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Microgrid-equipped electric vehicle charging stations offer economical and
sustainable power sources. In addition to supporting eco-friendly mobility, the
technology lowers grid dependency and improves energy reliability. The
manuscript introduces a hybrid technique for efficient electric vehicle (EV)
charging integrating the Dollmaker Optimization algorithm (DOA) and spatial
Bayesian neural network (SBNN). This method optimizes the joint operation of
photovoltaic (PV), wind turbines (WTs), supercapacitors (SCs), and battery energy
storage systems (BESSs) in microgrids to enhance EV charging station efficiency,
reliability, and power quality while reducing grid outages. The SBNN predicts EV
load demand for improved efficiency and reliability, while DOA manages
microgrid (MG) fluctuations to ensure seamless EV charging. The MG system
features a four-phase inductor coupled interleaved boost converter (FP-ICIBC)
and a fractional-order proportional-integral-derivative (FOPID) controller for
optimal power management. An evaluation in MATLAB compares DOA–SBNN
with existing approaches, demonstrating its effectiveness in enhancing EV
charging performance. The proposed method outperforms all current
techniques, including the Multi swarm Optimization (MSO), the Multi-
Objective Gray Wolf Optimizer (MOGWO), and the Modified Multi-objective
Salp Swarm Optimization algorithm (MMOSSA). The results show that the
energy efficiency of the recommended approach is 19.19%, 26.15%, and

OPEN ACCESS

EDITED BY

Xiaoyi Ding,
Xi’an University of Technology, China

REVIEWED BY

Rajeev Kumar,
KIET Group of Institutions, India
Naladi Ram Babu,
Aditya Engineering College, India
Wulfran Fendzi Mbasso,
University of Douala, Cameroon

*CORRESPONDENCE

M. Arun Noyal Doss,
arunnoyal@gmail.com

Ali Elrashidi,
a.elrashidi@ubt.edu.sa

RECEIVED 06 September 2024
ACCEPTED 02 December 2024
PUBLISHED 07 January 2025

CITATION

Sai Eswar KNDV, Arun Noyal Doss M,
Shorfuzzaman M and Elrashidi A (2025)
Microgrid system for electric vehicle charging
stations integrated with renewable energy
sources using a hybrid DOA–SBNN approach.
Front. Energy Res. 12:1492243.
doi: 10.3389/fenrg.2024.1492243

COPYRIGHT

© 2025 Sai Eswar, Arun Noyal Doss,
Shorfuzzaman and Elrashidi. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: AC, alternating current; BESS, battery energy storage systems; CS, charging stations; DC,
direct current; DOA, Dollmaker Optimization Algorithm, DNN, deep neural network; EV, electric vehicle;
FP-ICIBC, four-phase inductor coupled interleaved boost converter; FOPID, fractional-order
proportional integral controller; MG, microgrid; MMOSA, Modified Multi-objective Salp Swarm
Optimization algorithm; MOGWO, Multi-Objective Gray Wolf Optimizer; PI, proportional integral;
PID, proportional integral derivative; PV photovoltaic; PWM, pulse width modulation; RES, renewable
energy source; SBNN, spatial Bayesian neural networks; SC, supercapacitor; SoC, state of charge; SOA,
Snake optimization algorithm; THD, total harmonic distortion; VSG, virtual synchronous generator; WT,
wind turbine.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 07 January 2025
DOI 10.3389/fenrg.2024.1492243

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1492243/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1492243/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1492243/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1492243/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1492243/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1492243&domain=pdf&date_stamp=2025-01-07
mailto:arunnoyal@gmail.com
mailto:arunnoyal@gmail.com
mailto:a.elrashidi@ubt.edu.sa
mailto:a.elrashidi@ubt.edu.sa
https://doi.org/10.3389/fenrg.2024.1492243
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1492243


32.57% higher than the three current techniques, respectively, and that of total
harmonic distortion (THD) is 19.09%, 25.85%, and 31.17% lower than those three
techniques, respectively.

KEYWORDS

battery energy storage systems, charging stations, electric vehicles, fuel cells, four–phase
inductor coupled interleaved boost converter, photo voltaic, renewable energy sources
and wind turbine

1 Introduction

In the past 20 years, electric vehicles (EVs) have grown in
popularity worldwide and have drawn much attention as among
the best ways to reduce greenhouse gas emissions in the transport
sector (Zhang et al., 2023). New financial research indicates that
electric cars will soon completely replace internal combustion engine
vehicles (Schoenberg et al., 2022). This makes it necessary to build
charging stations (CSs) that can handle the demand for the
substantial amount of electricity required to charge these EVs
(Ur Rehman et al., 2021). The integration of renewable energy
sources (RES) with electric vehicle infrastructure is becoming
increasingly important as the world moves toward cleaner energy
and sustainable transportation. This study focuses on the design of a
microgrid (MG) specifically tailored for an EVCS, utilizing RES such
as solar, wind, and battery swapping stations (BSSs).

MGs are compact energy systems that may work independently
of the main power grid or in concert with it (Chattopadhyay and
Kar, 2024). They offer enhanced reliability, resilience, and efficiency,
making them ideal for supporting the growing demand for electric
vehicle charging infrastructure. By leveraging renewable energy,
these microgrids can significantly reduce the carbon footprint
associated with EV charging and contribute to a more sustainable
energy ecosystem (Kumar et al., 2024). Current research endeavors
underscore the need for additional efforts to tackle the obstacles
associated with the most efficient assimilation of EVCSs, battery
energy storage systems and virtual synchronous generators
(BESS–VSGs), and RES into energy systems (Puech et al., 2024).
RES do not have the damping or inertia of typical power plants,
whose synchronous generators (SGs) use intrinsic rotational mass to
maintain grid frequency even in the face of disturbances (Hussain
et al., 2023). The study responds to the urgent demand for
sustainable energy solutions in the transportation industry,
supporting international initiatives to lower carbon emissions and
encourage the use of RES. Through the demonstration of the
viability and efficacy of combining renewable energy sources with
sophisticated control algorithms, the research endeavors to establish
a model for the construction of environmentally conscious, resilient,
and efficient EV charging infrastructure.

