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As the proportion of renewable energy and power electronics equipment
continues to rise, the level of rotational inertia decreases considerably,
resulting in severe frequency stability challenges to the power grid. It is
of great significance to accurately predict the frequency nadir following a
large disturbance. This paper proposes a novel data-model fusion-driven
approach for the prediction of frequency nadir. As the physics-driven part, a
Simplified Prediction Model (SPM) based on power-frequency polynomial fitting
is developed to quickly produce the frequency nadir. As the data-driven part,
Back Propagation Neural Network (BPNN) is deployed to correct the errors of
the SPM to achieve more accurate results. This serial integration scheme not
only obtains the final prediction result with higher accuracy, but also meets
the computational efficiency requirements of online prediction. Compared with
existing integration-driven methods, SPM only focuses on the active power-
frequency characteristics of the system, which retains the most critical effects
and greatly reduces the dependence of BPNN on sample data quality. Case
studies on a modified IEEE 39-bus system verify the effectiveness of the
proposed approach.
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1 Introduction

In order to realize the “dual carbon” development strategy, it is urgent to accelerate the
construction of a new power system. With the large-scale integration of clean and low-
carbon energy resources such as wind power and photovoltaic generation, the power system
with synchronous machines as the main body has gradually evolved to the system with
renewable energy as the main body, showing an increasingly decrease trend of rotational
inertia level, and the system’s frequency response capability is weakened remarkably.
Consequently, the frequency stability of the power system is facing severe challenges under
large power disturbances.

Frequency is one of the basic indicators to describe the operating state of the
power system. The frequency nadir consists of the maximum frequency deviation
and the frequency nadir time. It is not only the key indicator to judge whether the
frequency is out of the limit, but also regarded as the decision-making basis for
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appropriate frequency regulation control. It is very important
to quickly and reliably predict the frequency nadir
for frequency stability evaluation and control of large
power systems (Hatziargyriou et al., 2021).

At present, there are three typical methods to predict the
frequency nadir following disturbances: time-domain simulation
method, simplified model based method, and data-driven method.
The time-domain simulation is the most common used method for
analyzing the frequency response of a power grid, which builds
a time-domain model of each element of the system (including
different generation unitswith nonlinear control links), and converts
it into a series of differential algebraic equations to iteratively
calculate the accurate numerical solutions of each state quantity
of the power grid (Wen et al., 2023). Common time-domain
simulation software includes PSASP, PSD-BPA, DIgSILENT/Power-
Factory and PSS/E, etc. However, the time-domain simulation
method is often time-consuming when analyzing large-scale power
systems, which is more suitable for offline analysis of power grid
planning and accident recurrence, but not for real-time online
analysis of power grids with strong timeliness requirements. The
simplified model method usually solves the dynamic process of the
frequency response by retaining the rotor equation of motion and
the governor model, such as the average system frequency (ASF)
model (Chan et al., 1972) and the system frequency response (SFR)
model (Anderson andMirheydar, 1990; Liu et al., 2020; Egido et al.,
2009) decouple power and frequency by breaking the frequency
closed loop, and the analytical calculation of the frequency nadir
is realized; Shen et al., 2021; Wang et al., 2022b propose multi-
machine equivalent SFR models and derive their closed-form
solutions to solve the frequency response of power systems with
two or three regions. In summary, the simplified model is suitable
for online analysis scenarios with high speed requirements, but
the prediction accuracy needs to be further improved. With the
rapid popularization of wide area measurement system (WAMS)
in power grids, Phasor Measurement Unit (PMU) and Supervisory
Control AndDataAcquisition (SCADA) systems can obtainmassive
amounts of information about the operation of the power grid in
real time,makingmachine learning based on data analysis more and
more widely used in the power system (Kamruzzaman et al., 2021;
Yi et al., 2021; Bo et al., 2022). Data-driven method can effectively
deal with the nonlinear and complex problems of physical models,
and provide new solutions for the establishment of frequency
models of complex power systems solutions. However, its prediction
accuracy is heavily dependent on the quantity and quality of sample
data, the generalization ability is insufficient and the prediction
results often lack interpretability.

