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Addressing the fluctuating core temperatures during series battery pack
operation that cause inconsistency in pack battery characteristics, the paper
introduces a Battery-Pack Mean Difference-Method With Thermal-Electrical
Coupled Model (BP-MDM-TEM). Thermal-electric coupling model describes
the mean characteristics of battery pack, while the difference model quantifies
variations among individual cells. A dual-time-scale method is employed to
estimate State of Charge (SoC) of battery pack, reducing the computational
load of the difference model. If the unique battery characteristics exceed
system limits, a significant battery method is used to estimate SoC of pack
battery. Building upon the BP-MDM-TEM framework,the paper employs the
Improved Sage-Husa Adaptive Extended Kalman Filter (ISH-AEKF) to estimate
SoC, mitigating the impact of process and measurement noise on system
estimation. A hardware test platform is established in this paper, with a lithium-
ion battery pack as the research subject. Compared with the traditional MDM
method, the Mean Absolute Error (MAE) of soc estimation of BP-MDM-TEM is
improved from 0.992% to 0.468%, and the Root Mean Square Error (RMSE) is
improved from 1.279% to 0.982%.

KEYWORDS

mean difference model, thermal-electric coupling model, EKF, ISH-AEKF, dual-time-
scale

1 Introduction

In recent years, the battery management system (BMS), as an important part of
electric vehicles, is the technical bottleneck of electric vehicles, limited by its complex
electrochemical reaction process, as well as temperature, load, inconsistency, performance
degradation, etc., (Kumar et al., 2023). Due to the influence of deterministic application
conditions, dynamic complex characteristics such as strong time-varying non-linearity
and non-uniformity would appear when applied in battery packs, and its high-precision
modeling and state estimation have always been hot and difficult in industry technology
research (Hou et al., 2023). As the core function of BMS, the estimation of SoC provides
an important basis for the energy management and safety management of electric vehicles.
However, the accuracy of its estimate is influenced by two primary factors (Selvaraj and
Vairavasundaram, 2023; Zhou et al., 2023). One is due to the limitation of electrode potential
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and materials, the voltage and capacity of a single battery cannot
fully meet the requirements of electric vehicles, and a large number
of batteriesmust be connected in series and parallel to form a battery
pack. There are inconsistencies in the parameters of the batteries
in the production and use process, which will lead to obvious
differences between the batteries; the second is that the battery pack
will generate heat during the working process, and the heat that is
not released in time is absorbed by the battery itself.That leads to the
increasement of operating temperature, and temperaturewill further
affect the battery settings.

1.1 Battery pack model

Reliable assessment of the state of a lithium-ion battery is
based on suitable battery models. Therefore, it is necessary to
construct precise battery models that reflect both the internal and
external characteristics of the battery accurately. These models can
be categorized into electrochemical (Xin et al., 2020; Zhou et al.,
2020;Hong et al., 2023; Yu et al., 2024), and equivalent circuitmodels
(ECM) for batteries (Xu et al., 2024; Navas et al., 2023; Karimi et al.,
2023; Cheng, 2024; Li et al., 2021).

Electrochemical models are mathematical frameworks used to
describe the internal electrochemical processes of batteries. By
simulating the reactions occurring at the electrodes, electrolyte, and
interfaces, thesemodels predict the battery’s performance, including
voltage, capacity, energy efficiency, charge/discharge behavior, and
aging characteristics. Common electrochemical models include the
Pseudo-Two-Dimensional Model (P2D) and the Single Particle
Model (SP). To adapt the SP model to high current conditions,
an extended single-particle (ESP) model was proposed to improve
model accuracy (Xin et al., 2020), but this method introduces
complexity through curve fitting or approximate solutions to
the differential equations (Zhou et al., 2020). Hong et al. (2023)
integrated a portion of the equivalent circuit model with the SP
model to effectively calculate the resistance in the electrolyte and
utilized a second-order system dynamics approach to address the
heat transfer delay from the center of the battery pack to the surface.

Equivalent circuit models can be used to simulate the external
characteristics of the battery. A typical equivalent circuit model
is the Thevenin model, which consists of an ideal voltage source,
ohmic resistance, and an n-th order RC circuit. The accuracy of the
model is directly proportional to the order of the RC circuit, while
the model complexity is inversely proportional to the RC order.
Model accuracy is proportionate to RC order, andmodel complexity
is inversely proportional to RC order. The features of the various
batteries can be accurately reflected by adjusting the order of the RC
circuit (Li et al., 2021). Karimi et al. (2023) employed this model
to develop an equivalent circuit model suitable for large currents, a
wide temperature range, and various states of charge. Navas et al.
(2023) used the same equations to simultaneously account for both
the charging and discharging processes, resulting in a nonlinear
relationship between the state of charge and the open-circuit
voltage. This approach enabled the prediction of battery voltage and
state of charge.

Although the equivalent circuit model can accurately simulate
the electrical characteristics of the battery, it does not take into
account the temperature increase due to the heat absorbed in

the working process of the battery. Therefore, some researchers
proposed to add a thermal model on the basis of the equivalent
circuit model, so that the two models are coupled to each other to
form a thermo-electric couplingmodel (Xu et al., 2024). At the same
time, to describe the electrodynamic characteristics and thermal
dynamic characteristics of the battery, providing the premise for the
state prediction and performance optimization of the battery.