Problems with intermittency and unpredictability make it
difficult to provide a consistent and dependable power supply
when microgrids are linked to renewable sources. Several
research studies on the topic of MG systems for electric car
charging stations that use RES and a variety of methods and
factors are available in the literature. A few of those reviewed by
Ali et al. (2022) develop evaluations of VSGs, EVCs, and RES from a
techno-economic and environmental perspective in MGs. Ju, Y.
et al. (2022) analyze the possibilities of VSGs to enhance microgrid
stability and synchronization, particularly in conjunction with

electric vehicle charging facilities when renewable power sources
are connected. Optimum planning of inverter-based renewable
energy sources in autonomous microgrids for EV charging
stations guaranteeing power distribution stability. Meng et al.
(2024a) cover synchronization concerns when PV systems and
battery storage are linked for rapid charging. They explain how
EV charging demand can be met while maintaining grid stability.
Liang, J et al. (2024) integrate queuing theory and deep learning to
organize electric vehicle charging stations. Synchronizing microgrid
charging stations to improve service efficiency and reduce EV wait
times and pricing factors are discussed. Energy storage devices can
help to prevent this by maintaining grid stability, and prices can be
problematic with these MGs when variable power output is
produced from RES. To properly balance supply and demand,
sophisticated control systems, advanced algorithms, and
micromanagement are required for these intricate integrations. It
underlines the importance of advanced control mechanisms and
time monitoring for optimum synchronization and microgrid
system efficiency and sustainability.

Mbasso Wulfran et al. (2023) set out to accomplish two goals by
evaluating a standalone hybrid energy system. Its primary objective
was to meet the need for electrical power. Secondly, they wanted to
determine how much oxygen to produce at the best rate for fish
farming. HOMER Pro software was used for both ideation and
execution by reducing CO2 emissions and maintaining
system stability.

A desired power flow control system is designed by Fendzi
Mbasso et al. (2023) using an intelligent energy handling strategy.
The goal is to make the system more stable during blackouts and
load fluctuations by making the most of the storage capacity that is
available. The work offers a novel MMOSSA-based approach for the
optimal distribution of solar PV, WT, BESS–VSG, and EVCS on
MGs. An objective function was created to minimize carbon
emissions, loss of energy, frequency shift, voltage stability
indicator, and levelized cost of electricity. Nafeh et al. (2024)
developed an optimum arrangement of RES based on inverters
for self-sufficient MGs that house EVCSs. MGs that were linked to
EVCSs were recently equipped with RES. Due to unpredictable
cohorts and random charging/discharging EV methods, MG
optimization proved difficult (Ma, K et al., 2020). Various
regulated and unregulated charging techniques, arrival and
departure hours, and starting and predefined SOC structures
were considered as potential EV needs. A method based on bi-
level metaheuristics was devised to tackle this intricate
planning model.

Pourvaziri et al. (2024) developed an approach for the best
possible size of a proposed grid-connected PV battery system for
electric vehicle fast-charging stations in Cairo, Egypt. The proposed
study is an adaptation of the SO algorithm. An analysis was carried
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out to verify the feasibility of the proposed MSO method in
accomplishing the intended end goals of the sizing process,
comparing it with four other popular meta-heuristic optimization
techniques. In addition, a techno-economic analysis was conducted
to evaluate the recommended system’s economic feasibility for each
of the two chosen pricing schemes over the projects. Kazemtarghi
et al. (2024) developed a hybrid approach to the capacity–location
issue with charging stations. The suggested method allocates
charging stations to electric vehicles according to their state of
charge while also determining the capacity and position of
charging stations or the quantity of charging stations. The
suggested method estimates the average waiting time by
combining mathematical modeling and queuing theory. Next, a
deep learning system was created to improve waiting time
estimation accuracy; using a DNN approach to enhance the
NSGA-II algorithm was another addition. Sharida et al. (2024)
developed a dynamic pricing approach that regulates CSs’
charging costs at different periods in order to direct EVs from
crowded to uncongested CSs. To determine the distances between
EVs and CSs, a realistic model for EV routes and CS sites was created
using QGIS software. Three scenarios were created to assess the
effectiveness of the suggested framework and evaluate the outcomes
considering the set price strategy.

Abid et al. (2024) developed a group of creative ideas
intended to improve the scalability of AC–DC side operations
in fast EVCSs. The suggested fixes concentrate on optimizing and
controlling the procedure of connecting a new active front-end
rectifier to the previous one at the side of the high-voltage DC
link. Disregarding these requirements may have negative
consequences, especially for the grid currents in the charging
station’s AC–DC side. On the other hand, the DC–DC side was
barely affected by these parameters. kumar Saha and Biswas
(2023) developed an evaluation of RES, VSGs, and EVCs in
MGs from a techno-economic and environmental perspective.
A novel solution to this problem was the BESS–VSG, which uses
the idea of inverter regulation to simulate a traditional
synchronous generator (Shirkhani, M et al., 2023).
Furthermore, the operational, financial, and technological
components of the microgrid were impacted by the charging
habits of EV owners, given the recent surge in EV sales.
Consequently, the suggested study provides a unique
MMOSSA-based method for the best possible allocation of
PV, WT, BESS–VSG, and EVCS on MGs (Zhang, J et al.,
2024). Behera S et al. (2024) state that by maximizing system
inertia through FiT incentives, the suggested model successfully
reduces overall system cost and CO2 emissions. Not only that, the
GTEP model outperformed competing soft-computing
optimization methods while using significantly less
computation time.

