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Virtual Power Plant (VPP) is a key to aggregate various distributed energy
sources. With the vigorous rise of various distributed energy sources, the direct
access of large-scale electric vehicle load will increase the complexity of
VPP coordinated operation. Hence, this paper proposes a VPP optimization
method for Electric Vehicle Virtual Energy Storage (EV-VES). Firstly, the travel
characteristics of electric vehicles are analyzed, and EV-VESmodel is established
to coordinate and manage the charge-discharge behavior of EV. Secondly, the
“carbon charge rate” model of energy storage (ES) is introduced to establish
the relationship between carbon emission and electricity price, and the VPP
operation model considering the “carbon charge rate” of energy storage is
established. Finally, the two-stage robust optimization operation model of VPP
is constructed, Wasserstein distance is used to describe the confidence set of
uncertain probability distribution of wind power generation and load, and the
uncertainty of system source and load are described by the confidence set. The
Column and Constraint Generation (C&CG) algorithm was used to determine
the optimal operational benefit solution. The effectiveness of the proposed VPP
optimal operation model was validated through case study.
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1 Introduction

The problem of energy crisis and global warming is becoming more and more
obvious, which has aroused people’s wide attention. Virtual power plant uses advanced
communication technology and control theory to aggregate massive distributed
resources and coordinate scheduling to realize effective allocation of internal resources
(Zhang et al., 2023). Electric Vehicles (EVs) have developed rapidly in recent years
and have played a significant role as an important way to alleviate energy shortages
(Guo et al., 2022; Zhang, 2022a).

With the development of EV network access technology, its aggregation as flexible
virtual energy storage has broad application prospects. Existing literature has studied
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the effects of EV renewable energy consumption (Zhang, 2022b),
wind and landscape fluctuation reduction, and peak cutting and
valley filling (Wang et al., 2024) from the aspects of EV flexible
regulation potential (Kaile et al., 2020), orderly charge and discharge
control strategy (Yao et al., 2022), and temporal and spatial dis-
tribution. In terms of EV modeling, similar EVs or charging piles
are regarded as an aggregate by fuzzy C-means (Li et al., 2022) or
self-organizingmapping neural network (Sun et al., 2021) according
to EV charging time and other characteristics. Above literature
have a fixed probability distribution in EV modeling, which is a
simple aggregation of numerical relations. While the generalized
load of electric vehicles with the dual attributes of power generation
and electricity consumption can realize the increase or decrease of
energy demand in a certain period of time to a certain extent, which
is similar to physical energy storage, so it can be modeled as virtual
energy storage.

In the VPP optimization scheduling problem, the wind-driven
force is usually a non-linear optimization problem. The existing
methods to deal with uncertainty mainly focus on stochastic
optimization and robust optimization. Literature (Sui et al., 2020)
improves the existing robust optimization method by finiting
discretization of the uncertain domain, generates the uncertain
domain boundary with echelon deviation, and expands the “bad
scenario set.” Literature (Xu et al., 2022; Qi et al., 2023) uses the
two-stage robust optimization theory to construct the uncertainty
set of wind power and load, and seeks the optimal solution of
system optimization operation under the worst scenario. The
stochastic programming method builds several typical scenarios
based on historical data and the probability distribution function
of un-certain factors to analyze the randomness of load and
renewable energy (U. Akram et al., 2021; Li et al., 2019). However,
stochastic optimization requires accurate probability distribution
function, which makes stochastic optimization lack robustness,
and the robust optimization value considers the optimal solution
of the uncertain set in the worst case, and the result is too
conservative. Literature (Liu et al., 2020) uses the 1 norm and
∞ norm constraints in the maximum scheduling to restrict the
confidence interval. Compared with the above two methods, the
distributionally robust optimization (Yang et al., 2021; Yang et al.,
2022) does not require a completely accurate distribution function
and has stronger robustness. At the same time, it makes up
for the shortcoming that the result of robust optimization
is too conservative because the probability distribution is
not considered.

In summary, the current research on optimal scheduling of
VPPs only considers electric-hydrogen energy storage, without
considering the ES capacity of flexible load and the carbon emission
model of energy storage equipment.Therefore, this paper proposes a
two-stage robust optimal operation model considering EV-VES and
the “carbon charge rate” of energy storage.The proposedmethod has
several advantages.

(1) The research in this paper breaks through the limitations of the
existing virtual power plant optimal scheduling and fills in the
field other than the consideration of electric-hydrogen energy
storage. Through in-depth analysis of the travel characteristics
of electric vehicles, an innovative EV-VES power model is

established, which not only improves the flexibility of virtual
power plant scheduling, but also enhances its ability of peak
cutting and valley filling.