1.2 SoC estimation methods

SoC of batteries is a crucial parameter for electric vehicle
battery management systems. Its accuracy directly impacts energy
management control strategy and performance, subsequently
affecting reliability and cost. Various algorithms can be used
to estimate SoC, including state-space estimation methods, and
machine learning approaches.

State-space estimation method usually uses a battery model
combined with the measurement data to estimate SoC, including
Kalman filter (Wang X. et al., 2024; Hosseininasab et al., 2023;
Lin et al., 2023), particle filter (Wang J. et al., 2024; Jia et al., 2023),
least square filter (Diep et al., 2024; Liu F. et al., 2023). Diep et al.
(2024) proposed a method for real-time estimation of the state of
charge of lithium-ion batteries using the Variable Forgetting Factor
Recursive Least Squares (VFFRLS) combined with the Unscented
Kalman Filter (UKF) algorithm, without the need for offline battery
test data. The results showed an error of 1.5% compared to the
reference values. The state space estimation method applied to
battery SoC has not only good accuracy and convergence, but also
small computational amount and strong adaptability.

Machine learning methods, often referred to as black-box
models, capture the input-output relationship of a lithium-ion
battery without relying on a physics or chemistry-based model.
These methods are typically trained using measured data such
as voltage, current, temperature, to accurately estimate SoC
(Chen et al., 2024; Qian et al., 2024; Zhang et al., 2024). Qian et al.
(2024) developed a hybrid neural network model (CNN-SAM-
LSTM) that combines Convolutional Neural Networks (CNN), self-
attention mechanisms, and Long Short-Term Memory (LSTM)
networks for the joint estimation of state parameters in lithium-ion
batteries. Although battery SoC estimation using machine learning
methods can enhance accuracy, it often requires the establishment
of an offline database and involves computationally intensive
training processes, whichmay lead to overfitting and local optimum
phenomena. Zhang et al. (2024) employed a stacked ensemble
learning paradigm to estimate the state of lithium batteries. By
utilizing base learners with different architectures, they enhanced
adaptability to various features and reduced the risk of overfitting.

A battery pack is typically composed of hundreds of individual
cells connected in series and parallel. Ideally, each cell leaving
the production line would exhibit consistent performance over its
lifespan. However, in practice, ensuring uniform initial performance
parameters for each battery cell is challenging due to the
manufacturing process and other factors. Inconsistencies during
usage further exacerbate differences between batteries, complicating
battery pack management over its service life. Additionally, the
capacity and SoC of the battery are not intrinsic properties but
must be determined based on individual cell behavior within the
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pack. Managing individual cell inconsistencies within a battery pack
makes it difficult to accurately ascertain the capacity and SoC of the
entire pack. The capacity of a series battery pack is determined by
the sum of the minimum rechargeable capacity and the minimum
discharge capacity of the individual cells in the group.Methods such
as the large battery method, important battery method, and mean
difference method are commonly used to estimate the SoC of the
battery pack.

Large battery method treats a battery pack as a single
large-capacity cell because individual cells within the battery
pack exhibit similar characteristics, as proposed in reference
(Ramachandran et al., 2019). Tian et al. (2023) considered large-
scale battery systems as a unified entity and proposed an online
capacity estimation method based on Extended Kalman Particle
Filtering (EKPF). Additionally, they introduced an improved
Gaussian mixture model to visualize the inconsistencies within the
battery pack. Although the large battery method has a small amount
of calculation, it ignores the inconsistency among individual cells in
the group and cannot accurately estimate the battery SoC.

Important battery method is to use a single major battery in
the group to represent battery pack performance (Liu et al., 2024;
Trevizan et al., 2024). Typically, the lowest battery is selected, that
is, the battery with the lowest voltage during discharge and the
highest voltage during charging. The important battery method
is often used in combination with different filtering algorithms.
For example, Yu et al. (2023) employed cosine similarity to quantify
the inconsistency among battery cells, identifying the representative
cell within the battery pack based on themaximum cosine similarity
value. They further utilized a multi-branch fusion approach to
estimate SoC of the representative cell using Bayesian probability
formulas. The important battery method can effectively protect
the operation safety of the power battery pack, but when the SoC
works in the range of 30%–80%, this method will reduce the energy
efficiency of the battery pack.

Mean difference method treats the battery pack as both a mean
model and a difference model, estimating the mean model SoC and
the difference model ΔSoC, where ΔSoC represents the deviation of
each cell from the mean model. This method typically utilizes an
equivalent circuit model to determine model parameters through
fitting measured cell data. Wu et al. (2023) designed a multi-layer
balancing circuit capable of achieving both intra-group and inter-
group balancing. This circuit topology ensures fast balancing while
maintaining high balancing efficiency. Van andVinh (2020) employs
micro and macro time scales to estimate SoC for selected and
unselected cells, respectively. Liu Z. et al. (2023) implemented a
fusion of data-driven autoregressive (AR) models with ECM to
enhance the dynamic characteristics of the battery pack model
under complex operating conditions.They employed a differentiated
update strategy to online update the parameters of the average
differential model. However, this method does not consider the
influence of battery operating temperature on SoC estimation.

Lai et al. (2022) proposed a joint estimationmethod for SoC and
state of health (SOH) that takes temperature effects into account.
In scenarios with temperature variations of up to 35°C, the joint
estimator achieved a SoC error of 2%.Generally, themean difference
method usually estimates the SoC of the battery pack with good
accuracy and low computational complexity.

