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The emergence of small-drone technology has revolutionized the way we
use drones. Small drones leverage the Internet of Things (IoT) to deliver
location-based navigation services, making them versatile tools for various
applications. Unmanned aerial vehicle (UAV) communication networks and
smart grid communication protocols share several similarities, particularly in
terms of their architecture, the nature of the data they handle, and the security
challenges they face. To ensure the safe, secure, and reliable operation of both, it
is imperative to establish a secure and dependable network infrastructure and to
develop and implement robust security and privacy mechanisms tailored to the
specific needs of this domain. The research evaluates the performance of deep
learning models, including convolutional neural networks (CNN), long short-
term memory (LSTM), CNN-LSTM, and convolutional long short-term memory
(ConvLSTM), in detecting intrusions within UAV communication networks. The
study utilizes five diverse and realistic datasets, namely, KDD Cup-99, NSL-KDD,
WSN-DS, CICIDS 2017, and Drone, to simulate real-world intrusion scenarios.
Notably, the ConvLSTM model consistently achieves an accuracy of 99.99%,
showcasing its potential in securing UAVs from cyber threats. By demonstrating
its superior performance, this work highlights the importance of tailored security
mechanisms in safeguarding UAV technology against evolving cyber threats.
Ultimately, this research contributes to the growing body of knowledge on
UAV security, emphasizing the necessity of high-quality datasets and advanced
models in ensuring the safe, secure, and reliable operation of UAV systems across
various industries.
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smart grid, unmanned aerial vehicles, communication security, intrusion detection,
cyber resilience

Abbreviations: CNN, convolutional neural network; CPU, central processing unit; DL, drone layer;
DNN, deep neural network; DoS, denial of services; FTP, file transfer protocol; HTTP, hypertext transfer
protocol; IoD, Internet of drones; IoT, Internet of Things; LSTM, long short-termmemory; OS, operating
system; PL, privacy layer; RAM, random accessmemory; SL, security layer; SSH, secure shell; SSL, secure
sockets layer.; TL, transfer learning; UAV, unmanned aerial vehicle.
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1 Introduction

Flying ad hoc wireless devices (FAWD), or UAVs, are
increasingly being deployed and gaining much awareness. This
rising interest is attributed to their LoS connection to the ground
users, their mobility, and the modularity that makes them
affordable to deploy. Indeed, in places where the fixed network
has been affected by natural disasters and the physical wiring
infrastructure has been brought down, the UAVs can usefully
establish cellular network coverage. UAVs can act as flying base
stations in mobile wireless networks and offer telecommunication
utilities to locations where it is realistically impossible to erect
fixed cellular sites due to client limitations or cost (Majeed et al.,
2022). Furthermore, UAVs play an important role in emergency
response operations, weather monitoring, industrial infrastructure
surveillance, logistical assistance, fast disaster management in
impacted regions, and surveillance at homes (Khan et al., 2022).The
Federal Aviation Administration (FAA) of the United States predicts
that demand for commercial UAV installation will quadruple by
2023 (Administration, 2019). Due to the enormous potential of
UAVs, several countries are devoting significant financial resources
to their broad commercial deployment. UAV-assisted networks
continue to face several difficulties despite the growing potential
and many uses of UAVs. These difficulties include concerns with
the planning of routes, privacy concerns, hurdle handling, energy
efficiency, and optimizing for minimal delays (Ateya et al., 2019).
These problems must be dealt with adequately if we are to harness
the potential offered by UAVs.

UAVs or drones have impacted several sectors and have become
almost indispensable in daily operations in the commercial world.
They are employed in capturing images from the sky and acquiring
information that will be relayed to base stations to aid in decision
making, especially in areas of surveillance and monitoring (Rogers,
2018). The overall advancement in the use and application of
drones, especially in day-to-day activities, has, however, come
with several impacts. This has raised concerns over the safety
and security of the public, hence calling for definite legislation
over the matter establishing accountability for the privacy of
individuals and the public at large (Robakowska et al., 2019).
Despite the present challenges, small-sized drones are increasingly
being adopted in various industries, such as agriculture, shipping,
and manufacturing industries, among others. However, problems
associated with privacy and security have arisen because of the
high level of application of drones coupled with the need for
quick response (Nassi et al., 2021). Scientists state the problems
of mounting small sensors on drones that would expand their
performance and opportunities. Drones can be made to perform
better in other concrete applications that require much more
challenging tasks through the installation of transmitters, sensors,
and cameras. Drone technology has many applications in the civil
and defense industries. However, drone design and architecture
aggravate their exposure to privacy or safety threats, as mentioned
below in more detail.The IoT and the Internet of Drones (IoD) have
new possibilities but are also connected with security and privacy
threats. Thus, modification and innovation must occur at the most
basic levels of structuring and designing of drones.

Security of smart grid communication has become a critical
aspect of the successful functioning of the contemporary power

system. The integration of information and communication
technology (ICT) in the grid focuses on several threats of
cyberattack, including data interception, denial of service, and
man-in-the-middle attacks, as noted by Yan et al. (2012). Security
measures refer to the methods used to safeguard the information
exchanged in the grid and ensure that the data are as they were
when they were transmitted. The use of cryptographic techniques
to secure the system data, together with strong authentication
measures and intrusion detection systems, are some of the measures
that should be taken to fight these threats (Metke and Ekl,
2010). In addition, the use of decentralized and highly resilient
structures enhances the possibility of countering cyber threats
to maintain grid operation despite unfavorable circumstances
(Hu et al., 2014). In the ever-changing grid system made up of
renewables such as solar and IoT devices, security options must
adapt and be scalable (Danev et al., 2012). Recent advancements
in deep learning (DL) have demonstrated exceptional capabilities
in extracting meaningful patterns from complex datasets, making
them a compelling choice for intrusion detection systems (IDSs)
(Alsubai et al., 2024; Umer et al., 2022).