(2) The concept of “carbon charge rate” is proposed, which closely
combines carbon emission with energy storage system, and
provides a new perspective for constructing the relationship
between carbon emission and trading price.

(3) A two-stage robust optimal operation model is proposed,
which uses Wasserstein distance to describe the uncertainty
of wind power generation and load demand, and effectively
describes the uncertain probability distribution set of the
source load of the system.

2 EV-VES model

By statistical analysis of the historical data of EV, the distribution
function of parking time, driving distance and parking time of
electric vehicles can be obtained (Chen et al., 2024). The charging
time, discharging time and remaining capacity of the EVs when they
arrive at the station can be expressed as Equations 1–3:
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where, Ek and Ek+1 are the remaining capacity of the EV at different
stations, Sn,k+1ev is the SOC state of the n EV when it arrives at station
k+ 1, Sn,kev is the SOC state of the n EV when it leaves station k+ 1,
and Sn,kneed is the SOC state required of the n EVwhen it leaves station
k+ 1. Lk,k+1s is the driving distance of the EV after leaving station k,
ωev is the energy consumption per kilometer of the EV, and Erate
is the rated capacity of the EV. ΔEk,k+1 is the electricity required
by the EV from station k to station k+ 1, Tn,k

cha and Tn,k
dis are the

charging time and discharging time of the EV n at station k, Emin
is the minimum battery power of the EV, ηc and ηd are the charge-
discharge efficiency of the EV, Pn,tevc and Pn,tevd are charge-discharge
power of the EV.

Considering the factors discussed above, the feasible range of
electric power for a single electric vehicle under the limit condition
is established as Equation 4:

{
{
{

Eevn,k+1,t,max =min{Eevn,k,t + P
evc
n,max(t−T

n,k
cha),Emax}

Eevn,k+1,t,min =max{Eevn,k,t − P
evd
n,max(t−T

n,k
dis),Emin}

(4)

where, Eevn,k+1,t,max and Eevn,k+1,t,min are the maximum and minimum
limits of EV n at station k+ 1 during t, Eevn,k,t is the power of EV n at
station k during t, Emax and Emin are the battery power limits of EV,
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Pevcn,max and Pevdn,max are the maximum charge-discharge power of EV,
Tn,k
cha and Tn,k

dis are the total charge and discharge time respectively.
Thus, the upper and lower limits of the power of electric vehicles

in the limit condition are obtained, as Equation 5:

{
{
{

Pev,max
n,k,t =min{Eevn,k+1,t,max −E

ev
n,k,t,min,P

evc
n,max}

Pev,min
n,k,t =max{Eevn,k+1,t,min −E

ev
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evd
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(5)

where, Pev,max
n,k,t  and P

ev,min
n,k,t pertain to the maximum and minimum

bounds of the power of the lower EV.
Aggregating electric vehicles into VES, the energy

boundary is as Equation 6:

{{{
{{{
{

Eevt,p =∑
n
∑
k
Eevn,k,t,p

Pevt,p =∑
n
∑
k
Pevn,k,t,p

(6)

where, p is max or min indicates the maximum and minimum
limits respectively. The capacity E and power P of virtual energy
in each time period must adhere to the constraints of upper and
lower limits.

3 Virtual power plant operation model
considering “carbon charge rate” of
energy storage

3.1 Energy storage “carbon charge rate”
model

After integrating the energy storage device, since it functions as
a unique electrical load during charging, it will absorb part of the
carbon emissions while charging, and it is considered to be a special
power generation device when the energy storage is discharged.
Therefore, carbon emissions will not be conserved in real time
when extending the translation of energy storage at the energy level
to the translation of carbon emissions level, but in a scheduling
cycle. Energy storage “carbon charge rate” model is established as
Equations 7–10.

ces,chat = P
es,cha
t ρes,chat (7)

where, es represents the collection of virtual energy storage and
batteries; ces,chat is the carbon emission of es charged during t;Pes,chat is
the charging power of es stored during t; ρes,chat is the carbon emission
density of es charged during t; In this case, energy storage is used as
the load model.

ces,dist = P
es,dis
t ρes,dist =

Pes,dist

ηd
ρest−1 (8)

where, ces,dist is the carbon emissions charged into the energy storage
es during t, Pes,dist is the discharge power of es during t, ρes,dist is
the carbon emission density of es during t, and ρest−1 is the carbon
charge rate of es during t− 1. In this case, the energy storage is
used as a power generation model.