In order to meet the practical needs of the power system,
the simplified model can be combined with data-driven methods,
integrating the advantages of both methods, so as to improve
the overall performance and be suitable for solving complex
physical problems. Feng et al., 2021 discusses the feasibility of
integrating model-driven methods and data-driven methods for
online frequency stability evaluation. Han et al. (2022) embeds
frequency-response related physics in gated recurrent unit neural
networks through the basic input eigenquants and the embedded
physical knowledge, new input eigenquants are formed and used for
model training. However, how to efficiently combine the accurately

modeled frequency response model and the data-driven model to
achieve complementary advantages remains to be studied.

In this paper, the problemof frequency nadir prediction of a high
proportion of renewable energy power systems under large power
deficit is studied. Due to the computing speed requirements for real-
time applications, a Simplified Prediction Model (SPM) based on
system frequency response equivalent is developed. Compared with
the traditional frequency response model (Yang et al., 2022), the
SPM uses polynomials of different orders to fit the power frequency
characteristics of each frequency modulation resource, including
synchronous generator, renewable energy, load, and HVDC, so as
to analyze and calculate the maximum deviation of the frequency
and the frequency nadir time, which has the advantages of low
identification difficulty, simple form, and less required information.
Therefore, the SPM is selected to be a physical-driven link in this
paper to ensure the high computational speed of the fusion model.

The complexity of the data model is positively correlated with
the predicted effect, and at the same time, higher requirements
are put forward for the quality of data samples. Since this paper
only focuses on the active power-frequency characteristics of the
power system, in the serial ensemble approach, the role of the data
model is to correct the predictions of the physical model, rather
than to fit the complex physical mechanisms of the entire power
grid. As a shallow neural network, BPNN (Back Propagation Neural
Network) has good self-learning, self-adaptive, nonlinear mapping,
and generalization capabilities. Therefore, in order to ensure the
feasibility and accuracy of the integration-driven method, BPNN is
used as the part of the data model.

The serial ensemble method (Wang et al., 2019) is implemented to
introduce the SPM to obtain the initial prediction results, which can
ensure the prediction efficiency and reduce the dependence of the data
model on sample data.TheBPNN is deployed to correct the error of the
initial prediction results of the physical model. Simulation results on a
modified IEEE 39-bus system show that the data-model fusion-driven
method can predict the frequency nadir with high accuracy and speed,
and provide more reliable indices and basis for the frequency stability
analysis and control of the power system.

2 SPM modeling and analytical
solution

The frequency response characteristics of the power system
with a high proportion of renewable generation are mainly affected
by the synchronous generators, load frequency characteristics,
auxiliary frequency control strategies of renewable energy units and
HVDC links. According to the respective power-frequency response
characteristics, the modeling and analysis of each type of frequency
modulation resources are explained in this section.

2.1 Power-frequency characteristics of
synchronous generators

The mechanical power output curve of a typical synchronous
generator governor under power step disturbance can be simply
divided into three sections according to its change characteristics,
namely, the fast change section, the constant velocity change section,
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and the steady-state output section.The generator governor changes
the output power by changing the prime mover valve, so as to
suppress the unbalanced power, and finally restore the frequency
to a quasi-steady state. The complete curve change process can be
represented by the following higher-order polynomial (Equation 1):

ΔPG( f) = K
0
G +K

1
G
dΔ f
dt
+K2

G(
dΔ f
dt
)
2
+K3

G(
dΔ f
dt
)
3
+ ... +Kn

G(
dΔ f
dt
)
n
(1)

where ∆PG is the mechanical power deviation output by the
synchronous generator governor;K0

G,K
1
G, andK

2
G are the polynomial

coefficients related to the rate of change of each order.
For synchronous generator governors, the higher the order of

the above polynomials, the more accurate the power-frequency
response characteristic curve of the generator governor in
this scenario can be described. However, at the same time,
the introduction of higher-order polynomials will bring more
cumbersome workload to frequency stability online evaluation,
which will seriously slow down the computational speed. For the
frequency nadir, the corresponding time coordinates are often
located in the uniform velocity change segment, so only the first
two curve change links need to be accurately modeled.