Cyberphysical systems (CPSs) represent a class of systems
that integrate computational and physical functionalities, enabling
interactions with individuals through a range of managed processes.
UAVs are an appropriate CPS component due to three basic parts
of CPS: a strong compute unit, ad hoc wireless networks, and
adaptive control capabilities. The primary advantages of integrating
UAVs into applications of CPS originate from their distinct
characteristics, which include mobility, frictionless deployment,
changeable height, customized control, and the ability to give
exact real-world evaluations at any place and at any time
(Shakeri et al., 2019). UAV-based CPS, despite having great
potential as an ideal CPS component, is vulnerable because of
its unpredictably changing environment, wireless channels, 3D
positioning, and absence of established standards for security. In
any CPS, the security of a network is important, mandating a high-
priority strategy to address security concerns while also ensuring
the system’s stability and safety for commercial implementation
(Rani et al., 2022). At this point, researchers are actively looking
toward practical and effective security measures to safeguard
these systems, emphasizing the security issues related to UAV-
assisted CPS (Consul et al., 2022). In this study, we discuss the
potential security risks and vulnerabilities of UAV-based systems.
Furthermore, the investigation also highlights the emerging security
vulnerabilities present at multiple UAV layers. Additionally, we
propose a novel approach that integrates layer-specific adaptive
security measures with AI assistance to significantly enhance
UAV security.

1.1 Major contributions

The proposed approach promotes the merging of drone and
Internet of Things (IoT) technology to produce intelligent drones
with decision-making skills. Drones are prone to security flaws
and unauthorized access, much like other IoT devices. Threat
actors could breach data security and privacy by exploiting drone
system flaws. Additionally, drones’ extensive data transmission
and collection pose questions regarding data security and possible
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exploitation. The evolution of the Internet of Drone Things (IoDT)
can only be maximized with the help of a security architecture to be
implemented.

• This paper focuses on the new trends in drone safety, security,
and privacy aspects, as well as the field of the Internet ofDrones
(IoD). It underlines the need to develop protective measures to
create reliable and robust drone networks that would not be
vulnerable to hackers and corresponding breaches.
• The paper describes and compares the assessment of different
deep learning models such as CNN, LSTM, CNN-LSTM,
and convolutional long short-term memory (ConvLSTM) in
applying IDS for UAVs.
• The proposed model is evaluated with five real-life and
different datasets: KDDCup-99,NSL-KDD,WSN-DS, CICIDS
2017, and Drone. Such inclusive dataset selection enables this
model to be evaluated under different intrusion paradigms,
thus increasing the applicability and realism of the results.
• The authors emphasize the ConvLSTM’s performance to be
better, with an accuracy of 99. 99%, whether on the chosen
dataset or other datasets. Consequently, this research implies
that ConvLSTM is an efficient approach for UAV intrusion
detection, making it possible to develop a solid ground for
other cybersecurity developments in the future.
• In this case, this research paper provides an approach that
can be used to enhance the security and reliability of different
systems, such as surveillance and package deliveries, as well as
the IoT-assisted UAVs.

1.2 Paper organization

Section 2 of this paper examines the body of knowledge about
detecting flaws and vulnerabilities in drones and IoT devices. A
few studies have suggested that adding authentication techniques
can improve the security of these drone systems. A thorough
description of the drone architecture and a layered framework for
preserving the integrity of drone systems are given in Section 3.
In Section 5, the concepts of access control and authentication in
relation to drones are presented. Section 6 summarizes the results
and discussion. Section 7 summarizes the findings from the study
and makes suggestions for further research.

2 Related work

UAV networks are increasingly employed to transmit sensitive
information in critical missions and applications. However, due to
their limited computing and communication resources, anomalies
and attacks pose a risk to the infrastructure of UAVs. Intrusion
detection systems in UAVs are developed to detect a wide range of
abnormalities and threats, such as viruses and malware, message
and route forging or manipulation, routing attacks, and UAV
hijacking or spoofing (Abro et al., 2022). In the recent past,
machine learning-based methods have been used to develop
cybersecurity measures meant to protect communication inside the
IoT and CPS from various cyberattacks and intrusions. However,
the research on the utilization of deep learning approaches for

intrusion detection is limited (Gao et al., 2019; Shone et al., 2018;
Ahmad et al., 2021. Ahmad et al. (2021) published a comprehensive
evaluation focused on machine learning and deep learning models
meant to address a variety of UAV difficulties, including but not
limited to channel modeling, resource management, navigation,
and security. Bithas et al. (2019) investigated numerous attacks
and defense tactics across many network levels, beginning with the
physical and application layers.

Abu Al-Haija and Zein-Sabatto (2020) investigated an
unsupervised learning-driven approach to detect active
eavesdropping within UAV networks. This system uses the
uplink phase to authenticate users. The authors used one-class
support vector machines (OC-SVMs) and K-means clustering
to detect possible attacks during authentication. The authors
also introduced two new methods: one for creating test data
from wireless signals and one for generating artificial training
data based on channel state information. Their analysis showed
that the one-class SVM outperformed K-means clustering when
the eavesdropper’s transmitted power was moderate or low, but
K-means clustering performed better when the eavesdropper’s
transmitted power was high.