ρest =
ρest−1S

es
t−1Ees + c

cha
t − c

dis
t

Sest
(9)

where, Sest is the charged state of es stored during t; Ees
is the capacity of es stored; cchat and cdist are the charging and
discharging carbon emissions respectively.

λEt = λ
E0
t +(πP

C
t + κ1

es

∑
i
ρi,dist − κ2

es

∑
i
ρi,chat ) (10)

where, λEt is the actual price of electricity, λE0t is the initial price of
electricity, κ1 and κ2 are the carbon tax for carbon emissions of ES,
π is the carbon emissions of traditional power generation units, and
PCt is the traditional power.

3.2 Virtual power plant operation model

VPPs aim to minimize operating costs, as Equation 11, VPP
operation constraints are shown in Equations 12–16:

min∑
t∈T

λEt (P
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t − P
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t ) − cfu

C
t − cvP

C
t

−cevP
ev
t − cw ⋅ (P

WA
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W
t )

(11)

where, Pbuyt and Psellt are the purchased and sold power of VPP in
the energy market respectively, uCt is the variable of traditional power
generation state, and Pevt is the virtual energy storage power; PWt is wind
power; PWA

t is wind power cap; cf and cv represent the fixed cost and
generation cost of traditional power plants respectively, cev represents
the cost of virtual storage, and cw represents the cost of curtailment.

3.2.1 Power balance constraints

PWt + P
C
t − P

ev
t + P

SD
t − P

SC
t + P

evd
t − P

evc
t − P

E
t − P

L
t = 0 (12)

where, PCt is the power generation of traditional power plants; P
E
t is the

transaction power; PLt is the demand load; PSCt and PSDt are the charge-
discharge power. Pevct and Pevdt are the charge-discharge power of EV.

3.2.2 Energy market trading constraints

−PEmax ≤ PEt ≤ P
E
max (13)

where, PEmax indicates the limit of the trading power; when PEt < 0, it
indicates that VPP purchases power; when PEt > 0, it is vice versa.

3.2.3 Constraints on battery charging and
discharging

{{{{{{{
{{{{{{{
{

uSCt PSCmin ≤ P
SC
t ≤ u

SC
t PSCmax

uSCt + u
SD
t ≤ 1

St = St−1 + ηSCP
SC
t − η

SDPSDt
Smin ≤ St ≤ Smax

(14)

where, PSCmin and PSCmax represent the limits of the battery charging
power, uSCt and uSDt represent the charge-discharge state variables,
St indicates the remaining battery power, Smin and Smax indicate
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the limits of battery power, ηSC and ηSD indicate the charging and
discharging efficiency.

3.2.4 Operation constraints of traditional power
plants

{{{{
{{{{
{

PCminu
C
t ≤ P

C
t ≤ P

C
maxu

C
t

PCt − P
C
t−1 ≤ R

C
uu

C
t−1

PCt−1 − P
C
t ≤ R

C
du

C
t−1

(15)

where, PCt is the power generation of traditional power plants; PCmin
and PCmax represent the limits of power generation of traditional
power plants; RC

u and RC
d respectively represent the ascending and

descending power of traditional power plants; uCt represents the
variable of the generation state of the traditional power plant. When
uCt = 1, the traditional generator set generates electricity, and when
uCt = 0, the traditional generator set stops.

3.2.5 Electric vehicle virtual energy storage
constraints

{{{{{{{{{{
{{{{{{{{{{
{
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ev
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ev
t,max

Pevt,min ≤ P
ev
t ≤ P

ev
t,max
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n,t P

evd
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evd
n,t ≤ 1

(16)

where, Eevt,min and E
ev
t,max represent the limits of virtual energy storage

capacity of electric vehicles respectively; Pevcn,max and Pevdn,max are the
maximum charge-discharge power of EV; Pevcn,min and Pevdn,min are the
minimum charge-discharge power of EV; Pevt,min and P

ev
t,max represent

the limits of VES power of EVs; uevcn,t and u
evd
n,t are respectively electric

vehicle charging and discharging state variables.

4 Two-stage distributionally robust
optimization operation model for
virtual power plant

4.1 Model transformation

The deterministic optimization model (11) is changed to the
two-stage distributionally robust optimization model (17). In the
first stage, the internal unit combination problem of VPP is solved,
and in the second stage, the operation result of themaximumbenefit
of VPP is solved under the worst case of source load uncertainty.

min
x

aTx+max
u

k

∑
i
pimin

y
(bTyi + c

Tξi) (17)

where, x and y are the decision variable of the first and the second
stage respectively, u is the uncertain set, a,b and c are the vector
matrix, yi is the decision variable of the second stage under scenario
i, ξi is the uncertainty of load under scenario i, and k is the total
number of scenario, pi is the probability of scenario i.