The paper’s major contributions are as follows:

(1) First, a mechanistic model was developed to explore the
characteristics of lithium-ion battery packs. Based on the
analysis of battery pack characteristics, it was identified
that temperature variations during the operation of series-
connected battery packs could lead to internal inconsistencies
in battery characteristics. To address this issue, BP-MDM-
TEM was proposed. This model considers the thermal-
electric coupling effect to describe the mean characteristics
of the battery pack, enabling the characterization of the
overall relationship between the battery pack and temperature
changes.The differencemodel then describes the discrepancies
between individual cell characteristics and the overall battery
pack characteristics.

(2) On the basis of the BP-MDM-TEM, in order to realize the
accurate estimation of SoC, this paper uses ISH-AEKF to
estimate SoC of the battery pack, to overcome the influence
of process noise and measurement noise on the system
estimation.

(3) A dual-Time-Scalemethodwas used to estimate SoC of battery
pack based on the BP-MDM-TEM, reducing the amount of
calculation of the differential model. When the characteristics
of the single battery go beyond the limits allowed by the system,
the system estimates the overall characteristics of the battery
based on the important battery method.

2 Mean difference model based on
thermal-electric coupling

2.1 Battery temperature features

Based on the operating conditions of the Hybrid Pulse
Power Characterization (HPPC) (Belt, 2010), we found that the
temperature of each individual cell in the battery pack rises during
operation due to heat absorption.

When the battery is at rest, it no longer generates heat, and the
temperature will slowly decrease. And, the temperature variation
differs slightly due to the different positions of the cells. The
temperature of the cells in the middle is slightly higher than those
on the outer edges. This is because the heat generated by the middle
cells is not dissipated as quickly, resulting in slightly higher heat
absorption. However, this difference is minimal, and the overall
temperature trend of the cells within the pack is consistent.

2.2 Thermal-electric coupling model of
individual battery

The basic operating principle for the thermal-electric coupling
model is shown in the mean model section of the Figure 1, and the
upper left section is the circuit model, as shown in Equation 1:

{{{{{{
{{{{{{
{

Ut = Uoc −U1 −U2 − IR0

U̇1 = −
1

R1C1
U1 −

1
C1

I

U̇2 = −
1

R2C2
U2 −

1
C2

I

(1)

Where, Uoc is usually a nonlinear function of SoC and the
battery operating temperature; IR0 is the voltage difference across
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FIGURE 1
Battery-pack mean-difference method with thermal-electrical model.

the ohmic resistance R0; R1 and C1 are the internal resistance
and capacitance of electrochemical polarization, respectively, with
the voltage across the R1C1 circuit being the electrochemical
polarization voltage is U1; R2 and C2 are the internal resistance
and capacitance of concentration polarization, respectively, with
the voltage across the R2C2 circuit being the concentration
polarization voltage is U2. R1,C1,R2,C2 change with the operating
temperature (Gu andWang, 2000). A thermal model is illustrated in
Equation 2.

{{{{
{{{{
{

CcṪc = Q+
Ts −Tc

Rc

CsṪs =
T f −Ts

Ru
+
Ts −Tc

Rc

(2)

Where, Ts and Tc represent the battery surface temperature
and the battery core temperature; T f is the ambient temperature;
Cc and Cs represent the heat capacity of the battery core
and the battery surface; Rc is the equivalent heat conduction
resistance, and Ru is the equivalent convective resistance used
to simulate convective cooling of the battery surface, which is
affected by the geometry of the battery pack, coolant type, and
coolant flow; Q represent the heat production during the battery
operation.

Then from Bernardi equation, the heat production of the battery
can be obtained as shown in Equation 3:

Q = I∗ (Uoc −Ut) + I∗T∗
dUoc

dT
(3)

Using Equation 2, the battery core temperature and surface
temperature are computed as the battery operating temperature T
as shown in Equation 4:

T = (Tc +Ts)/2 (4)

Then, the battery operating temperature is used to
modify the parameters in the Equation 1 to form a
thermal-electrical coupling model with high simulation
precision.

The thermal-electrical coupling model has the following
three features:

First, the thermal-electrical coupling model, designed for real-
time simulation with the control algorithm, can avoid the limitation
of the finite element method, which cannot realize the real-time
simulation of the battery temperature control algorithm. This
effectively shortens the cycle of battery thermal management in the
development of the control strategy, saving time.

Secondly, the thermal properties of the battery are very
complex. The thermal-electrical coupling model can balance both
the precision and computational complexity of the model. With
appropriate computational intensity, the battery core temperature
and battery surface temperature can be monitored more accurately
simultaneously.

Thirdly, the thermal-electrical coupling model uses the
equivalent circuit model and thermal model to describe the
relationship between the thermal power of the battery and the
current and voltage. Without considering the specific physical
significance, the calculation is simple and easy to implement widely.

When the working temperature of the battery changes, the
circuit model parameters related to the operating temperature of the
battery will also change, making the identification of the thermal-
electric coupling model very complex, and the identification
accuracy cannot be guaranteed. In view of this problem, the
identification of thermal-electric coupling model is regarded as an
optimization process to find the optimal parameter values of amodel
under a specific open circuit voltage, SoC and battery operating
temperature, so that the model output result and the measurement
result are close.
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2.3 Battery-pack mean-difference method
with thermal-electrical model

The conventional MDM consists of CMM and CDM. CMM
is used to describe the mean state of the battery pack, generally
Thevenin model; CDM is used to describe the difference between
the cell and mean state in the group, generally Rint model.