Several issues must be addressed in order to achieve reliable
wireless connectivity for UAVs and ensure security. The difficulties
include signal interference, limited bandwidth, signal attenuation,
and security problems. The authors discussed several issues related
to achieving cellular-connected UAV transport systems by using
ANN (Challita et al., 2019). Guerber et al. (2021) discussed a novel
machine learning-based strategy built on the flow generation events
for the equal fight against insider attacks utilizing the random
forest classifier algorithm. They introduce two new components
that are specific to the nature of network activity and help in
budding common network attacks that include brute force, denial
of services, and port scanning. These functionalities are, however,
easily accessible by the controller. The researchers improved the
secrecy rates of the networks by using physical layer security
and creating secure communication (Aboueleneen et al., 2023).
They also cut the net energy consumption of the IoD network
by improving drone transmission and jamming features, as well
as through the utilization of energy scavenging mechanisms for
wireless charging of drones. As an optimization problem, it was cast
into the form of a Markov decision process and solved using a deep
reinforcement learning technique.

The researchers applied a supervised learning approach through
the deep neural networks (DNNs) to detect GPS spoofing. Using
feature engineering, the authors decided that only the signal-
to-noise ratio and the Doppler shift are appropriate for the
investigation because they can greatly influence the prediction
results. They explored network topologies, using one or two-layer
hidden neural networks along with large numbers of neurons
utilized in creating the model. The authors employed five available
features to generate several model runs with some variations in
the features offered. The best overall results achieved by them
depicted an accuracy percentage near about 98% with the help of
one hidden layer containing only ten neurons. Wang and Ghaleb
(2023) developed an attention-based CNN model for intrusion
detection, improving feature usage and computational efficiency.
Donkol et al. (2023) proposed a hybrid IDS combining LPPSO and
LSTM-RNN, yielding high detection accuracy and reducing the false
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alarm rate.Wang et al. (2022) introduced an unsupervised IDS using
autoencoders and isolation forest but faced challenges in detecting
certain attacks. Mbow et al. (2021) addressed the class imbalance
in intrusion detection using a hybrid sampling technique and deep
learning, achieving better detection butwith room to reduce the false
alarm rate.

Some reinforcement learning techniques have been considered
to address this problem. The paper by Xiao et al. (2018) presents
the development of an anti-jamming system for UAVs employing a
game-theoretic method together with reinforcement learning that
is different from other existing approaches, namely, policy hill
climbing (PHC). In their devised system, UAVs are intermediary
because they relay information from the roadside units (RSUs) to
VANET on-board units (OBUs). The main objective is to find those
RSUs that are very much interfered with by jammers and shift the
OBU signal to RSUs that experience little or no jamming at all.Their
simulation findings demonstrated that their technique could indeed
reduce the BER ofOBUmessages compared to theQL-based system.

The KDD Cup 99 dataset or some of its modifications was
used to recommend and evaluate different IDS options. Hybrid
techniques, namely, necessary snapshot ensemble learning and
group convolution networks, have been employed by Wang et al.
(2021) to improve IDS generality. The authors attained 85.82%
accuracy using six predicting attributes and several compared
machine learning frameworks: naive Bayes, decision tree, support
vector machine, random forest, and XGBoost. Devan and Khare
(2020) integrated an XGBoost model with the deep learning model.
For XGBoost, feature engineering and reduction of dimensions are
the main tasks accomplished, whereas the deep learning model
constructs the classifier. Their research strategy was tested and
compared with NB, SVM, and LR using the NSL-KDD dataset.

Machine learning, when incorporated into UAV systems,
provides a plethora of opportunities and introduces state-of-the-art
approaches in various domains. Kurunathan et al. (2023) explained
the application of machine learning techniques in UAV services
and operations. They elaborated that machine learning plays a
very crucial role in the regeneration of features, feature extraction,
planning, operation, and control. CNNs based on deep learning
frameworks have enabled a far better detection rate than previously
usedmachine learning approaches; the abovementioned approaches
are challenging, where the development of new abnormalities is
especially challenging. The article also describes how the CNN
technique can successfully separate UAV drones from various
other objects in the air, including birds and airplanes, which
is one of the major benefits of using CNN for UAV detection
(Ivanov et al., 2020). Wang et al. (2019) applied long short-
term memory (LSTM) in an intrusion detection system (IDS) on
UAV network construction. In this study, the goal of anomaly
identification was defined as a time-series analysis problem with
a focus on point anomaly. The authors measured the system’s
performance using real UAV transmission data and also conducted
simulations using assault scenarios. The current study uses an
architecture that is influenced by both CNN and LSTM. A
preliminary study indicates that integrating CNN with LSTM has
a greater potential in identifying two-fold difficult patterns and
sequences in network traffic data, which will further improve
the efficiency and reliability of detecting security threats and
abnormalities.

Prior studies discussed in this paper highlight the need for an
integrated solution to reduce cybersecurity risks and protect drone
data. Although several works have documented the troubles and
concerns associated with the drone security threat, many have a lack
of recommendations on how to counter these threats (Bera et al.,
2020). Previous studies have shown that machine learning models
are capable of mitigating attacks in different network contexts;
however, little has been done in the context of drones. In addition,
some of the authentication mechanisms stated earlier in this paper
may not be applicable to IoT-based drone networks. Therefore, it
is pivotal to close the research gap to ensure that drones meet the
standards of the industry and are suitable for commercial purposes
while at the same time being safe and non-intrusive in terms of
privacy. Tables 1, 2 lists the related studies that have adopted deep
learning techniques.