Previous literature has described a variety of control methods,
such as designing a microgrid for electric vehicle charging stations
incorporating the MOO technique, which has significant
complexity. These approaches, specifically in the context of
optimal allocation BESS–VSG units in microgrids, have not been
thoroughly studied. Existing research often addresses individual
objectives, but the simultaneous consideration of multiple
objectives remains an underexplored area. When used in
microgrid systems, EV charging stations, and the MMOSSA,

MOGWO, and MSO each address different challenges. Their
difficulty in computation is a major drawback that can result in
longer processing times (Guo, X et al. (2023)), particularly in
dynamic contexts where making decisions in real time is
essential. In addition, these algorithms may have problems
converging, especially in highly nonlinear conditions typical of
microgrid operations, making it hard to effectively reach optimal
solutions. They also mainly depend on appropriate parameter
tuning, which is a laborious procedure that can ask for
specialized knowledge in order to prevent poor performance
(Yaghoubi, E et al., 2024). The proposed method uses user-
defined limitations and particle swarm optimization (PSO) to
create a community-based residential energy management system
for MGs. This approach, while innovative, does not fully address the
comprehensive optimization needed for BESS–VSG allocation.
Additionally, the use of the grasshopper optimization method,
genetic algorithm, and PSO has enhanced the efficiency of the
FOPID controller for autonomous generation control in multi-
area systems. Four additional well-known meta-heuristic
optimization techniques have been contrasted using an MSO
methodology. Fuzzy logic (Meng et al., 2024b) and genetic
algorithms were used to establish a real power regulation strategy
for VSGs. By using this technique, frequency deviation is reduced,
and BESS–VSG units are allocated using specially constructed fuzzy
(Duan et al., 2023) rules. Although this technique shows promise, it
does not encompass the broader spectrum of multi-objective
optimization challenges in microgrids. These shortcomings
provide a reason for our investigation.

A suggested DOA–SBNN for a viable electric vehicle charging
station is presented in this study. The DOA is used to effectively
control the fluctuations in a microgrid, ensuring seamless EV
charging. The SBNN is used to predict the EV load demand. For
optimal power management, the microgrid system includes the
design of an FP-ICIBC and a FOPID controller. The following list
summarizes the important contributions of this manuscript. (a)
A microgrid system for EVCSs integrated with a renewable
energy source with an FP-ICIBC converter and a FOPID
controller is proposed for energy management. (b)
Implementing the SBNN technique to predict load demand.
(c) Implementing the DOA technique to effectively control the
fluctuations in a microgrid, ensuring seamless EV charging. (d)
The suggested method is carried out in the MATLAB platform,
and its efficacy is evaluated by applying available methodologies.
The proposed method shows better results than existing
techniques.

The article is arranged as follows: The current research and
context are described in segments. The arrangement of the
microgrid system to charge electric vehicles is described in
Segment 2. Segment 3 shows the proposed DOA–SBNN
technique for electric vehicle charging. The findings are discussed
in Segment 4. Segment 5 concludes the manuscript.

2 Arrangement of amicrogrid system to
charge electric vehicles

A structural diagram of an EVCS with a hybrid system is
displayed in Figure 1, and the parameters are listed in Table 1.
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The proposed microgrid system produces power by combining
several renewable energy sources, such as photovoltaic cells and
wind turbines. After being converted into DC, the produced

power is stored for later use in supercapacitors and batteries.
The voltage levels between the bus and the EV batteries are
intended to be maintained by a suitable interleaved DC converter.

FIGURE 1
Structural diagram of an EV charging station with the hybrid system.

TABLE 1 List of energy sources used for building EVCSs.

Type of energy source Parameter Specification

Solar Maximal power 100 kW

Maximal voltage 400 V

Maximal current 210 A

Wind Rated power output 150 kW

Peak voltage output
Rated current

250 V
200 A

Battery energy storage system Monomer capacity 180 Ah

Maximum charge and discharge power 65 kW

Charge discharge conversion efficiency 90%

Cycle times
SOC operating range

2000 (90% DOD)
0.25–0.95

Supercapacitor Energy capacity 1.26 kWh

Discharge/charge rate 33.8%
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The system has power conversion components to control voltage
levels and enable power transfer in both directions between the
microgrid and the main grid. EV charging uses DC–DC
converters and functions as a DC bus using a single DC–AC
grid-tied converter. A filter ensures the AC voltage is steady, and
a DC bus connects the system’s various parts. Two controllers
have been suggested for controlling power flow and optimizing
operation: a bidirectional, fractional-order proportional-
integral-derivative controller and a neural network-based
controller.

In order to encourage energy independence and lessen
dependency on the larger grid, the microgrid supports a range
of AC loads and offers an electric vehicle DC charging slot. When
designing a CS, a number of factors must be taken into
consideration. These factors include (a) space allocated for
battery-powered car parking, which dictates the largest
number of vehicles that can be charged; (b) the need for fast-
charging stations in a specific location; and (c) the nominal
voltage and suitable power output at the common coupling
point needed for the network. The proposed DOA–SBNN is
combined with an FP-ICIBC to significantly reduce grid
outages and enhance the efficiency, gain, and power quality of
EV charging stations.

2.1 Modeling of EVs

A schematic of the electric vehicle (Venkataraman, 2024) is
shown in Figure 2. The essential parts employed in the design of
EVs include geared systems made of metal, electric motors,
driveshafts, transmissions, and storage gadgets such as central
power electrical converters, battery packs, and chargers. It also
features two converters: a DC bidirectional converter that
controls the SOC of the battery system and a pulse-width
modulation (PWM)-based converter that aids in regulating
motor conditions.

2.2 Modeling of a PV system

Photovoltaic modules (Singh S et al., 2022; Eswar and Doss,
2024), energy storage batteries, inverters, electric energy recording
meters, and other equipment are the constituent components of the
decentralized solar energy generating system. Factors like the
relative humidity of the surrounding air, the amount of light
present, and the power production in the PV panels under rated

conditions affect their actual output power. Equation 1 is an
expression of the power model.

J � Jph − Jd1 − Jsh1 (1)

Where J denotes total current; Jph denotes the current generated by
the photon; Jd1 denotes current in the diode; Jsh1 denotes current in
the shunt resistor. Because semiconductor materials were used to
build the diode, it is possible to adjust a few internal parameters to
improve the quality of the output values. The shockley diode in
Equation 2, was useful in managing the diode’s intrinsic values.

RPV t( ) � Rstc
J Pb, Lt, J0t( )

Jstc
J + bT It − Istc( )[ ], (2)

where Rstc denotes the sun’s panel output in kW; Jstc denotes the
intensity of the solar radiation in W/m2; J(Pb, Lt, J0t) denotes the
overall solar radiation after taking into account the sun index, solar
radiation, type of photovoltaic tracker, and other variables; I denotes
the atmosphere’s degree; bt denotes the coefficient of power
temperature.