From the study of the temperature characteristics of the battery
pack, it can be seen that the difference between the batteries
in the group in the working process is relatively small, and the
number of temperature sampling points set up in the actual
packaging process of the automotive battery pack is limited, so
only the temperature change of the battery pack as a whole needs
to be taken into account in the estimation of the SOC of the
battery pack.

Through the study of the open-circuit voltage characteristics
of the battery pack, it can be seen that the open-circuit voltage of
the batteries in the group under different ambient temperatures has
small differences, and the overall trend of change is consistent, so the
open-circuit voltage can be normalized;

Based on the model of the MDM, BP-MDM-TEM which
proposed in the paper changes theTheveninmodel used in themean
model to the thermal-electrical coupling model. Where T is the
mean working temperature of the battery pack and Uoc is the mean
open circuit voltage. The model can take into account the change in
the operating temperature of the battery pack to obtain an accurate
battery pack model.

For simplicity of the calculation, the difference model ignores
the differences in polarized voltage and polarized capacitance.
The mean differential model for thermal-electric coupling
is shown in Figure 1.

2.3.1 Mean thermal-electrical coupling model
On the left side of Figure 1 is the mean thermal-electrical

coupling model, which includes the mean equivalent circuit model
and the mean thermal model. In the mean equivalent circuit model,
the mean end voltage Ut of all series-connected batteries can be
calculated from the measured end voltage of the battery pack and
the number of batteries. The expression as shown in Equation 5:

Ut =
1
n
Upack =

1
n

n

∑
i=1

Ut
i (5)

Where, Upack is the measuring end voltage of the series battery
pack, Ut

i is the measuring end voltage of the ith single cell in
the series battery pack, and n is the total number of the series
battery pack.The parameters in themean equivalent circuit have the
following relationship as shown in Equation 6:

Ut = Uoc − IR0 −U1 −U2 (6)

Where, I is the current of the series battery pack; Uoc is the
average open-circuit voltage, which can be obtained fromMOCV;R0
is the average ohmic resistance;U1 andU2 represent the polarization
voltages of the R1C1 and R2C2.

In the average thermal model, Ts is the average surface
temperature within the battery pack as shown in Equation 7.

Ts =
1
m

m

∑
j=1

Tj
s (7)

Which can be obtained with the corresponding mean model
parameters included Equation 3.

2.3.2 Difference model
According to the difference model on the right side of Figure 1,

The difference model terminal voltage ΔUt
i of the ith single cell

is composed of the difference open-circuit voltage ΔUoc
i and the

difference internal resistance ΔRi. The expression for the difference
model terminal voltage is shown in Equation 8.

ΔUt
i = ΔUoc

i − IΔRi (8)

The relationship between each parameter of the differencemodel
and the mean model is shown in Equation 9.

{{{
{{{
{

ΔUt
i = Ut

i −Ut

ΔUoc
i = Uoc

i −Uoc

ΔRi = R0
i −R0

(9)

Where,Uoc
i is the open circuit voltage of the ith cell in the series

battery pack; and R0
i is the ohmic resistance of the ith cell.

3 SoC estimation based on ISH-AEKF

3.1 ISH-AEKF method

If the object is modeled as shown in Equation 10:

{{{{{{{{{
{{{{{{{{{
{

xk = f (k,xk−1) +wk

yk = h(k,xk−1) + vk

Fk =
∂ f

∂x̂k−1

Hk =
∂h

∂x̂k−1

(10)

The algorithm steps of ISH-AEKF are as follows:

Step 1: Compute a priori estimates of the system x̂k|k−1,
and update the system covariance matrix P̂k|k−1,
as shown in Equation 11:

{
x̂k|k−1 = Fkx̂k−1 + P̂k−1 + qk−1
P̂k|k−1 = FkP̂k−1FkT +Qk−1

(11)

Where Qk is the covariance of the process noise wk.

Step 2: Adaptive measurement of noise covariance estimation,
as shown in Equation 12:

{{{{
{{{{
{

dk =
1− b

1− bk+1

ek = yk −Hkx̂k|k−1 − rk−1
Rk = (1− dk)Rk−1 + dk (ekekT)

(12)

Where dk is the adaptive factor; b is forgetting factor, the value
range is [0,1], usually set to [0.95,0.99];
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Step 3: Calculate theKalman gainmatrixKk, as shown inEquation 13:

Kk =
P̂k|k−1Hk

T

HkP̂k|k−1Hk
T +Rk

(13)

Step 4: Adaptive process noise covariance estimation,
as shown in Equation 14:

Qk = (1− dk−1)Qk−1 + dk−1 (Kkekek
TKk

T) (14)

Step 5: Solving the optimal estimation of state variables x̂k
and the optimal estimation of mean square error P̂k,
as shown in Equation 15:

{
x̂k = x̂k|k−1 +Kkek
P̂k = (I−KkCk) P̂k|k−1

(15)

Step 6: Adaptive measurement and calculation of mean Process
Noise, as shown in Equation 16:

{
rk = (1− dk) rk−1 + dk (yk −Ckx̂k|k−1)

qk = (1− dk)qk−1 + dk (x̂k −Akx̂k−1)
(16)

3.2 SoC estimation of battery pack

Due to the inconsistency within the battery pack, the remaining
charge/discharge capacity of each cell varies. However, users are
generally only interested in the SoC of the entire battery pack.
Therefore, a method that can accurately estimate the SoC of the
battery pack is needed.The paper proposes a method that combines
the thermal-electrical couplingmodel with mean difference method
(IMDM), which has the following characteristics:

First, The thermal-electrical coupling model is applied to the
mean model to account for the effects of temperature variations in
the battery pack.