Taking the GS-TB type governor in the PSD-BPA software
as an example, given a load disturbance of 35 MW, the system
frequency deviates. The actual response curve of the governor
and its polynomial fitting curves of different orders are compared
as shown in Figure 1. It can be seen that the second-order
polynomial can accurately fit the power output curve of the governor
within the time scale from the moment of fault occurrence to
the frequency nadir. Therefore, the second-order polynomial is
utilized to describe the active power frequency characteristics of the
generator governor before the frequency nadir is reached, and the
expression is:

ΔPG( f) = K
0
G +K

1
G
dΔ f
dt
+K2

G(
dΔ f
dt
)
2

(2)

2.2 Power-frequency characteristics of the
active participation of renewable energy
units in frequency regulation

Under the conventional control strategy, renewable energy units
do not actively participate in the frequency regulation, which
leads to a significant reduction in the inertia of the system and a
weakening of the frequency control capability. Many studies have
been conducted to improve the control strategy to enable them
to participate in the support of the power grid frequency. To this
end, most of the current renewable energy stations achieve auxiliary
frequency response by implementing measures such as virtual
synchronous control, virtual inertia control, and droop control. The
purpose of these control schemes is to enable the renewable energy
stations to simulate the characteristics of the frequency response
of synchronous generators through the control of power electronic
inverters and algorithms.The active power-frequency characteristics
of a renewable energy unit considering virtual inertia and droop
control can be expressed as:

ΔPR( f) = KdΔ f +Kv
dΔ f
dt

(3)

where Kd is the equivalent droop coefficient of the renewable
energy unit, and Kv is the equivalent virtual inertia
coefficient.

2.3 Frequency characteristics of the load

When the frequency changes, the active power absorbed by
the load from the grid also changes, which is the frequency
characteristic of the load. In the dynamic process prior to the
frequency reaches its nadir following the disturbance, the power-
frequency dynamic characteristics of the load can be simplified
as follows:

ΔPL( f) = K1
pΔ f +K0

p (4)

where∆PL is the power deviation of the active load of the system;K0
P

and K1
P are the frequency-dependent load factors of each order.

2.4 Frequency characteristics of the HVDC
frequency limiter

For the high proportion of renewable energy grids, the frequency
characteristics can be improved by suppressing the change of
electromagnetic power of the generator through the fast and
controllable function of HVDC power, reducing the deviation
between the generator and the mechanical power. An HVDC
frequency limiter can be used to respond to the frequency deviation
of the grid and automatically modulate the HVDC power. When
the power for HVDC modulation preparation is sufficient, the
power-frequency dynamic characteristics can be expressed by the
following formula:

ΔPFLC( f) = KmΔ f +∫KIΔ fdt (5)

where ∆PFLC is the power deviation of the HVDC modulator of the
system; Km is the frequency-dependent gain factor, KI is the integral
coefficient. The role of the integration link is mainly reflected in the
reduction of the steady-state frequency deviation, and this paper
only focuses on the maximum frequency deviation in the frequency
response process, and the role of integration control FLC can be
ignored. As a result, the power response of FLC control can be
further simplified, as shown in Equation 6.

ΔPFLC( f) = KmΔ f (6)

2.5 Polynomial fitting of power–frequency
characteristics

For the power system with a high proportion of renewable
energy generation, this paper mainly focuses on the stage when
the frequency drops to the nadir under the high power shortage,
according to the rotor swing equation:

2Hsys
d f(t)
dt
= ΔPm − Pd −DsysΔ f(t) (7)
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FIGURE 1
The active power-frequency characteristic curve and its fitting results of the GS-TB type governor.

where Hsys and Dsys are the equivalent inertia and damping
constants of the system, Δf is the frequency deviation, Pd is the
active disturbances suffered by the system, and ΔPm is the active
output of the resources participating in the primary frequency
modulation.