Formula 17 is a two-stage max-min max problem that cannot
be solved directly, so the C&CG algorithm is used to solve the
main problem and sub-problem iteratively. The main question is
expressed as Equation 18:

min
x

aTx+ ϑ

{{{{{{{
{{{{{{{
{

ϑ ≥ rTyv′

Ayv′ +Gx ≤ b+Huv′

Byv′ +Dx = d+ Fuv′

v′ = 1,2, ..,v

(18)

where, x,y and u represent the optimization variables of the main
problem, subproblem and uncertain set respectively; v′ represents
the number of iterations, and the constraint of the iterative solution
of the main problem includes the value of each iteration of the
subproblem; uv′ and yv′ are solved in place of the main problem
as the known quantity obtained by solving the uncertain set and
the subproblem respectively. A,B,D,G,H and F are the constrained
medium constant coefficient matrix; r,b and d are the constraint
column vector with constant coefficients.

Solve the main problem and get x
∗
. Introduce the subproblem,

which is expressed as Equation 19:

max
u

k

∑
i
pimin

y
bTyi + c

Tξi

{
{
{

Ay+Gx∗ ≤ b+Hu

By+Dx∗ = d+ Fu

(19)

The main problem passes the combination solution to
the sub-problem, and solves the maximum VPP payoff in
the worst case. Since the subproblem is a Min-Max two-layer
problem, the two-layer problem needs to be transformed into
a max single-layer problem as Equation 20 by KKT condition
or duality theory.

max (b+Hu)Tλ1 + (d+ Fu)
Tλ2

{{{{
{{{{
{

(b−Gx∗)Tλ1 + (d−Dx∗)Tλ2 ≥ z

λ1 ≥ 0

λ2 no constrains

(20)

where, λ1 and λ2 are the dual auxiliary variable of inequality
constraint and equality constraint respectively.

4.2 Uncertain set

In this paper, Wasserstein distance (Grani and Hanasusanto,
2018; Zhao and Guan, 2016) is used to construct fuzzy uncertainty
sets. Wasserstein distance is defined as Equation 21:

dw(Q1,Q2) = infΠ ∫Ξ2
d(ξ1 − ξ2)Π(dξ1,dξ2) (21)

where, Q1 and Q2 are the edge distribution of the uncertain
parameter, ξ1 and ξ2 are the distributions of the uncertain
parameter, d(ξ1 − ξ2) is the distance measure between the two
distributions, and Π(dξ1,dξ2) is the joint probability distribution
of Q1 and Q2.
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Taking the empirical distribution as the center, the source
load prediction error probability distribution set, also known as
fuzzy uncertainty set, is constructed. The uncertainty set Ω is as
Equation 22:

Ω = {P ∈ Ξ|dw(P, ̂PN) ≤ θ } (22)

where, Ξ is all possible probability distributions of the uncertain
parameters, ̂PN is the empirical distribution of the uncertain
parameters, and θ is the radius of the uncertain set as Equation 23.

θ = D√ 2
N
ln( 1

1− β
) (23)

where, N is the number of historical data, β is the confidence level,
and D is the coefficient.

The uncertain set Ξ is specified by the upper and lower bounds
of the uncertain parameters as shown in Equation 24:

Ξ = {ξ|ξmin
i ≤ ξ ≤ ξ

max
i } (24)

where, ξmax
i is the maximum prediction error vector composed

of the maximum prediction error of the source load in each
scheduling period, and ξmin

i is the minimum prediction error vector
composed of the minimum prediction error of wind power in each
scheduling period. Equation 25 represents the relationship between
the radius θ of the uncertain set and the initial probability pi.

k

∑
i
pi‖ξ− ξi‖ ≤ θ (25)

where, ξ is a 1× 24-dimensional vector composed of the source load
prediction error; ξi is the i th historical prediction error vector, pi is
the initial probability corresponding to the historical data, and ‖•‖ is
the norm of the vector.

4.3 Model solving procedure

Step 1: Set the lower bound LB = 0, the upper bound UB = +
∞, initialize the number of iterations r and the initial
probability distribution p0ω.

Step 2: Solve the main problem, pass the solution x
∗

to the
subproblem, and update the UB = min{UB,λ

∗
}.

Step 3: Solve themain problem according to x
∗
to get p

∗
ω, update the

LB = max{LB, f(x
∗
)}.

Step 4: If UB− LB < ε, the iteration ends, the solution is output;
otherwise, the subproblem solution p

∗
ω is passed back to step

2, the main problem is solved, and the iteration number r =
r+ 1 is updated.