Secondly, a dual-time scale is used to estimate the mean
model and the difference model separately, which can reduce the
estimation frequency of the difference model, thereby reducing the
computational load of the system.

Thirdly, Based on this, the method integrates the significant
battery method to monitor the charge level of each cell in the pack.
When a cell’s charge is particularly high or low, a charge alert is set to
prevent issues such as overcharging or over-discharging within the
battery pack.

Taking into account the fact that certain batteries within the
battery packmay experience overcharging or over-dischargingwhen
the pack is close to reaching its charging/discharging cut-off voltage,
the paper proposed the important battery method and improve the
mean difference model, real-time monitoring within the monomer

battery, when a battery is high or low, set the power remind,
avoid the group overcharged battery, etc. The process is illustrated
in Figure 2.

Step 1: Measure the current of series battery pack I(k), battery
end voltage of each cell Ui

t(k), ambient temperature of
battery pack T f(k), and surface temperature of battery
pack T j

s(k).
Step 2: Estimate pack mean SoC based on ISH-AEKF method.

Assuming the sampling period of the mean model CMM is ΔT.
Set up the following matrix as shown in Equations 17–23:

xk = [U1 (k) U2 (k) SoC (k) T̄c (k) T̄s (k) ]
T (17)

uk = [I (k) Q (k) T f (k) ]
T (18)

yk = [Ut (k) T̄s (k) ]
T (19)

Ak =

[[[[[[[[[[[[

[

e−
ΔT

R1(k)C1(k) 0 0 0 0

0 e−
ΔT

R2(k)C2(k) 0 0 0

0 0 1 0 0

0 0 0 e−
ΔT

Rc(k)Cc(k) e
ΔT

Rc(k)Cc(k)

0 0 0 e
ΔT

Rc(k)Cs(k) e−(
ΔT

Rc(k)Cs(k)
+ ΔT

Ru(k)Cs(k)
)

]]]]]]]]]]]]

]
(20)

Bk =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

R1 (k)
∗(1− e−

ΔT
R1(k)C1(k) ) 0 0

R2 (k)
∗(1− e−

ΔT
R2(k)C2(k) ) 0 0

− ΔT
CN

0 0

0 Rc (k)
∗(1− e−

ΔT
Rc(k)Cc(k) ) Rc (k)Cc (k)

Ru (k)Cs (k)
(e

ΔT
Rc(k)Cc(k) − 1)

0 Rc (k)Cs (k)
Cc (k)

(e
ΔT

Rc(k)Cs(k) − 1) Rc (k)
Ru (k) +Rc (k)

(1− e−
ΔT

Rc(k)Cs(k)
− ΔT

Ru(k)Cs(k) )

]]]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(21)

Ck = [

[

−1 −1 0 0 0

0 0 0 0 1
]

]
(22)

Dk = [

[

−R0I (k) +Uoc (k)

0
]

]
(23)

Then the meanmodel equation of state is shown in Equation 24:

{
xk = Akxk−1 + Bkuk +ω (k)

yk = Ckxk−1 +Dk + ν (k)
(24)

Step 2.1: The mean voltage Ut(k) and mean surface temperature
T̄s(k) are calculated based on Equations 5, 7.

Step 2.2: Calculate the mean operating temperature of the
battery pack based on Equation 4, as shown in
Equation 25:

T (k− 1) = (Tc (k− 1) +Ts (k− 1) /2 (25)
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FIGURE 2
SoC estimation based on ISH-AKEF.

Step 2.3: Estimated based on the relationship obtained from
the identification of Equation 10, as shown in
Equation 26:

yk = [Ut (k) T̄s (k) ]
T (26)

Step 2.4: Calculates the mean heat production of the current
battery pack based on Equation 3, as shown in
Equation 27:

Q (k) = I (k) ∗ ( Uoc (k− 1) −Ut (k− 1)) + I (k) ∗T (k− 1)
∂Uoc (k− 1)
∂T|T(k−1)

(27)

Step 2.5: Calculation Equations 28, 29:

Fk =

[[[[[[[[[[[[[[[[[[[[[[[[[[[

[

a11 0 0 a11
∂a11
∂Tc

u1 (k− 1) + b11
∂b11
∂Tc

I (k) a11
∂a11
∂Ts

u1 (k− 1) + b11
∂b11
∂Ts

I (k)

0 a22 0 a22
∂a22
∂Tc

u2 (k− 1) + b12
∂b12
∂Tc

I (k) a22
∂a22
∂Ts

u2 (k− 1) + b12
∂b12
∂Ts

I (k)

0 0 1 0 0

0 0 b42
∂Q (k)
∂SoC (k)

a44 + b42
∂Q (k)
∂Tc

b42
∂Q (k)
∂Tc

0 0 b52
∂Q (k)
∂SoC (k)

a54 a55

]]]]]]]]]]]]]]]]]]]]]]]]]]]

]
(28)

Hk =
[[[[

[

−1 −1 ∂Uoc (k)
∂SoC (k)

∂Uoc (k)
∂Tc (k)

− ∂R0 (k)
∂Tc (k)

I (k) ∂Uoc (k)
∂Ts (k)

− ∂R0 (k)
∂Ts (k)

I (k)

0 0 0 0 1

]]]]

]
(29)

Step 2.6: According to the ISH-AEKFmethod, x̂k can be calculated
as shown in Equation 30:

x̂k = [Û1 (k) Û2 (k) ŜoC (k) ̂̄Tc (k) ̂̄Ts (k) ]
T

(30)

Step 3: Estimation of single cell differential SoC based
on ISHAEKF approach can be represented by
Equations 31–33.