Substituting Equations 2–6 into Equation 7, the following
equation can be obtained:

Δ f = a(
dΔ f
dt
)
2
+ b

dΔ f
dt
+ c,Δ f ∈ [0,Δ fmax] (8)

Where

a =
K2
G

Dsys +K
1
p −Kd −Km

,b =
K1
G +Kv − 2Hsys

Dsys +K
1
p −Kd −Km

,c =
K0
G −K

0
p

Dsys +K
1
p −Kd −Km

(9)

From the above equations, it can be seen that the rate of
change of the system frequency with time and the frequency
deviation show a second-order polynomial relationship before
the system frequency falls to the nadir, which provides a
theoretical basis for the subsequent identification of system
parameters and online fitting prediction of the frequency.
Although Equation 8 does not explicitly include the relevant
variables of renewable energies, it can be seen from Equation 9
that the polynomial parameters identified by the measurement
data actually reflect the virtual inertia control and droop
control characteristics of renewable energies, and the changes
in the operation mode and inertia level of the system
are also reflected by the parameters of the second-order
polynomial.

2.6 Simplified frequency nadir prediction
model

Considering that when the frequency of the system reaches the
extreme point, there will be dΔ f/dt = 0. According to the correlation
properties of the quadratic function, to meet the above conditions,
the function image corresponding to Equation 8 must be symmetric
with respect to the y-axis, and one obtains (Equation 10):

b = 0 (10)

The frequency nadir can thus be solved by:

Δ fmax = c (11)

Further analysis of the above quadratic function can be
rewritten as (Equation 12):

√
a
Δ f − c

dΔ f = dt (12)

For the left and right integrals, one obtains (Equation 13):

t = 2√−ac−√a(Δ f − c) (13)

The time of the frequency nadir can be calculated by:

tnadir = 2√−ac (14)

Equations 11, 14 are the SPM’s expressions proposed in this
section. Since it can reflect the characteristics of various frequency
modulation resources, the model is suitable for power systems with
a high proportion of renewable generation.
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FIGURE 2
Structure diagram of the BPNN algorithm.

3 BPNN modeling and feature
selection

3.1 BPNN algorithm

BP neural network, is a multilevel feedforward network
structure trained on an error backpropagation algorithm. It adjusts
the network weights by passing information forward layer by layer,
comparing it to the desired output at the output layer, and then
propagating the error backwards to each layer until the preset
accuracy requirements are achieved (Wang et al., 2022a). The
network topology is shown in Figure 2.

A two-layer feed-forward network with sigmoid hidden
neurons and linear output neurons (fitnet), can fit multi-
dimensional mapping problems arbitrarily well, given consistent
data and enough neurons in its hidden layer. BPNN can
obtain the best training results by continuously adjusting
the number of neurons in the hidden layer. Considering
that the input and output of SPM-BPNN are the maximum
frequency deviation and their corresponding time, the number
of neurons in the hidden layer is finally determined to be 4 after
simulation tests.

3.2 Feature extraction

For the data-driven model, it is necessary to analyze
the key factors affecting the frequency nadir in combination
with the dynamic process of frequency response to select
the eigenvalues, and the frequency response characteristics
of the power system are mainly related to the active
disturbance amplitude and the physical parameters
of the frequency modulation unit.

The essential reason for the dynamic change of system frequency
is that there is a power imbalance in the system, which leads to an
imbalance between electromagnetic torque and mechanical torque,
and ultimately leads to a change in motor speed. Therefore, the
active power deficit of the system is a key factor affecting the
frequency nadir.

For synchronous generators, the inertia, as a measure
of the magnitude of inertia, reflects the rotor energy
of the generator set, that is, the difficulty of changing
the rotor state. Therefore, the equivalent inertia constant
of the system is also a key factor influencing the
frequency nadir.

Conventional generator units have the capability of primary
frequency modulation, and can also participate in the frequency
response when the renewable energy station imposes a
specific control strategy. Therefore, the basic parameters of
the governor, the virtual inertia coefficient and the equivalent
droop coefficient are also the key factor influencing the
frequency nadir.