2.1 Comparative analysis with relevant
literature

Some gaps identified in the literature are that current models
used to solve cybersecurity threats facing UAV networks employ
a limited number of deep learning methods and have difficulty
detecting intrusions due to the many types of attacks. Although
current studies have focused on machine learning-based methods,
their practical use in UAV cybersecurity is still limited (Gao et al.,
2019; Shone et al., 2018; Ahmad et al., 2021). Some have dealt with
some particular issues like the detection of active eavesdropping
(Abu Al-Haija and Zein-Sabatto, 2020), and others have dealt with
issues such as network security and energy efficiency (Challita et al.,
2019; Guerber et al., 2021; Aboueleneen et al., 2023).The techniques
to identify threats, such as GPS spoofing, include reinforcement
learning and supervised learning with deep neural networks
(Manesh et al., 2019; Xiao et al., 2018). Furthermore, the use of
hybrid machine-learning frameworks has been proven to enhance
the effectiveness of intrusion detection (Wang et al., 2021; Devan
and Khare, 2020). The implementation of machine learning in
UAV systems has potential in nearly every field because it makes
real-time monitoring and prediction possible and improves the
functioning of systems (Kurunathan et al., 2023; Bader et al.,
2023). Nonetheless, there are calls for more flexible and large-scale
solution approaches to tackle more cybersecurity threats in the UAV
networks, which ConvLSTMmodels may help to overcome because
these models can process sequence data and capture temporal
and spatial dependencies. ConvLSTM models are one of the most
suitable solutions for the cybersecurity issues of drones and their
intrusion identification. They satisfactorily process sequential data
streams from drones, providing timely identification and prevention
of cyber threats. Further comparisons of themodels are presented in
the “Related Work” section of the manuscript.

3 UAVs and smart grid communication
framework

This study is primarily concerned with improving the
cybersecurity of IoT-enabled UAV devices and the Smart Grid, with
a particular emphasis on tiny drones, by improving their underlying
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TABLE 1 Deep learning-based intrusion detection system for networked UAVs.

Ref. Attack Method Dataset Findings

Gao et al. (2019) DoS, Probe, R2L, and U2R Adaptive voting classifier NSL-KDD Accuracy score 85.2%

Sapre et al. (2019) DoS, Probe, R2L, and U2R ANN KDDCup99 and the NSL-KDD 92.39% on KDDCup99, 78.51%
on NSL-KDD

Abu Al-Haija and Zein-Sabatto
(2020)

DoS, R2L, U2R, and Probe CNN NSL-KDD Accuracy score 99.3%

Manesh et al. (2019) GPS spoofing signals ANN Real UAV data Accuracy score 98.3%

Wang et al. (2021) DoS, R2L, U2R, Worms,
Backdoors, and Fuzzers

Group convolution ensemble NSL-KDD, UNSW-NB15 Accuracy score 85.82% on
NSL-KDD and 80.38% on
UNSW-NB15

Rajadurai and Gandhi (2020) DoS, R2L, U2R, and Probe Stacked ensemble model NSL-KDD Accuracy score 91.06%

Tao et al. (2021) Jamming attacks Deep reinforcement learning NSL-KDD Real UAV data detection in
terms of time slots

Wang et al. (2019) Simulated anomalies LSTM Real UAV data Accuracy score 99.7%

Devan and Khare (2020) DoS, R2L, U2R, and Probe NSL-KDD XGBoost-DNN Accuracy score 97.6%

Jiang et al. (2020a) DoS, R2L, U2R, and Probe NSL-KDD and UNSW-NB15 CNN-BiLSTM Accuracy scores of 83.58% on
NSL-KDD and 77.16% on
UNSW-NB15

TABLE 2 Layer-wise cybersecurity threats to smart drones.

Layer Cybersecurity threat Detection using machine learning

Perception layer

Spoofing attacks SVM (Panice et al., 2017), dynamic selection (Talaei Khoei et al., 2022), and K-learning model (Shafique et al.,
2021)

Jamming attacks Q-learning (Gupta et al., 2022; Sajid et al., 2022), and DQN (Thanh et al., 2022)

Communication layer
Eavesdropping attacks SVM-KNN (Hoang et al., 2019) and Ensemble learning (Das et al., 2023)

Denial of service attack Neural networks (Butt et al., 2020) and Q-learning (Yaseen and Al-Saadi, 2023)

Control layer
Command injection attack Decision tree (Vuong et al., 2015)

Traffic blockage Q-learning (Shingate et al., 2020)

System layer

Malware attacks Q/Dyna-Q/PDS (Xiao et al., 2017)

Intrusion (Alsheikh et al., 2014), SVM (Alsheikh et al., 2014), Neural network (Almiani et al., 2020), and kNN (Liu et al.,
2022)

architecture. The study’s goals include reducing privacy dangers,
addressing cybersecurity difficulties, minimizing interception
pandemonium, and establishing strong security measures. A tiered
strategy is used to accomplish these objectives by methodically
reviewing the analysis methodologies and security problems inside
each layer, therefore strengthening data security in traditional
drone activities/operations. The layered structure also makes future
improvements easier to integrate. Machine intelligence, as applied
through machine learning classifiers, is critical in enhancing drone
data security. Figure 1 depicts the suggested framework.

As has been observed, UAV communication networks and
smart grid communication protocols have several similarities in
terms of architecture, types of data exchanged, and the security
concerns they encounter. Below is a detailed discussion of
these parallels:

1. Decentralized and distributed architecture: It is
noteworthy, therefore, that no such principle is for
sale and that the civil service, the putative repository
of these principles, has been moving in the opposite
direction.
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FIGURE 1
Layer-wise architecture for drone security.