5 Example analysis

This paper optimizes the operation of the VPP with a cycle
of 24 h. The maximum tradable power is 50 MW, the efficiency of
storage equipment is 0.9, the fixed cost of the traditional power plant
is 200 yuan, and the power generation cost is 450 yuan. The time-
based electricity price is shown in Table 1, and the load and wind
power generation forecast data are indicated in Figure 1.

TABLE 1 Time of use price.

Time frame Time frame Price (yuan/MW)

Valley segment 00:00–07:00 240

Flat section 08:00,12:00–18:00 450

Crest segment 09:00–11:00,19:00–23:00 675

FIGURE 1
Forecasted values.

FIGURE 2
VPP scheduling result.

The results of VPP internal resource scheduling
are shown in Figure 2. During 9:00–11:00 and 19:00–23:00, when
the load demand is high and the wind power level is low, the electric
vehicle discharges. A positive trading power in the energy market
indicates the purchase of energy, and a negative one is the opposite.The
trading price of the powermarket peaks at 9:00–11:00 and 19:00–23:00,
andVPP tends to sell energy during the period of high electricity price,
virtual energy storage and battery discharge promote the sale of energy
by VPP, thus reducing the operating cost of VPP.

The charge and discharge power of VES and EVs
are shown in Figure 3. EVs engage in the optimization scheduling
of VPPs according to the guidance of price signals. From 0:00 to
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FIGURE 3
Storage capacity of virtual energy storage.

FIGURE 4
Storage capacity of battery.

7:00, electric vehicles purchase electricity from the market to supply
VES and batteries. The power market trading price is at its peak
between 9:00–11:00 and 19:00–23:00, and VES discharged during
this period, improving the operating profit of VPP.

The charge-discharge power of the battery is shown in Figure 4.
At 9:00–11:00 when the load demand is high and the wind power
level is low, the energy storage discharge relieves the pressure of the
VPP load demand.

As indicated in Table 2, after utilizing the “carbon charge rate” of
energy storage to participate in theVPPmarket pricingmechanism, the
operating cost of VPP decreases and the carbon emission increases.

The relationship between robust confidence and VPP profit
is shown in Table 3. With the increase of confidence level

TABLE 2 Data comparison before and after pricing.

Type Running cost
(104yuan)

Carbon emission
(kg)

Before pricing 5.9114 6,214

After pricing 5.8233 6,084

TABLE 3 VPP cost for different confidence sets (104yuan).

Confidence sets β = 0.9 β = 0.8 β = 0.7 β = 0.6

Running cost 5.9114 5.7782 5.3722 4.9782

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1495823
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2024.1495823

β, the radius of Wasserstein’s sphere increases, the robustness of the
model also increases, the uncertainty of the source charge in theVPP
operating model increases, the VPP operating is more conservative,
and its operating cost increases.

6 Conclusion

To improve the benefit ability of VPP in the power market,
this paper analyzes the travel characteristics of electric vehicles,
establishes the virtual energy storage power model of electric
vehicles, proposes the coupling of carbon emission and energy
storage system with “carbon charge rate” of energy storage,
and constructs the relationship between carbon emission and
transaction price. Finally, a two-stage robust optimization operation
model of VPP considering the VES model of EV and the carbon
charge rate model of ES is established. With simulation, conclusions
can be drawn:

1) Creating a simulated ES model for EVs, ascertaining the
controlled power output of this virtual storage to integrate
into VPPs, optimizing within designated charge and discharge
thresholds, thereby enhancing the VPP’s capability for peak
shaving and load balancing.

2) This paper puts forward the concept of “carbon charge rate”
of energy storage, which represents the ratio between the
carbon emissions absorbed in the energy storage and the
stored electricity, that is, the amount of carbon emissions per
unit of electricity in the energy storage. The “carbon charge
rate” model can be well applied to systems containing energy
storage and carbon emissions, and combined with its pricing
mechanism can change the operation of VPP.

3) Aiming at the uncertainty of system source load, a two-
stage robust optimization operation model is proposed. With
the increase of Wasserstein sphere radius, the operational
robustness of VPP is also enhanced, and its operating cost is
increased.

In general, by introducing electric vehicles as virtual energy
storage resources and considering carbon emissions, this paper
provides a new perspective and method for the optimal scheduling
of virtual power plants. It is of great significance to improve the
competitiveness and adaptability of virtual power plants in the
power market. The extended application of “carbon charge rate”
model is also a possible direction of this research in the future,
and it is considered to combine it with other environmental impact
indicators (such as the value of ecosystem services, water resources

consumption, etc.) to conduct a comprehensive environmental
impact assessment.
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