In the process of HVDC FLC participating in frequency
modulation, with the increase of frequency deviation, the
rapid increase of HVDC power can correspondingly increase
the electromagnetic power of the unit, thereby eliminating
the unbalanced power, significantly suppressing the high-
frequency deviation amplitude, and improving the frequency
recovery characteristics. Therefore, the basic parameters of the
HVDC frequency modulator are also factors that affect the
frequency nadir.

Based on the above analysis, it is necessary to select key
variables as input features of BPNN. For the physical data
fusion model, BPNN only needs to correct the initial prediction
results of the SPM, so its input features can only be the
frequency nadir obtained by the SPM.
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FIGURE 3
SPM-BPNN fusion modeling scheme.

4 SPM-BPNN fusion modeling

The serial scheme is used to fuse the SPM with the BPNN
model to construct the SPM-BPNN model to achieve the purpose
of complementing each other’s advantages. Figure 3 shows the
schematic diagram of the SPM-BPNN integrated modeling, which
includes both offline training and online application.

4.1 Offline training

During offline training, the physical parameters, power deficit,
and actual frequency nadir of the generation units are obtained
from the frequency historical data or simulation data. The SPM
quickly obtains the initial frequency nadir according to the physical
parameters and power deficit of the frequency modulation units,
and takes it as the input feature of the BPNN, and the actual
frequency nadir as the output feature. The input and output
features are normalized and fed into the BPNN for offline training.
Finally, the trained BPNN model is used to calculate the frequency
nadir online.

4.2 Online application

In the online calculation, the power deficit of the system can
be measured by the WAMS and the physical parameters of the
generation units can be accessed online. Based on these parameters,
the SPM can compute the initial results. Then, the trained BPNN
model is used to correct the initial results to obtain the final
frequency nadir point. As the operating scenarios of the power
system change, the parameters of the physical model also need to
be updated accordingly.

5 Case studies

5.1 Case system introduction

In order to verify the effectiveness and accuracy of the SPM-
BPNN fusion model proposed in this paper, a modified IEEE 39
bus system is introduced. The reference frequency is 50 Hz, and its
topology is shown in Figure 4, which includes seven synchronous
generator units, three renewable energy stations, one feed-inHVDC,
and 6,148.6 MW load. All renewable energy stations participate in
the frequency response, and the total penetration ratio is 27.9%.

The simulation is carried out using the MATLAB/Simulink
simulation platform. By randomly sampling the system parameters
and invoking Simulink for simulation, a large number of data
samples that meet the requirements of the data model can be
generated. The actual value of the frequency nadir following
perturbation is taken as the output, and the dataset is divided into
training samples and test samples according to a certain proportion.
The training samples are used to complete the learning of BPNN, and
finally the frequency feature predictionmodel driven by data-model
fusion is obtained.

5.2 The selection of the active
power-frequency characteristic fitting time
window

For various working conditions in the online prediction process,
the parameters of SPM need to be identified online based on the
measurement data, so the accuracy of the prediction is affected by
the long time window of the data. However, due to the differences
between the working conditions, the offline determination of
the input data time series length is not the optimal choice
for some online working conditions (Yan and Xu 2019). If the
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FIGURE 4
The improved IEEE 39-bus system topology diagram.

input data is too short, the prediction method will not obtain
enough transient information, and the prediction accuracy will be
reduced. If the input data takes too long, the forecasting method
will collect “redundant” information, resulting in a decrease in
forecasting speed.

In order to solve this problem, taking the data sample obtained in
this simulation as an example, the occurrence time of the maximum
frequency deviation of COI frequency obtained by the simulation
is statistically analyzed. In the low-frequency scenario, the time

range is 0.98–4.9s (the system disturbance time is t = 0 s), so
the length of the effective data input of the model should not
exceed 0.98s. Considering the single run time of the SPM-BPNN
(0.01413s on average) and the control reaction time that needs to
be reserved for emergency control measures (e.g., low-frequency
load shedding), the predictionmodel proposed in this paper chooses
to collect the disturbance moment (500 ms) and the previous data
to fit the active power-frequency characteristics of the system, and
then achieves a mapping relationship with the real frequency nadir
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FIGURE 5
The prediction error comparison of Δfmax.