• UAV communication networks: UAVs may act as an
independent system even though they can be a part
of a swarm or closely cooperating fleet of drones that
communicate with one another and with a base station.
The dynamism in the network requires the network to
accommodate distributed nodes such as the drones that
may often come and go.
• Smart grid communication protocols: Smart grids are

focused by nature and consist of numerous servers like
smart meters, sensors, substations, and control centers.
The distributed nature must have reliable communication
protocols to ensure proper data exchange between different
components.

2. Real-time data transmission:
• UAV communication networks: UAVs include many

features with continuous, high-speed data transceiving
processes in areas such as navigation, environment sensing,
and task performing. It is perhaps obvious that a
breakdown or even delay in this communication can have
catastrophic consequences and that no solution should be
considered if it may interfere with the continuing flow of
the communication.
• Smart grid communication protocols: Similarly, a

smart grid requires a real-time information display for
controlling electrical distribution. The data acquired in
real-time are essential in terms of absorbing the loads,
identifying the faults, and the overall stability of the
grids. Failure in communication might result in the
establishment of power breakdown or failure of demand
response systems.

3. High-reliability requirements:
• Security and privacy challenges: Of significant importance

to the UAV networks is the reliability of the traffic. This is
more so when the drones are either fully autonomous or
remotely controlled. The communication system provided
for this system must be very resilient to loss of signal,
interference, and other issues that may arise without
affecting the mission.
• UAV communication networks: In smart grids,

communication reliability is equally important because
of the changes in the supply and demand of energy. High

reliability is expected to ensure stability, especially during
peak load incidences.

4. Security and privacy challenges:
• UAV communication networks: UAVs are subject to

various cyber threats, such as jamming, spoofing, and
unauthorized access. Security of the communication
network must be ensured, as adversaries can tap the
network or modify the data being transferred.
• Smart grid communication protocols: A smart grid has

many security concerns and risks, including hacking of
the communication network with a view of cutting off
the power supply or hacking to access consciousness. The
two systems must have protection as they engage in their
communications; this includes encryption, authentication,
and intrusion detection (Shiaeles et al., 2012).

5. Scalability:
• UAV communication networks: The network should be

expandable; that is, it should be capable of incorporating
a few UAVs at a certain time and a few more or less
at other times, depending on the mission. The proposed
communication protocol should also effectively address
resource constraints in the system, such as bandwidth and
power in several UAVs.
• Smart grid communication protocols: Smart grids must

be flexible by allowing the incorporation of other energy
sources, devices, and technologies. The communication
protocols must be designed in a way that they are
capable of simultaneously embracing this flood of data and
the ever-growing number of connected devices without
compromising performance (Ramsdale et al., 2020).

6. Integration with IoT:
• UAV communication networks: Drones can work in

parallel with IoT systems in collecting, analyzing, and
transmitting data and information. This implies that the
communication network must be compatible with the IoT
devices and hence may present other layers of security and
compatibility issues.
• Smart grid communication protocols:The smart grid forms

an important part of the IoT, controllingmillions of devices
and connecting them to enhance the grid’s functioning
and consumption. The communication protocols should
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guarantee the compatibility of IoT devices to the general
network and keep the security of the interconnected
systems in check (Shiaeles and Papadaki, 2015).

The advent of compact UAVs has unlocked fresh opportunities
in multiple civilian applications. Nevertheless, due to the absence
of sophisticated infrastructure and planning, these state-of-the-
art devices face vulnerabilities related to security and privacy.
Although progress in the realm of the IoDs and the IoT offers
promising opportunities, it simultaneously gives rise to fresh
security and privacy concerns. The current circumstances do not
sufficiently guarantee data privacy and security, diminishing the
IoDT’s reliability.

3.1 Structured framework for ensuring the
security of intelligent drones

A layered architecture for drone security within
cyberphysical systems (CPS) is systematically divided into several
essential layers:

• Perception layer: Operating at the lowest level is the perception
layer, which is responsible for data acquisition from the drone’s
various sensors, such as cameras, GPS, and gyroscopes, among
others. The result is that these data are further subjected to
extensive processing and analysis, thus creating a complex
model of the environment surrounding the drone. In addition,
it is engaged in identifying potential threats at an early stage
to promptly guard the drone’s security and integrity. The
architectural design of a drone includes carrying a mini drone
or quadcopter capable of housing a camera. This layer is then
enriched with IoT sensor data updates comprising complex
sensors such as cameras, GPS, and radars, among others.
It also enables the drone to feel its surroundings to collect
important data and relay such information to the next level in
real-time (Siracusano et al., 2018).
• Communication layer: The communication layer adapts
the crucial task of enabling the flow of data between the
drone and its ground control station (GCS). Here, the data
transmission is done securely using secure protocols to pass
information from one point to the other to avoid cases of
intrusion and modification. The secure communication layer
plays an important role in ensuring that communications are
secure and the data are not tampered with in the process.
Thus, to address the security of data transmitted through
the communication layer, encryption and cryptographic
techniques are embraced to minimize vulnerability to
eavesdropping and data tampering. This layer aims at data
credibility and proper transfer and sharingwith the cloud layer.
It connects to different wired, mobile, and wireless gateway
devices, with Wi-Fi as a high-speed transmission. Connecting
devices to the cloud, data security, caching, and data flooding
are well managed in this layer by a well-designed system. The
Azure IoT gateway is the connection path in the cloud with
design principles that are informed by research on IoT gateway
architecture.
• Control layer: Operating at an abstract level to the layers
discussed above is the control layer: this layer is responsible