The sampling period of the Difference Model (CDM) is ΔTd.

{{
{{
{

ΔSoCi (k) = ΔSoCi (k− 1) −
I (k)ΔTd

CN
− [SoC (k) − SoC (k− 1)]

ΔUt
i (k) = ΔUoc

i (SoC (k),ΔSoCi (k)) − I (k)ΔRi

(31)

Let:

{
{
{

xik = [ΔSoC
i (k)]T

yik = [ΔU
i
t (k)]

T (32)

For the difference model:

Fik = [1] ,H
i
k = [

∂ΔUi
oc

∂ΔSoCi ] (33)
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TABLE 1 Specifications of lithium ion battery pack.

Parameter Parameter values Unit

nominal voltage 60.8 V

Charge/discharge cut-off voltage 69.35/47.5 V

Standard charge and discharge current multiplier rate 0.33C —

Charge/discharge working temperature range 0 45/-20 60 °C

energy 1,520 Wh

weight 11.5 kg

size 302∗160∗185 mm

Similarly, it can be obtained based on the ISH-AEKF method
xk

i.

Step 4: Monitor and handle battery pack SoC exceptions.

Due to the inconsistency of the battery pack, the battery is in
danger of overcharging and overdischarge in the group, so when
the battery pack is in a low/high power state, more attention should
be paid to the two single batteries with the lowest/high remaining
power in the battery pack. The open circuit voltage of the battery is
higher and changes faster when the remaining power is higher than
80% and lower than 20%. Therefore, the paper proposes to set the
monitoring module to remind the state of the important battery.
When the battery with the lowest remaining power (high) in the
process of battery discharge (charge) is low/above 20% (80%), that
ismin (SoCi) ≤ 20%,max (SoCi) ≥ 80% the monitoring module will
remind the user and reduce the step size estimated by the difference
model to avoid the problem of battery over discharge or overcharge.

Since the battery pack SoCpack is used for calculation SoC,
the user is more concerned about the battery pack SoC than the
individual monomer ΔSoCi, so the step size of the difference model
can be set as shown in Equation 34:

ΔTd =M∗ΔT,M > 1 (34)

Which can effectively reduce the calculation amount. However,
when the battery pack is calculated by two limit cells, the
requirements for the difference model are increased, so the step
size of the difference model needs to be changed M = 1, so that the
estimation accuracy can be effectively improved.

4 Experimental verification

4.1 Test platform setup

The test object of the paper is the rechargeable lithium-ion
battery pack produced by Jiawei Longneng Solid State Energy
Storage Technology Rugao Co. Ltd. with the model number
JL60V25Ah,which consists of 19 single cells connected in series.The
battery cells are model 90133200F25. The product specifications of
the battery pack are shown in Table 1.

Battery pack uses RS485 communication, with a baud rate
of 9,600, 8 data bits, and 1 stop bit, with no parity check. All
data is requested by the charging and discharging device from the
protection board, which sends responses including the total battery
current (high and low), the voltage of individual cells (high and low),
battery SoC, battery temperature, and battery series.

To charge the battery pack, a Chroma 62100H-1000 is used;
for discharging, a Chroma 63210E-1200-400 programmable DC
electronic load is chosen.The uppermachine uses BMS test software
provided by Hangzhou Xinwei Technology Co., Ltd., which can
monitor the voltage, current, temperature, and other data of the
battery pack in real time.

Based on the above devices, a hardware test platform for
the battery pack is built, and the battery pack is tested under
different working conditions.The charging test platform is shown in
Figure 3A, and the discharging test platform is shown in Figure 3B.

4.2 Experimental design of the battery test

In order to establish the battery pack model and verify the
accuracy of BP-MDM-TEMestimation of battery pack SoCmethod,
the paper designed HPPC test, constant current constant voltage
charging test and constant current discharge test experiments at
different ambient temperatures.The purpose of the HPPC condition
test is to establish the battery packmodel and identify the parameters
of themean differencemodel.The advantage of theHPCC condition
test is not removing the battery pack to obtain the characteristics
of the constant current constant voltage charging test and constant
current discharge test is to verify the BP-MDM-TEM to estimate the
accuracy and robust of the battery SoC, which can effectively reflect
the battery charge and discharge state.

(1) The HPPC test operating condition place the battery pack at
the set ambient temperature for the following steps:
a. Fully charge the battery pack to the upper cut-off voltage

69.35 V with the constant current (8.25A) (0.33°C), and
then charge the battery pack with a constant voltage until
the charging current rate drops to 0.02°C;

b. Put the battery pack in an open state and stand for 1 h to
depolarization, then the SoC is 100%;
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FIGURE 3
Charging hardware test platform: (A) Charging test platform. (B) Discharge Test Platform.

c. Discharge the battery pack with the constant current
(8.25A) of the standard discharge rate (0.33C) for 18min
to the 10% SoC;

d. Repeat the test procedure in steps b and c.When the battery
pack SoC has discharged to 0% or reached a low cut-off
voltage, leave the battery pack still for 2 h.

