containing
high-resistance grounding and noise is constructed, and after
passing through the ResNest network, the RBF-SVM classifier
is used to make the final judgment output for the feeders.

5 Simulation and validation

5.1 Dataset acquisition

The ADNWS system grounded through an arc suppression coil
is built on PSCAD/EMTDC, as shown in Figure 13. In the topology
diagram provided in Figure 10, the number of feeders is set to k = 4,
and the number of integrated DGs is n = 2, consisting of one wind
turbine model and one photovoltaic model. The inductance value of
the arc suppression coil is Lg = 0.3 H, and the lengths of the four
feeders are 4 km, 5 km, 4 km, and 5 km, respectively.The first feeder
is divided into sections of 1.5 km, 1.5 km, and 1 km, while the other
feeders are set to half of their lengths, as shown in Figure 10. The

segments closer to the bus are overhead lines, while those farther
away are cable lines. The line parameters are listed in Table 1. The
simulation sampling frequency is set to 40 MHz, and the moment
the fault begins is at 0.8 s.The timewindow for validating the impact
of DG on the line mode current is set to two cycles, while the time
window for training and validating the neural network is set to one-
quarter of a cycle.

Through simulations, multiple sets of zero-sequence voltage
and zero-sequence current data are obtained, and the superimposed
waveforms of the zero-sequence voltage and zero-sequence
current are created. The composition of the training set
is shown in Table 2.

Based on the above simulations, 1,080 fault scenarios were
collected, resulting in 4,320 superimposedwaveform images of zero-
sequence current and zero-sequence voltage for the feeders. The
superimposed waveform images were divided into training, testing,
and validation sets in a ratio of 5:3:2, serving as input for the ResNest
model. During training, network parameters were updated using the
stochastic gradient descent method, and the cross-entropy function
was used as the loss function to train the network. The model was
able to learn the characteristics of the faults, and the connected
layer was integrated with the RBF-SVM for binary classification of
the feeders to determine whether they were fault lines, ultimately
achieving fault identification with a certain accuracy.

5.2 Model training

Figures 11–14 illustrate the training processes of AlexNet,
ResNet50, ResNest, and the improved ResNest-SVM models,
respectively. As seen in the figures, the loss values for all four models
decrease with the number of iterations and eventually approach
zero. In terms of training accuracy, AlexNet’s accuracy surpasses
99% after 14 iterations, ResNet exceeds 99% after nine iterations,
ResNest reaches over 99% after seven iterations, and the improved
ResNest-SVM achieves over 99% accuracy after just six iterations.
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FIGURE 15
The diagram showing the data after adding white noise to the zero-sequence voltage and zero-sequence current data.

TABLE 5 Noise set test results.

Accuracy Alexnet Resnet50 ResNest ResNest-SVM

λ (%) (include DG) 88.39 90.43 93.25 97.62

λ (%) (exclude DG) 87.52 91.29 93.29 98.33

Among the models, ResNest-SVM demonstrates the fastest training
completion.

5.3 High-resistance grounding validation

High-resistance grounding identification has always been a
challenge in the detection of low-current single-phase grounding
faults. Prolonged high-resistance grounding can lead to arcing
overvoltage, which poses a risk to the lines. Therefore, it is essential
to validate high-resistance grounding separately. A validation set of
408 images was created by randomly selecting 102 fault scenarios
from the parameter settings in Table 3.

The accuracy of the validation λ is defined as the ratio of
the number of correctly identified samples to the total number of

samples. The accuracy of the four neural networks on the high-
resistance grounding validation set is shown in Table 4. From the
table, it can be seen that regardless of whether DG is connected, the
fault identification accuracy for high-resistance grounding across all
four neural networks is above 90%. Among them, ResNest-SVM
demonstrated the highest accuracy in high-resistance grounding
identification.

5.4 Interference resistance analysis

In actual ADNWS systems, power electronic devices such as
inverters can generate noise, which impacts the system’s current
and voltage and may affect the accuracy of fault identification.
Therefore, it is necessary to verify the accuracy of fault identification
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under noise interference. From the parameter settings inTable 2, 102
fault scenarios were randomly selected, and Gaussian white noise
was superimposed on the original signals to create a validation set
of 408 images, simulating the effect of power electronic devices.
As shown in Figure 12, the waveforms of faulty and normal lines
before and after the superposition of 40 dB Gaussian white noise
interference are illustrated.

As shown in Figure 15, after adding Gaussian white noise, the
initial transient portion of the waveform is not significantly affected,
while the latter part, which transitions into the steady state, exhibits
noticeable noise. The noise patterns closely resemble waveforms
subjected to various noise interferences in the distribution network.
After adding white noise ranging from 10 dB to 50 dB, the
accuracy of the four neural networks on the noise verification set
is shown in Table 5.

The introduction of noise altered some of the image features,
leading to a noticeable drop in accuracy. From the table, it can
be seen that regardless of whether DG is connected, the fault
identification accuracy for lines with added noise is lower than
that for high-resistance grounding verification across all four neural
networks. However, the accuracy of the ResNest-SVM network
remained above 95%, indicating that the ResNest-SVM network
proposed in this paper possesses strong anti-interference capabilities
and high adaptability.

6 Conclusion

This paper analyzes the potential impact of DG on the line
mode and zero mode structures of distribution networks, focusing
on sequence network diagrams for DG connected upstream and
downstream of fault points. The analysis results indicate that DG
integration can either approximate or increase the line mode
current observed by secondary equipment, with varying degrees
of augmentation depending on the type of DG. Further analysis
of the transient zero mode circuit reveals that the transient
zero mode current in normal lines consists solely of capacitive
current, while the transient zero mode current in fault lines is
composed of both capacitive and inductive currents, highlighting
significant differences in the transient zero mode currents between
fault and non-fault circuits. Therefore, zero mode voltage and
current with transient information are selected to form images
used as the basis for identifying single-phase grounding faults.
Finally, the paper proposes a fault identification process based
on an improved ResNest network. Comparative validation against
Alexnet, Resnet50, and ResNest on high-resistance grounding and
noise verification datasets demonstrates that the ResNest-SVM
network exhibits superior capabilities in identifying high-resistance
grounding faults and resisting noise interference.
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