for the planning and coordination of a drone’s movement and
is situated at a strategic location within the architecture. It also
employs information from the concern or perception layer to
prevent potential risks in its operations and movements. In
addition, it also acts as the drone’s guardian; it is responsible
for identifying and isolating hostile action through the help
of advanced anomaly detection and intrusion prevention
systems. The fourth layer of the control layer is known
for its capability for identifying and discouraging malicious
attempts. In terms of function, the control layer involves
device authentication and access security, which are best
enhanced by utilizing prototypes. It also complies with data
safety standards and security that are critical to the IoT
structure. Furthermore, privacy concerns are also stated
and addressed because they give rise to risks that could
compromise the system. To minimize the security risks,
the control layer strictly executes the authentication systems
and protocols. It is also aware of potential intruders’ efforts
to violate the security loopholes by penetrating, faking,
interposing, and or launching denial of service (DoS) attacks
(Alsubai et al., 2024).
• System layer: The system layer is responsible for the coherence
of the drone’s subordination, including such essential sections
as power, navigation, and communication subsystems. In this
layer, a well-interlinked security structure begins to develop
to prevent any unauthorized access and control of the drone.
These protective measures include firmware signing and a
trusted execution environment to strengthen the operational
system of the drone and prevent unauthorized control and
alteration of its components. The system layer implements
firmware signing and a trusted execution environment to
protect the drone’s important parts from code tampering and
invasive procedures. IoT gateways are important components
in IoT systems that help intermediaries connect IoT devices
with a hub situated in the cloud. They add another layer of
security through, for example, the identification of devices and
connection management. The hub is the main access point of
the IoT and IoT applications, and therefore, it is responsible
for communication between IoT devices, applications,
cloud systems, and other connected devices. Strict security
measures are in place to restrict access to authorized devices.
Data collected from sensors within tagged networks and
drones are transmitted to a cryptographic blockchain client,
ensuring secure storage within a database hosted in the
cloud server.

4 Potential cybersecurity risks in smart
grid cyberphysical systems

In this section, specific key challenges in terms of cybersecurity
and focus on the concerns and risks with regard to smart
grid structures are identified. In general, there are two main
risks associated with a smart grid: the dependency of the
grid’s complex systems on AI-automated communications
and the propensity for intelligent cyber warfare activities
(Haider et al., 2022).
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4.1 Unauthorized access to control systems

Probably one of the gravest threats of smart grid systems is when
the attackers gain access to the control stations of the grid because
this lets them control the flow of energy, alter the supply distribution
system, or even cause blackouts.This threat is particularly pervasive
in smart grids because of the cascading relationship that exists
between their cyber and the physical layers. As is the case withmany
UAV control systems, smart grid infrastructures need strict access
control to protect critical processes.

4.2 GPS spoofing and data injection attacks

In smart grids, GPS signals are crucial for synchronizing
energy distribution across large areas. Like UAVs, smart grids
are susceptible to GPS spoofing, where false signals can mislead
the system into incorrect actions, leading to power instability.
Attackers can inject false data into the grid’s sensor networks,
potentially manipulating energy flow or causing misalignment in
grid synchronization.

4.3 DoS (denial of service) attacks

DoS attacks in smart grid systems target communication
channels, overwhelming them with excessive data and disrupting
normal grid functions. Like UAV systems, these attacks can prevent
real-time monitoring and control of energy distribution, leading to
power blackouts or failures in critical infrastructure. Implementing
real-time monitoring and anomaly detection powered by AI can
mitigate the risk of DoS attacks.

4.4 Malware and command injection
attacks

Smart grid control systems are at risk of malware
infiltration, which may affect control centers, sensors, or
automated units. Like UAVs, introducing malicious software
into these systems can result in unauthorized commands, data
breaches, or even damage to vital infrastructure. To defend
against such threats, secure communication protocols, prompt
system updates, and effective intrusion detection mechanisms
are necessary.

4.5 Traffic blockage and eavesdropping

Disruptions in smart grid communication channels, like traffic
blockages, can prevent critical information from reaching its
destination, leading to system failures or poor energy distribution.
Eavesdropping threatens the privacy of grid operations. Employing
strong encryption, frequency-hopping, and secure communication
protocols is essential to mitigate these vulnerabilities, as they are
crucial in UAV systems.

4.6 AI and malware defense

As AI’s role in smart grids grows, the threat of malware on AI
controls increases.Malicious actors canmanipulate AI algorithms to
produce false outputs, causing poor energy management decisions.
Securing AI systems with strong cybersecurity measures like secure
boots, digital signatures, and advanced threat detection is vital to
protect smart grid functions.

5 Securing drones

A proper system for drone security is needed to prevent
attacks and examine attack data to execute protective measures that
maintain drone safety. In analyzing the requirements of constructing
a dependable and lawful system in the domain of IoD, the following
pivotal characteristics have been identified: security, dependability,
and consistency. Although some studies have developed deep
learning models to improve the cybersecurity of sensors for wireless
networks and mobile nets, the case of drones’ security domain
has not been examined. Therefore, to enhance the security of
drones, this study examines a deep learning-based approach for
optimizing authentication and gaining access control mechanisms.
This research work has primarily addressed cyberphysical systems
and UAV threats rather than smart grid cyberattacks for multiple
reasons, including the unavailability of benchmark datasets and
technical and infrastructure constraints (setting up experiments for
smart grid systems often requires specialized infrastructure, such
as access to real energy grids, smart meters, and control systems),
which may not be feasible in a typical research setting.