In the HPPC test condition, in addition to recording the
open circuit voltage value of the cell within [0%, 100%], the
battery current, the battery voltage, the cell voltage and the mean
temperature of the group measured in the experiment should also
be recorded.

(2) Constant current and constant pressure charging test
condition.

The test condition of constant current and constant voltage
charging is the standard charging mode of the battery pack.
First, the constant current charging is charged at 0.33°C rate, and
when the charging stop voltage reaches 69.35 V, the charging is
charged at constant voltage of 69.35 V until the current is less
than 0.05°C.

(3) Constant current discharge test working condition.

The constant discharge test condition is the standard discharge
mode of the battery pack. 0.33°C ratio is used to discharge the full
battery pack until the discharge cut-off voltage reaches 47.5 V.

4.3 The HPPC experiment identified the
model parameters

4.3.1 Parameter identification of the
thermal-electric coupling mean model

Based on the HPPC test condition, the meanmodel open circuit
voltage is identified according to the battery pack model parameter
identification process.

Setting as shown in Equation 35:

TABLE 2 Mean open-circuit voltage parameter identification results.

a0 a1 a2 b0 b1 b2 c0

2.26 0.13E-02 −3.18E-05 175.4 −1.63E-05 2.98E-05 3.03

d0 e0 f0 g0 h0 i0

3.61 52.90 −150.88 189.30 −117.29 29.21

Uoc (SoC,T) = (a0 + a1 ∗T+ a2 ∗T2) + (b0 + b1 ∗T+ b2 ∗T2) ∗ SoC+ c0 ∗ SoC2

+d0 ∗ SoC3 + e0 ∗ SoC4 + f0 ∗ SoC
5 + g0 ∗ SoC

6 + h0 ∗ SoC7

+i0 ∗ SoC8

(35)

The obtained polynomial parameters are shown in Table 2.
Based on the mean model RC parameters identified

according to Equations 36–40, the result shown in
Table 3.

R0 (T) = α0 + α1 ∗T+ α2 ∗T2 + α3 ∗T3 (36)

R1 (T) = β0 + β1 ∗T+ β2 ∗T
2 + β3 ∗T

3 (37)

C1 (T) = γ0 + γ1 ∗T+ γ2 ∗T
2 + γ3 ∗T

3 (38)

R2 (T) = δ0 + δ1 ∗T+ δ2 ∗T2 + δ3 ∗T3 (39)

C2 (T) = η0 + η1 ∗T+ η2 ∗T
2 + η3 ∗T

3 (40)

The identified mean model parameters are used to
build the thermal-electric coupling model, and the voltage
results output by the model are compared with the
temperature results and the measured data. The Root
Mean Square Error (RMSE) for the mean model end
voltage is 6.55 mV, and the RMSE for the battery operating
temperature is 0.12°C.
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TABLE 3 Mean model RC parameter identification results.

R0 R1 C1 R2 C2

α0 0.20 β0 0.04 γ0 512.47 δ0 0.11 η0 4,063.83

α1 −0.41E-2 β1 −0.10E-2 γ1 10.63 δ1 −0.31E-2 η1 −6.38

α2 1.28E-4 β2 2.14E-6 γ2 0.24 δ2 4.65E-5 η2 0.31

α3 −1.29E-6 β3 1.95E-7 γ3 −0.72E-2 δ3 −1.75E-7 η3 −0.30E-2

FIGURE 4
Differential resistance identification results of individual cells.

TABLE 4 Differential model RMSE.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.18 0.19 0.17 0.16 0.20 0.17 0.18 0.17 0.13 0.13

11th 12th 13th 14th 15th 16th 17th 18th 19th

0.13 0.15 0.24 0.16 0.13 0.19 0.22 0.19 0.19

4.3.2 Parameter identification of the
thermal-electric coupling difference model

In addition to the mean model, the differential resistance ΔRi

in the differential model also needs to be identified by HPPC
experiment. Because the differential resistance ΔRi changes slightly
in the working process, the paper ignores the change, and the
identification results are shown in Figure 4.

The criteria for differential voltage RMSE calculated from the
difference model are shown in Table 4 in mV.

4.4 SoC estimation for individual cell

4.4.1 Effect of temperature on the SoC estimate
Considering the temperature of the charge-discharge

state, the paper verifies the influence of temperature
modification on SoC estimation results under DST and US06
conditions.

The paper compares the accuracy of SoC estimation with and
without temperature correction using three methods: the EKF
method without temperature correction, the EKF method with
temperature correction, and the ISH-AEKF method. Initially,
during SoC estimation, because the battery temperature change
is not significant, the simulation results of the EKF method
without temperature correction and the EKF method with
temperature correction are similar. However, as the battery
operating temperature increases, the estimation error of the former
gradually becomes greater than that of the latter, and over time, the
error becomes significantly higher. Compared with the ISH-AEKF
method, the results of the latter are closer to the true value and have
higher accuracy.

According to Figures 5A, B, the accuracy of the temperature
correction model using the ISH-AEKF method is higher than that
of the EKF method. The ISH-AEKF method achieves the highest
accuracy among the methods tested, with an estimated Mean
Absolute Error (MAE) of SoC at 0.489% and RMSE at 0.972% under
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FIGURE 5
SoC estimation error under two different operating conditions: (A) DST conditions. (B) US 06 working condition.