2.3 Modeling a wind energy system

This section explains wind energy systems (Eswar et al., 2023;
Ma et al., 2024). A key component of this energy system is a WT,
which converts energy in two stages: first, depending on the wind’s
availability, the wind speed is converted into mechanical force by the
turbine blades; second, an electrical generator is utilized to create
electricity (an induction or synchronous generator might be
employed). An induction generator is preferred in this instance.
Similarly, Stage 2’s gearbox arrangement converts into a high-speed
shaft from a low-speed shaft. A pitch angle controller (PI/PID) was
utilized to align the turbine blades with the WS, which functions
with high reliability. The wind speed is measured with a wind vane.
Equations 3, 4 provide numerical modeling of the WES for the
cohort of torque and kinetic energy.

Sw � 1
2
BCp η, β( ) × Uw( )3, (3)

where Sw denotes the kinetic energy generated (W); B denotes the
blade-swept region (m2); Cp denotes the rotor energy factor; η
denotes the tip-speed ratio; β denotes the pitch angle of the turbine
blade; Uw denotes velocity of wind speed (m/s).

Rm �
1
2 × Cp × ρ × BUw

3

wn
, (4)

where Rm denotes the mechanized torque N −m; ρ denotes the air
density (kg/m3); wn denotes the angular speed.

2.4 Modeling of a battery energy
storage system

An energy storage system is an essential technological
component in the deployment of decentralized green energy
applications (Gopal and Reddy, 2023). Energy storage can help
with several issues, namely, satisfying the need for substantial clean
energy and grid access, sustaining and governing the output of green

FIGURE 2
Structure of an EV.
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energy sources, and lowering the production of power variations.
There are three states for a battery energy storage system: charge,
discharge, and blackout. The most important condition is called
SOC. Equations 5, 6 represent the mathematical modeling of
the system.

Method of charging:

SOC V( ) � 1 − ϑ( )SOC V − 1( ) + RcΔTηc
Ec

. (5)

Method of discharging:

SOC V( ) � 1 − ϑ( )SOC V − 1( ) + RdΔT
Ecηd

, (6)

where Ec denotes the battery’s rated capacity, kWh; Rc denotes the
power of charging, kW; Rd denotes the power of discharging, kW;
SOC(V) indicates how much energy is left in the battery for the
following T period; SOC(V − 1) represents the remaining power in
the battery for the following T interval; ηc, ηd denotes the battery’s
charging and discharging efficiently; ϑ denotes the discharge rate of
the battery.

2.5 Modeling of a supercapacitor

An SC operates in series with many cells to improve the
amount of voltage in an electric vehicle charging station. A
supercapacitor is made up of internal resistance and
equivalent capacitance. Each cell is supplied with 2.7 V of
energy, and a supercapacitor’s voltage is established by a fixed
capacitor. The progression of the charge discharge action is
illustrated through the electrical manner of the SC. The
opposition of the SC is stated in Equation 7:

RIR � RC + RCR � ΔVD

IC
, (7)

where RIR is the inner resistance, RC shows the resistance of the cell,
RCR denotes the connector resistance,ΔVD is the drop in the voltage,
IC is the cell current. The SOC of the supercapacitor is shown in
Equation 8:

SOC � VTE − VMINCU

VMAXCU − VMINCU
, (8)

where VTE is the terminal voltage of SC, VMINCU, VMAXCU are the
minimum and maximum cut-off voltages.

In a linear system, the fixed capacitor properties and specific
voltage rating are defined by

δ � VC t1( ) − VC t2( )
t2 − t1

(9)

. Equation 10 is used to compute the capacitance:

K � 1
δ
− dt

dv
( ) ×

IC
2VI − 0.5 dv

CEQ � 1
δ

1
δ
− dt

dv
( ) ×

2VI

2VI − 0.5 dv
( ) × IC.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

We vary the minimal voltage and initiating voltage according to
the SC voltage. Inner series resistance and capacitance are

characterized according to the SC’s efficiency, as shown in
Equation 11:

η � e
−Rt CI

dt , (11)
where η is the efficiency, Ct is the total capacitance, and dt is the
discharging time.

2.6 Four-phase inductor coupled
interleaved boost converter

Here, we will use an FP-ICIBC. Considering that the single-
stage power converter lacks an energy buffer, the PV-wind hybrid
system is linked in parallel with a large bank of electrolytic
capacitors to mitigate the current ripple (Li, S et al., 2024)
produced by the single-phase AC inverter. Standard methods
for reducing the size of magnetic components in alternating
current converters are closely coupled and loosely coupled
inductors. In the interleaved circuit, the transformer and
inductor principles are merged into a single core, resulting in
inexpensive and magnetic losses within the design framework.
An inductor is said to be strongly linked when one winding is
positioned over the other. This work proposes an FP-ICIBC
(Eswar et al., 2024) with some power control in both
directions, considered exclusively for the continuous
conduction mode. The architecture uses a four-stage
interleaving technique and consists of a circuit with an input
source, two linked inductors for energy storage, and four
switching devices, four diodes, and two capacitors for the
input and output. The amount of power that is regulated in
DC/DC converters is determined by the duty cycle value; this is
usually done to control the output current or the input/output
voltage. Clearly, the optimal range for duty ratios is somewhere
between 0.2 and 0.8, which is more than enough for most boost
converter uses. The rise in the duty ratio corresponds to an
increase in the current’s DC component, which is correlated with
an increase in the AC component or ripple. Because there is a 90-
degree electrical phase mismatch between the two circuits, the
authors claim that the output current frequency increases by
four. However, after superposition, the ripple goes down, as given
in Equation 12:

Ieqn � 1 − y2

1 − y × B/ 1 − B( ) × I, (12)

where Ieqn denotes equivalent inductance; B denotes the sequence
of the duty cycle; y denotes the number of phases. When the
linked Inductor is in the FP-ICIBC’s design, the current ripple is
low. In this instance, the inductor current grows linearly when
three switches are in the ON position, and the other switches are
in the OFF position. The ripple is provided by Equation 13:

ΔJ1 qy−qy( ) �
Uin hybrid( )

Ieqn
× B × Tx, (13)

where ΔJ1(qy−qy) denotes the ripple function of the converter; Tx

denotes time in seconds; Uin denotes input voltage. The reciprocally
coupled inductance LM’s considerable size leads one to believe it to
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be constant. The concept of energy conservation underlies the
output power, and it is given in Equation 14:

Bout � Uout × B

P × ΔUout × fx
, (14)

where fx stands for the switching frequency, P denotes the resistor’s
load value, and Uin andUout denotes the corresponding input and
output voltages. The concept of energy conservation underlies the
output power, and its values are stated in Table 2.