This research has utilized the KDD dataset, which shares
characteristics of both cyberphysical and smart grids. Originally
intended for detecting network intrusions in traditional computing
environments, the KDD Cup 99 dataset exhibits several features
applicable tosmartgridcybersecurity.Bothsmartgridsandtraditional
computernetworksdepend significantly on communicationprotocols
and the exchange of data between interconnected systems.TheWSN-
DS dataset is tailored to detect intrusions in wireless sensor networks,
which are crucial in both UAV communications and smart grid
networks.These systems extensively use sensors:UAVs formonitoring
their surroundings and smart grids for overseeing energy distribution.
TheCICIDS2017dataset isacontemporary intrusiondetectiondataset
designed to capture intricate attack patterns like distributed denial of
service (DDoS), botnets, andadvancedpersistent threats (APT).These
cyberthreats increasingly challenge bothUAVs and smart grids. In the
context of smart grids, a DDoS attack can saturate communication
links, obstructing energy distribution, like the potential for disruption
in UAV networks through interference in communications. The
dataset’s emphasis on complex, multi-layered attacks aligns with the
intricate vulnerabilities of smart grids, where attacks can target both
digital and physical systems to cause service interruptions.

5.1 Datasets for intrusion detection

An IDS is crucial for improving the state of cybersecurity
because it identifies and prevents unauthorized access and
cyberattacks on the networks. The fundamental data sources for
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an IDS are a variety of datasets that help it detect an intrusion
successfully and efficiently. Such datasets equip the system with the
required and relevant knowledge as well as background knowledge
to evaluate a scenario and make a decision.1,2,3,4

The experiments used data collected on a real-time basis
through the drones and included essential GPS information such
as longitude, latitude, and altitude. The dataset by Alturki et al.
(2023), which comprises drone on-board diagnostics (OBD) data,
was also integrated. Such a large set of records allows for assessing
the model's performance and its ability to address diverse, realistic,
and constantly changing conditions.

The KDD Cup 99 dataset is constituted of data used in the
KDD Cup, an annual competition for data mining and machine
learning organized by the KDD conference. The data for this set
have been compiled from different sources with the intention of
examining the real environment. It includes all the details of the
network traffic, including connections, size of packets, and types of
protocol, thus mirroring real-life network conditions. Additionally,
it encompasses data regarding security breaches, DoS attacks, and
various forms of network intrusions. The dataset is bifurcated into
two segments: a training set for model development and training
purposes and a test set for assessing model performance. Widely
adopted in research, the KDD Cup 99 dataset has been featured in
many academic articles.

It is important that two connection records, or 136,489 and
136,497, were excluded from use in the testing procedure. This
curation of data by NSL-KDD ensures that the machine learning
algorithm does not bend the results by inclining toward a particular
conclusion. The abuse identification is especially suitable for the
KDD Cup 99 dataset because it has some shortcomings manifested
in the ability to capture real-time characteristics of the network
throughput. The statistics relevant to the KDD Cup 99, Drone
dataset, and NSL-KDD are discussed in detail in the Table 3.
Realized for IDSs in wireless sensor networks, the WSN-DS
dataset was developed by Singh et al. (2020) and Khan et al.
(2024). It includes four different kinds of DoS attacks: blackhole,
grayhole, flooding, and scheduling. Specific protocols employed in
the experiment include hierarchical low-energy adaptive clustering
(LEACH) protocol data gathered by using the network simulator-2
(NS-2). After that, data preprocessing was conducted, which led to
the identification of 23 characteristics. For this purpose, a real-world
WSN-DS dataset is used.

One of the real-world network traffic datasets is the CICIDS2017
dataset (Stiawan et al., 2020), which focuses on the current network
activities, both normal and anomalous. More emphasis was placed
on the practical recording of the background traffic data using the
B-profile technology during the development. This non-malicious
traffic collection is for 25 users, and the protocols include HTTP,
HTTPS, FTP, SSH, and email. Original network traffic data were
captured systematically for five consecutive days, with 1 day for
normal traffic and the following 4 days with incorporated attack.
The injection attacks in the dataset are brute force FTP, brute force

1 https://www.kaggle.com/datasets/hassan06/nslkdd

2 https://www.kaggle.com/datasets/bassamkasasbeh1/wsnds

3 https://www.kaggle.com/datasets/chethuhn/network-intrusion-dataset

4 https://github.com/MUmerSabir/MDPIElectronics

TABLE 3 Details of KDD Cup 99, Drone, and NSL-KDD datasets.

Attack type Description

Normal Normal, legitimate network traffic and activities that do not
exhibit any malicious or intrusive behavior

DoS Denial of service attack aims to disrupt services and make
them inaccessible

Probe Probe is an initial reconnaissance step to identify potential
entry points

R2L Remote-to-local attacks occur when an attacker attempts to
gain unauthorized access to a target system from a remote
location

U2R User-to-root attacks involve gaining unauthorized access to
a user account and then attempting to gain administrative
or root-level access to the system

TABLE 4 Details of the CICIDS2017 dataset.

Attack type Description

Normal This category represents normal, benign network traffic and
activities

SSH Patator SSH Patator is a type of attack where an attacker attempts to
gain unauthorized access to a system by using an automated
tool that systematically tries various username and
password combinations for secure shell (SSH)
authentication

FTP Patator Attackers use automated tools to try multiple username and
password combinations to gain unauthorized access to FTP
servers

DoS Denial of service attacks disrupt normal network operations
with a flood of traffic or requests

Web Web attacks include various types of malicious activities
targeting web applications and services

Bot Bot attacks involve the deployment of a network of
compromised computers (botnets) to perform coordinated
malicious activities

DDoS Distributed denial of service attacks involve a network of
compromised devices working together to flood a target
system with traffic, causing a denial of service

PortScan Port scanning is a reconnaissance technique used by
attackers to discover open ports and services on a target
system

SSH, DoS, heartbleed, web assaults, infiltration, botnet activities,
and DDoS. It is worth mentioning that the dataset’s producers
believe that their collection meets 11 key criteria specified in
previous research. Please see Table 4 for more information on the
CICIDS2017 dataset, which includes extensive statistics and details.
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TABLE 5 Experimental setup for the proposed system.