FIGURE 6
SoC estimation error under two different operating conditions when the initial error value is 0.9: (A) DST conditions. (B) US 06 working condition.

DST conditions. Under US06 conditions, the estimated SoC MAE
is 0.523% and RMSE is 0.991%. These results demonstrate that the
ISH-AEKF method adopted in this paper ensures the accuracy of
SoC estimation under varying temperature conditions, exhibiting
good temperature adaptability.

4.4.2 Effect of different initial SoC value
This subsection will verify the initial SoC against the SoC of the

ISH-AEKF. The initial value of deviation is defined based on the
size of the difference from the reference value and is mainly divided
into two categories: small deviation initial value and large deviation
initial value.

The approach involves intentionally setting the initial SoC value
to deviate from the reference value in the ISH-AEKF method
for SoC estimation. Under different SoC conditions compared to
the reference value, the algorithm is validated using two different
driving cycles, DST and US06, to assess whether the ISH-AEKF
algorithm can automatically correct the SoC, thus demonstrating the
robustness of the ISH-AEKF method.

The paper validates the robustness using DST and US06 driving
cycle data at an ambient temperature of 25°C. During the discharge
process, the initial reference SoC is set to 1, while a slightly
offset initial SoC of 0.9 is used. Through simulation experiments,
the SoC estimation error results for the ISH-AEKF algorithm are
depicted in Figures 6A, B.

Using a slight initial deviation in SoC of 0.6, the ISH-AEKF
algorithm’s SoC estimation error is evaluated through simulation
experiments, with the results depicted in Figures 7A, B.

The results indicate that under conditions of an initial erroneous
value, the ISH-AEKF algorithm is capable of automatically

correcting the SoC estimation when there is an initial deviation
in SoC. Once stabilized, the error range can be maintained within
±0.004.

4.5 Charge and discharge experiment
verification

In order to verify that BP-MDM-TEM has good SoC
estimation accuracy in charge-discharge experiments, the
paper tests standard charge-discharge of the battery pack and
substitutes the SoC estimation data, such as measured voltage,
measured current, and measured temperature obtained by the
upper computer, into BP-MDM-TEM. The results are shown
in Figures 8A, B.

The above figures compare the traditionalMDM and the Battery
Pack MDM with BP-MDM-TEM under constant current-constant
voltage charging and constant current discharging conditions. The
objective is to verify whether applying the thermal-electric coupling
model to the mean model can effectively enhance the accuracy of
SoC estimation for battery packs. Figures 9A, B depict error plots
for this comparison.

As can be seen from the charge-discharge error
diagrams in Figures 9A, B, the battery operating temperature of
the model fluctuates throughout the SoC estimation. However,
the BP-MDM-TEM applies the thermal-electric coupling model
to the mean model and updates the model parameters with
the battery’s operating temperature. Therefore, the BP-MDM-
TEM shows a clear convergence trend in the early stages of
estimation. This is because during the battery’s operation, part
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FIGURE 7
SoC estimation error under two different operating conditions when the initial error value is 0.6: (A) DST conditions. (B) US 06 working condition.

FIGURE 8
Battery pack SoC estimation results under charge-discharge conditions: (A) Charge conditions. (B) Discharge conditions.

FIGURE 9
SoC estimation error of battery pack under charge-discharge conditions: (A) Charge conditions. (B) Discharge conditions.

of the heat is not released in time and is absorbed by the
battery itself, causing an increase in battery temperature. This
temperature affects the battery parameters and changes its external
characteristics, leading to a difference in temperature between
MDM and the reference value. In the later stages of estimation,

the BP-MDM-TEM’s SoC estimate can converge near the reference
value.

According to the experimental results, the MAE of SoC
estimated by the BP-MDM-TEM is 0.468% and RMSE is
0.982%, while the MAE of the traditional MDM method is
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0.992% and RMSE is 1.279%. It is evident that the BP-MDM-
TEM has higher accuracy, meeting the requirements for SoC
estimation.

5 Conclusion

Based on the analysis of the battery pack characteristics,
a thermal-electrical coupling mean-difference model for series-
connected battery packs is proposed to address the issue of
inconsistencies in battery characteristics due to changes in core
temperature during operation. The thermal-electrical coupling
model is used to describe the mean characteristics of the
battery pack, thereby representing the overall relationship of
the battery pack with temperature changes, while the difference
model describes the discrepancies between each individual battery
and the overall characteristics of the battery pack. The dual-
time-scale method is employed to estimate the BP-MDM-TEM,
reducing the computational load of the difference model. When the
characteristics of an individual battery exceed the system’s allowable
limits, the system estimates the overall characteristics of the battery
pack based on the important battery method. To achieve accurate
estimation of the battery pack’s SoC, the paper applies the adaptive
EKF method to estimate the SoC of the battery pack, overcoming
the impact of process noise and measurement noise on the system
estimation. A hardware testing platform was constructed, and three
battery pack testing condition experiments were designed. Based
on HPPC conditions, the battery pack model was identified, and
simulation models of the battery pack were constructed for both
charge and discharge testing conditions to estimate the battery
pack’s SoC. The experimental results demonstrate that this method
can consider temperature changes during battery pack operation,
estimate the battery pack’s SoC and temperature simultaneously, and
update model parameters based on the operating temperature of
the battery, effectively meeting the accuracy requirements for SoC
estimation of the battery pack.
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