2.7 Modeling of a FOPID controller

The initial phase and gains of the controller are specified
using a FOPID controller (Shalaby et al., 2023). To strike a
balance between low oscillation and transient response, the
values should be properly selected, as mentioned in Table 2.
An increase in the fluctuations in the temporary state and a nearly
linear response could result from a high value of the integral gain.
FOPID is used to meet the voltage and current needs of the
proposed FC-ICIBC, regardless of changes in the load and input
voltages. This type of controller is more dependable and effective
for use in high-power converters. Because there are no timing
problems or computational lags because the device was
constructed straight in the z-domain, system stability is
increased. Employing the voltage control loop, we can
generate the two variables—the output voltage and the
inductor current to obtain the reference current for the inner
current loop (also referred to as the outer loop). The current and
voltage are obtained using the zero-order hold (ZOH) method.
Making the digital controller Hz(s) in the z-domain is easy,
following a process similar to the continuous-time frequency
technique. Because the FC-ICIBC relies on voltage and current
transfer functions, Equation 15 shows continuous-time
transfer functions.

g k( ) � Kqσ k( ) +KlY
η∑k
p�0

d
−η( )

q σ k − p( ) + KBY
−λ∑k

p�0
d λ( )
q σ k − p( ),

(15)
where g(k) denotes the controller output; Kq represents the
proportional gain, Kl represents the integral gain; KB represents
the derivative gain; η denotes the integral value of FO; λ denotes the
derivative value of FO; Y denotes the sampling period; σ(k − p)

denotes the previous sampling error value; dq denotes the coefficient
of power.

3 Proposed hybrid DOA–SBNN
approach for electric vehicle charging

Electric vehicle charging with a microgrid system and renewable
energy sources based on the proposed approach is described here. One
possible strategy that merges DOA’s parallel performance with SBNN’s
(Zammit-Mangion et al., 2024) is the DOA–SBNN method. Load
demand prediction is another area where the SBNN finds relevance,
whereas the DOA (Kaabneh et al., 2024) is adapted to control the
fluctuations in a microgrid. SBNNs are essential for dynamic charging
demands because they efficiently simulate changes in time and
geographical dependencies in energy output and demand. This
improves prediction accuracy and quantifies change. DOA enhances
the optimization procedure by adeptly managing intricate solution
domains, guaranteeing ideal positioning and functioning of charging
stations while reducing charges and maximizing the use of renewable
energy sources. These approaches work together to make microgrid
environments more resilient, effective, and sustainable in terms of
energy management. This eventually helps to integrate renewable
energy sources and meet the increasing demand for EV systems.
The details of the proposed technique are described as follows.

3.1 Load demand prediction using the spatial
Bayesian neural network

In this section, an SBNN is discussed to predict the EV load
demand. The capacity of an SBNN to incorporate spatial
dependencies and uncertainties into the forecasting model is an
advantage when using it to predict EV load demand. In order to
optimize infrastructure planning and energy management methods in
electric car ecosystems, SBNNs can more correctly estimate demand
and capture complicated spatial relationships among charging stations
by integrating Bayesian inference. These models operate well
in situations where spatial dependencies are important. They use
neural networks to handle complicated, nonlinear interactions
within data and Bayesian approaches to capture uncertainties. When
predicting EV load demand, SBNNs can efficiently combine geographic
data, meteorological trends, and past usage information to produce
precise forecasts, as shown by Equation 16:

ρs K, τ( ) � exp − H − μs
���� ����

τ
( )[ ], s � 1, ..., S, (16)

where ρs(H, τ) denotes the output of the embedding layer; K denotes
the spatial location; μs denotes the centroids of the layer; τ denotes the
length scale parameter; ‖ · ‖ denotes the Euclidean norms of the
network; s denotes a random number. Equation 17 illustrates how
augmented physics-informed neural networks (PINNs) use both
supervised learning and physics-based regularization to minimize
disparities between observed and projected load consumption levels
during training. This ensures that predictions adhere to the physical
laws regulating loads.

TABLE 2 FP-ICIBC and FOPID data.

Type Parameter Specification

FP-ICIBC Output voltage 900 V

Inductor L1-L4 1 mH

Output capacitor
Working frequency

6600 μF
5 KHz

FOPID Kp 0.1 < Kp < 1.5

Ki
Kd

0.1 < Ki < 1.5
0.1 < Kd < 1.5
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μ ·( ) � ρ1 ·( )α1 +/ + ρS ·( )αS, (17)
where μ(·) denotes the weight parameter of the layer; ρ denotes the
embedding layer; α denotes coefficient estimating. This novel
approach offers deeper insights into complex energy dynamics
and increases prediction accuracy, which makes it a valuable tool
for energy management and planning. For every subnet, three
dynamics parameters share that result in Equation 18.

gl .; θ1( ) � 1���
cl−1

√ Wlφl−1 ·( ) + bl, (18)

where gl(.; θ1) denotes the predictive layer of networks; cl−1
denotes the output dimension of the layer; Wl and bl denote
random biases and weights associated with the layer; ϕl−1
denotes the activation function. For training, the network
learns how to minimize the energy consumption gap between
the expected and observed load while still satisfying the physical
equations or constraints incorporated into the model; this is
represented by Equation 19.