FIGURE 6
The prediction error comparison of frequency nadir time.

TABLE 1 The performance indices and comparison of Δfmax.

SPM BPNN SPM-BPNN

MAPE (%) 0.1067 0.3258 0.0630

RMSE (Hz) 0.0563 0.1043 0.0185

MAE (Hz) 0.0364 0.0817 0.0141

through the correction of BPNN. The selection of a shorter time
window can ensure the efficiency of online prediction, and strive
for more time for the system’s frequency emergency control and
low-frequency load shedding.The introduction of BPNN can ensure
high calculation accuracy and make the prediction results more
convincing.

TABLE 2 The performance indices and comparison of frequency
nadir time.

SPM BPNN SPM-BPNN

MAPE (%) 0.3003 0.1928 0.0632

RMSE (s) 0.9286 0.5725 0.1679

MAE (s) 0.7130 0.4344 0.1316

5.3 Result analysis

The proposed SPM-BPNN model is compared with the SPM
model and the BPNN model in terms of prediction speed and
prediction accuracy.

The prediction time of SPM, BPNN and SPM-BPNN models
are 1.47 ms, 13.61 ms and 14.13 ms. Compared with a single
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data or physical model, the SPM-BPNN model proposed in
this paper does not have significant advantages in prediction
speed, but it can still predict the frequency nadir online at a
faster speed.

In the field of machine learning, the performance of
regression models is usually evaluated by three metrics: Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Root Mean Square Error (RMSE). In this paper,
these three indicators are used to evaluate the prediction
accuracy of the SPM-BPNN model and the existing SPM and
BPNNmodels.

As shown in Figures 5, 6, the prediction accuracy of SPM-
BPNN is significantly higher than that of a single SPM or BPNN
model. As shown in Tables 1, 2, the performance indicators
of the SPM-BPNN model are much smaller than those of
other models, which indicates that even under different working
conditions and disturbance scenarios, the prediction accuracy
can be maintained, and the requirements for sample data are
reduced, and the interpretability and generalization ability are
stronger than those of the single data model, and has great
robustness.

From the accuracy evaluation results in Tables 1, 2, it can be
seen that the frequency prediction model driven by data-model
fusion proposed in this paper has better performance than the
two sub-models in various evaluation indicators. The results of
Figures 5, 6 show that the average absolute error of SPM-BPNN
is 61.26%, 82.74%, 81.54% and 69.7%, respectively, compared with
single SPM and BPNN. The serial method is used to fuse the two
sub-models, which effectively improves the accuracy of frequency
prediction.

Generally speaking, when the prediction results of the sub-
model are more accurate, the SPM-BPNN model can also get
better prediction results, but when the prediction accuracy of
some samples is poor due to the small number of training
samples of BPNN, SPM-BPNN can give full play to the advantages
of model and data fusion, effectively modify the prediction
results, and greatly reduce the prediction error. However, this
does not mean that BPNN is not suitable for the prediction of
transient frequencies in power systems. Therefore, choosing the
right data model is the key to improve the performance of the
fusion model.

6 Conclusion

In this paper, a frequency nadir prediction method based
on SPM and BPNN is proposed, which implements the serial
integration scheme to combine SPM and BPNN to achieve the
purpose of complementing each other’s advantages. Simulation
results show that the proposed approach can not only improve
the frequency nadir prediction accuracy, but also ensure that the
prediction efficiency meets the requirements of online calculation.
Constrained by the inherent limitations of analytical methods,
this paper only focuses on major influencing factors of the
frequency response and ignores minor factors such as reactive
power-voltage characteristics, more in-depth study related to this
issue can be conducted in future work. We will further investigate
the effective combination of different integration methods and

different data models to achieve more accurate prediction of
the frequency response. It is worth noting that the frequency
prediction method proposed in this paper only predicts the extreme
value of the center frequency of inertia following the disturbance
of the power system. In the next step, the dynamic frequency
characteristics of various nodes in the power system can be
predicted, so as to study the spatial distribution characteristics
of the frequency following a disturbance, and use this as the
basis to implement more efficient distributed frequency emergency
control measures.
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