θvl,i H( ) � μvl k( ) + σvl k( )ωv
l,i, i � 1, ...., nwl , (19)

where μvl denotes the prior mean of the layer; σvl denotes the prior
standard of the layer; ωv

l,i denotes the spatial process; i denotes the
number of network layers. SBNNs promote effective design and
administration of EV charging infrastructure by adding spatial
information to account for local differences and dependencies that
standard approaches may miss, improving prediction accuracy, as
shown by Equation 20:

ηvl k( ) � αvl( )′ρ k( ), (20)
where αvl denotes predicted data vectors of real-valued basis-
function. It has been demonstrated that the SBNN network has
predicted the load demand of EVs.

3.2 Fluctuation control in a microgrid using
the Dollmaker optimization algorithm

In this section, optimization using the DOA is discussed to control
the fluctuations of a microgrid for ensuring seamless EV charging by
optimizing several operating parameters. The Dollmaker Optimization
algorithmmay be used to successfully handlemicrogrid fluctuations and
provide uninterrupted EV charging. To accomplish its goals in the
context of an integrated microgrid with EV charging stations, the DOA
would normally process the following steps: First, the algorithm
initializes a population of solutions, each of which stands for a
collection of control factors influencing the dynamics of EV charging
and microgrid functioning.

Step 1: Initialization
Initialize the input parameters of PV, wind, supercapacitor,

battery energy storage systems, power maximum and minimum,
boundary conditions, and iterations.

Step 2: Random generation
The initialized populations are created by using random

generation, which is described by Equation 21:

C �

c1,1 / c1,w / c1,n
..
.

1 ..
.

0 ..
.

cj,1 / cj,w / cj,n

..

.
0 ..

.
1 ..

.

cM,1 / cM,w / cM,w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M×n

, (21)

where C denotes the number of vehicles; M denotes each solution’s
number of decision variables; w denotes the selected vehicle.

Step 3: Fitness Function
The system’s fitness is determined by the objective function.

Equation 22 can be used to determine the fitness function:

FitnessFunction � Minimizing Fluctuations( ) (22)

Step 4: Phase1 for Pattern Fluctuation management
EV charging scheduling is the process of determining when it is

best for EVs to charge in accordance with customer preferences,
energy costs, and anticipated grid load. The goal of battery storage
management is to regulate the cycles of charging and discharging
energy storage devices, such as batteries, to mitigate oscillations
brought on by sporadic renewable energy sources and fluctuating
EV charging requirements. Optimizing the use of solar or wind
energy generation within the microgrid while accounting for energy
availability and weather forecasts is known as renewable energy
integration. To reduce costs and keep the system stable, grid
interaction strategies balance the import and export of electricity
from the main grid and are given in Equation 23:

CR1
i,j � Ci,j + s · Rj − I · Ci,j( ), (23)

where R denotes vehicle selection; Rj denotes the jth dimension of
pattern; CR1

i,j denotes the new vehicle position; s denotes a random
number of vehicles; I denotes a random selected number. Figure 3
shows the flow chart of the DOA.

Step 5: Phase2 for EV charging
The DMA uses its heuristic search mechanisms, which are modeled

byDollmaker behavior, to repeatedly refine solutions as itmoves through
the iterations. In order to ensure smooth operation while improving
efficiency and reliability, this entails probabilistic adjustments and
selection methods that seek to converge toward optimal or near-
optimal configurations for microgrid management and EV charging.
The DOA efficiently manages the many interdependencies in the
microgrid environment through this iterative process, which helps to
integrate EV charging into renewable energy microgrid systems in a
sustainable and effective manner as given in Equation 24.

CR2
i,j � Ci,j + 1 − 2 si,j( ) · vbj − kbj

t
, (24)

where CR2
i,j denotes the new calculated position; vbj denotes the

upper bound; kbj denotes the lower bound.

Step 6: Termination Criteria
The termination requirements should be fulfilled, and the best

possible outcome should be identified. If the criterion was met,
proceed; otherwise, the process must be repeated.
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4 Results and discussion

Based on the results of the simulation, this section details how
well the recommended technique performed. Using the
DOA–SBNN approach, this article accelerated the charging of
electric vehicles. The goal of the proposed technique is to help
enhance the efficiency, gain, and power quality of the microgrid
system and minimize the time of EV vehicle charging by utilizing a
DOA–SBNN. Following being put into practice in MATLAB, the

suggested approach’s performance is evaluated in comparison to
the present approach. Various methods are used to examine the
suggested strategy. The results indicate that current methods are
inefficient compared to the suggested approach-based EV
vehicle charging.

Figure 4 portrays the analysis of electricity exchange with
current electricity pricing on the grid. The electricity price
change simultaneously depends on the demand. It attains the
highest price in the 20th hour.

FIGURE 3
Flowchart of a DOA.
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Figure 5 portrays the number of EVs and the power load.
Figure 5A displays the number of electrical vehicles used per
hour. The usage of EVs is low at the beginning. The usage of
EVs reaches a peak of 13 EVs at the 20th hour, and then it suddenly
drops at the 24th hour. Figure 5B displays the power load usage per
hour. In the beginning, 200 power loads consume energy, and
400 power loads are used in the 3rd hour, which is the highest
number of power loads in a given time.

Figure 6 portrays an analysis of the output power ofWT and PV.
Figure 6A displays the output power of WT in kW per hour. The
output power of wind turbines starts from 140 kW per hour and
reaches the lowest range of 28 kW/h. At the 14th hour, the power
rate is 25 kWh; at the 15th hour, the rate begins to increase, and it
attains 150 kWh. Figure 6B displays the photovoltaic output power
in kW per hour. The photovoltaic output power starts from 0 kW
per hour and reaches the highest range of 100 kW/h. At the 14th
hour, the power rate is 100 kWh, and at the 15th hour, the power
rate begins to decrease until it reaches 0 kWh.

Figure 7 portrays an analysis of the output power of BESS and
the utility grid. Figure 7A displays the output power of BESS in kW
per hour. The output power of BESS starts at 16 kW per hour and

reaches the highest range of 55 kW/h. At the 15th hour, the power
rate is 10 kWh; from the 7th hour, the power rate begins to attain
negative values, and it reaches −40 kWh. Figure 7B displays the
output power of the utility grid in kW per hour. The output power
of the utility grid starts from −140 kW per hour and reaches the
highest range of 150 kW/h at the 20th hour. At the 21st hour, the
power rate starts to decrease until it reaches −120 kWh.

Figure 8 portrays the analysis of demand load with demand
response (DR) in kWh. It starts at 200 kW, and the highest demand
power reaches 400 kWh, and the lowest demand power is 200 kWh.
From 16 h to 22 h, the DR attained a stable value.

Figure 9 portrays the result of the sensitivity analysis. Figure 9A
displays the sensitivity analysis of wind. The fitness value of wind is
in a decreasing phase from the beginning. As the weight of the
objective increases, the wind speed increases as the battery life
decreases. Concurrently, the shift in weights corresponds
precisely with the shift in the objective functions’ values.
Figure 9B displays the displays the sensitivity analysis of PV. The
fitness value of PV increases from the beginning. A higher target
weight results in a higher PV count and a lower battery count.
Concurrently, the shift in weights corresponds precisely with the
shift in the objective functions’ values.

Figure 10A portrays the total harmonic distortion (THD)
analysis. A total harmonic distortion graph comparing an
innovative approach to existing methods depicts the efficiency of
various techniques for reducing harmonic distortion in electrical
systems. When compared to existing approaches, the proposed
DOA–SBNN approach consistently achieves lower THD values
throughout a wide range of operating circumstances,
demonstrating greater effectiveness in removing undesirable
harmonics. This comparison is crucial for determining the
efficacy and dependability of innovative ways to improve power
quality, increase system stability, and lower energy losses in actual
applications. The proposed DOA–SBNN attains 19.09%, 25.85%,
and 31.17% lower THD when compared with existing MMOSSA,
MOGWO, and MSO methods, respectively.

Figure 10B portrays the efficiency analysis. An efficiency graph
comparing the proposed DOA–SBNN method to existing methods
shows the performance gains obtained by the new approach. The
graph displays qualities like processing time, accuracy, and erroneous
rates. The proposed DOA–SBNNmethod improves processing speed;

FIGURE 4
Demand of electricity pricing on the grid (y-axis) with reference
to time (x-axis).

FIGURE 5
Number of (A) electric vehicles arriving for charging (y-axis) during a particular time (x-axis) and (B) the amount of load consumed (y-axis) and with
respect to time (x-axis).
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the graph shows that tasks take less time to complete than with prior
strategies. Overall, the graph depicts how the proposed technology
DOA–SBNN outperforms existing alternatives, emphasizing its

benefits and potential influence. The proposed DOA–SBNN attains
19.19%, 26.15%, and 32.57% higher efficiency than existing
MMOSSA, MOGWO, and MSO methods, respectively.

Figure 10C portrays the computational time analysis. Comparing
a proposed method’s computational time against existing methods is
critical for determining its efficiency and applicability. This involves
developing a graph that depicts the time required by each approach to
execute specified tasks or procedures. The proposed DOA–SBNN
method has a lower processing time, suggesting better performance.
The x-axis of the graph indicates methods, while the y-axis displays
processing time in seconds or milliseconds. The proposed method has
a large reduction in time, as seen by lower values on the y-axis than
existing approaches, illustrating its superiority in speed and efficiency.
This comparison is critical for determining the efficacy of the
proposed DOA–SBNN method in real-world applications. The
proposed DOA–SBNN method attains 18.99%, 26.85%, and
32.17% lower computational time when compared with existing
MMOSSA, MOGWO, and MSO methods, respectively.

Figure 11A displays the step response of robustness. MOGWO has
the highest robustness of all the examined designs, at 89%, followed by
MMOSSA at 78%. The suggested DOA–SBNN design has the lowest
robustness at 29%, whereas MSO exhibits a robustness of 58%.

Figure 11B displays the step response of computational efficiency.
The graph indicates that the DOA–SBNNmethod achieves the highest
computational efficiency result at 95%, followed by MOGWO at 85%,

FIGURE 6
Output power of (A) amount and variation in wind power produced (y-axis) with reference to time (x-axis) and (B) the amount of power produced by
photovoltaics (y-axis) with variation in time (x-axis).

FIGURE 7
Output power of (A) amount of BESS power produced (y-axis) with reference to time (x-axis) and (B) the amount of power to the utility grid (y-axis)
with variation in time (x-axis).

FIGURE 8
Amount of load demanded in kW (y-axis) with response to time in
hr (x-axis).
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MSO at 78%, and MMOSSA at 58%. This suggests that the most
effective algorithm for microgrid system optimization with renewable
energy sources and electric vehicle charging stations is DOA–SBNN.

Figure 11C displays the step response of settling time. The
amount of time the system takes to return to a stable condition
following a disturbance is known as the settling time. The suggested
DOA–SBNN algorithm has the lowest settling time (12 s), followed
by MSO (22 s), MOGWO (41 s), andMMOSSA (52 s). This suggests
that the DOA–SBNN algorithm is the most effective in terms of
settling time, which is essential for guaranteeing the microgrid
system’s stability and dependability.

The Table 3 uses a benchmark function to show how well the
suggested DOA–SBNN approach performs in comparison to other
algorithms (MMOSSA, MOGWO, and MSO). With a best value of
5.8688 × 10⁻⁴⁰, the DOA–SBNN demonstrates competitive
performance; however, MSO outperforms it in terms of both best
and worst outcomes. In contrast to the other approaches, the
DOA–SBNN exhibits stability and reliability, as demonstrated by its
minimal standard deviation and consistent performance throughout
numerous runs, as indicated by the median and mean values.

Harmonics and power quality issues arise when integrating
electric vehicle charging stations into microgrids. Harmonic

FIGURE 9
Result of sensitivity analysis for (A) wind farm output energy and (B) solar irradiance with its particular fitness values.

FIGURE 10
Parameters: (A) THD value analysis, (B) efficiency analysis, and (C) computational time (y-axis) compared with various techniques (x-axis).
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voltage distortion can reduce equipment reliability and
performance. The suggested DOA–SBNN strategy reduces
THD values by 19.09% compared to MMOSSA, 25.85%
compared to MOGWO, and 31.17% compared to MSO. This
reduction is significant because THD levels above 5% can cause
transformers to overheat, often to temperatures above 90°C,
costing 15%–30% more energy. Due to high harmonic
distortion, sensitive equipment might malfunction, break
down, and lose its productivity. Addressing these issues
requires advanced filtering techniques. Active power filters can
reduce total harmonic distortion to less than 5%, whereas passive
filters handle frequency components to minimize voltage
distortion. Using a four-phase inductor-coupled interleaved
boost converter (FP-ICIBC) helps stabilize the output voltage.

Normal output voltage starts at 900 V and stabilizes at 800 V.
The system can maintain 290 kW of output power, ensuring
reliable energy delivery. Control reaction times are faster with a
FOPID controller because the steady-state error is less than 1%
and overshoots are less than 5%. Maintaining THD limits
improves the EV charging system’s reliability and efficiency.
Power quality and microgrid energy management are improved
by the DOA–SBNN hybrid method, boosting green
transportation.

Figure 12 portrays the voltage, current, and power analysis of the
FC-ICIBC. Figure 12A displays the output voltage of the FP-ICIBC
in volts per second. The voltage starts from 900 V, and it has a
decreasing phase. Finally, the voltage attains 800 V. Figure 12B
displays the input current of the FP-ICIBC in amperes per second.

FIGURE 11
Various parameters for performance analysis: (A) robustness, (B) computational efficiency, and (C) settling time listed (y-axis) comparedwith various
techniques (x-axis).

TABLE 3 Comparison of benchmark functions.

Benchmark function DOA–SBNN (proposed) MMOSSA MOGWO MSO

Best 5.8688 × 10−40 0 2.3404 × 10−63 1.9894 × 10−99

Median 2.5194 × 10−39 4.7858 × 10−103 3.4396 × 10−60 6.8594 × 10−44

Worst 1.9346 × 10−38 9.8389 × 10−102 5.0652 × 10−58 3.5894 × 10−68

Mean 4.8372 × 10−39 1.6817 × 10−102 5.4403 × 10−59 2.5864 × 10−76

Standard 5.8316 × 10−39 3.0304 × 10−102 1.5894 × 10−58 7.7654 × 10−78

Dollmaker Optimization Algorithm (DOA) and Spatial Bayesian Neural Networks (SBNN), Modified Multi-objective Salp Swarm Optimization Algorithm (MMOSSA), Multi-Objective Grey

Wolf Optimizer (MOGWO) MSO is Multi-Swarm optimization.
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The current starts from 700 A, and at the 5th s, the current attains
600 A. Figure 12C displays the output power of FP-ICIBC in kW/s,
which is maintained at 290 kW during the time.

Figure 13A portrays the FOPID controller parameters analysis.
Ki, Kp, and Kd are the three main parameters of the controller. DC is
given as the main input of the controller. Figure 13B shows the step

FIGURE 12
(A) Voltage, (B) current, and (C) power output waveforms of the FC-ICIBC (y-axis) with respect to time (x-axis).

FIGURE 13
(A) FOPID controller parameter analysis and (B) step-wise response of an EV charging system.
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response of the electric vehicle charging system. The proposed
DOA–SBNN controller is adequate for generating FOPID
controller parameters with good control response. The
DOA–SBNN controller responds quickly, with minimal
overshoot and steady-state accuracy.

This study suggests an effective control scheme for the FP-
ICIBC that raises an EV charging station’s efficiency,
dependability, and gain factor. By employing the interleaving
technique, the suggested converter can function in all
appropriate combinations while keeping the converter
parameters constant during the charging mode. When the
controlling approach is utilized to construct the inner current
and outer voltage loops, a FOPID controller is employed.
Benefits like less timing and computational problems make
this controller a good option, contributing to the system’s
increased stability. The state of charge of the battery
determines how the converter’s phases work. This method
achieves maximum battery charge in an hour by analyzing
and simulating various electric vehicle outcomes. The
suggested converter is the way of the future for the EV sector
in the case of an urgent requirement for charging; it can be
considered a powerful substitute for real EV applications.

5 Conclusion

This paper proposes an innovative approach for microgrid
systems to EVCSs integrated with RES–DOA–SBNN. When
integrating solar or wind power into the microgrid, the
system’s performance may fluctuate depending on the
amount of renewable energy generated depending on weather
or seasonal variations. However, peak demand periods may put
stress on the system. It is also believed that the demand for
electric vehicle charging will match the energy supply.
Limitations include the need to balance supply and demand
in real time, particularly during grid isolation, and the
potentially high initial costs of the infrastructure. The
efficiency, gain, and power quality of the microgrid system
will be enhanced by utilizing the proposed method. The
improved performance of the microgrid system can be
attributed to the low THD values. Moreover, the method
maximizes the use of renewable energy sources in EVs,
addresses a range of concerns, and promotes the broader
adoption of EVs.

The proposed approach has been examined in a variety of
contexts, including optimum and random scheduling, as well as a
complex DOA algorithm. Several existing methods are compared
to the suggested one and evaluated on the MATLAB platform.
From the results, it is concluded that the operating THD of the
proposed approach is approximately 10% less than existing
techniques. It also assures numerical results and long-term
performance stability. The results also show that the projected
method achieves notably optimal performance compared to the
other optimization methods.

Potential future contributions in this research domain include
uncertainty modeling of renewable generation, different testing
networks, incorporating fast-charging stations, and modeling the
uncertainty of load demand. Studies should also concentrate on

guaranteeing a stable power supply and improved energy storage
solutions. Studies could examine how machine learning algorithms
might improve renewable energy integration and microgrid
predictive maintenance.

6 Policy and industry implications

Incorporating stakeholders and policies, this study leverages
local data with larger market applicability to provide a versatile
model. At its core, the hybrid model factors in the attractiveness of
green cars, including their life cycle analysis cost, range of travel,
refueling time, and charging costs, which further improves rapid EV
advancement. Due to the imitator lag, financial policies, especially
subsidies, are effective in increasing EV adoption but fail to achieve
desired sales. Policymakers intend to motivate more solar power
plants and expedite the shift to renewable energy by offering an
acceptable price.
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