Element Details

Language Python 3.8

OS 64-bit Windows 10

RAM 32 GB

GPU Nvidia, 1060, 8 GB

CPU Intel Xeon eight-core CPUs with 2.8 GHz processor

TABLE 6 Results of deep learning models on KDD Cup 99.

Model Accuracy Precision Recall F1-score

CNN 89.10% 87.23% 85.43% 86.31%

LSTM 92.25% 93.82% 94.86% 92.84%

CNN-LSTM 95.11% 95.31% 98.21% 96.16%

ConvLSTM 99.99% 99.99% 99.99% 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

5.2 Deep learning models

Convolutional neural networks (CNNs) have exceptional feature
extraction capabilities, making them useful for a broad range
of applications such as image classification, recognition, and a
variety of other fields (Bhatt et al., 2021). Although CNNs are
most typically linked with computer vision tasks (Terkawi et al.,
2018), their applications extend to areas such as forgery analysis
(Diallo et al., 2020) and intrusion detection (Chen et al., 2020).
Through convolution and pooling layers, CNNs excel at effectively
extracting critical characteristics from raw data. CNNs, as opposed
to traditional multi-layered neural networks, are a feed-forward
deep learning model with distinct characteristics such as parameter
sharing and sparse interaction. These characteristics distinguish
them from the completely connected networks where each of the
input neurons is connected with all the output neurons.

LSTM is a type of RNN model with a feedback connection
(Yu et al., 2019; Abu-zanona et al., 2022). The important feature of
LSTM is that it considers the whole data sequence, not data points,
as RNN does, and, therefore, is ideal for jobs that require time-series
data processing and classification. Usually, long data sequences pose
difficulties to the computation of gradients for RNNs, which gives
rise to LSTM. One of the key aspects of LSTM network design is the
cell memory unit, which has the capability of both forgetting the old
knowledge and storing new inputs. The LSTM model is made up of
four major components: the input gate, the forget gate, the output
gate, and the cell state, which are depicted as four LSTM gates.

The network layer parameters of CNN-LSTM architecture can
be adjusted to suit one’s preference (Lu et al., 2020). A pooling layer
and a dense layer are frequently used in a sequence convolutional

LSTM layer. In each layer, filter size, kernel size, and stride can be
adjusted to alter the model’s performance and learning rate. This
allows the number of parameters to be changed, directly influencing
the model’s performance. Dependent inputs are first accepted by the
convolutional layer, and the result from this layer is then passed
into the pooling layer to reach the LSTM layer. The CNN-LSTM
architecture has been used in many tasks, such as human activity
recognition (Mutegeki and Han, 2020; Albalas et al., 2019) and
forecasting gold prices (Livieris et al., 2020).

5.3 Proposed approach

The proposed neural network model combines the features of
both CNN and LSTM layers. CNNs have excellent feature extraction
capabilities, making them useful in a variety of applications.
Through convolution and pooling layers, CNN efficiently extracts
meaningful features from raw data. CNN is a kind of feed-forward
deep learning model that offers parameter sharing and sparse
interaction characteristics while differing from a multi-layered
deep neural network that is fully connected (each input neuron
being interconnected with each output neuron). In other words,
under CNN, feature extraction is enhanced while the connection’s
complexity is reduced. An LSTM is an extension of a recurrent
neural network that has feedback connections. Although other types
of RNNs, like RNN,work point by point in the datasets, LSTMworks
end to end and hence can easily handle and solve time-series data
algorithms and classification.

ConvLSTM is an advanced version of LSTM that includes
convolutional operations inside the LSTM cell. It represents a
particular kind of RNN that proves to be efficacious for modeling
long-term dependencies in a specific manner. Unlike the standard
LSTM structures, in ConvLSTM, matrix operations in each of
the gates of the cell are replaced with convolution operations.
This modification is useful for extracting spatial features in multi-
dimensional data, making the ConvLSTM model superior to the
basic CNN-LSTM model. Because of its flexibility and applicability
in various fields, ConvLSTM has been used in travel demand
prediction, slip direction identification, and agriculture forecasting.
ConvLSTM is a powerful tool in the field of deep learning
domains; the best part of the ConvLSTM architecture is that it
smoothly incorporates both spatial and temporal features, which in
turn helps to provide better and more accurate predictions from
multi-dimensional data. The proposed model's complete working
algorithm is shared in Algorithm 1.

6 Results and discussion

This section presents the outcomes of the experiments following
the discussion of suggested models in the preceding section.
The results demonstrate the effectiveness of drones in enhancing
security, as discerned through a deep learning-based approach.
Four assessment criteria were employed to evaluate and contrast
the prototype performances, with the confusion matrix being a
pivotal tool in these evaluations. The confusion matrix comprises
key elements, including true positive (TP), false positive (FP), true
negative (TN), and false negative (FN).
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FIGURE 2
Results of deep learning models on NSL-KDD.

TABLE 7 Results of deep learning models on NSL-KDD.

Model Accuracy Precision Recall F1-score

CNN 87.10% 85.13% 82.42% 84.35%

LSTM 89.25% 90.62% 94.16% 92.34%

CNN-LSTM 92.21% 93.21% 91.41% 92.37%

ConvLSTM 99.99% 99.99% 99.99% 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

6.1 Experimental results

The results of the experiments are provided in this section. The
proposed model’s performance is evaluated on five datasets. The
results are also compared to other cutting-edge approaches from the
existing literature.The datasets were divided into 70:30 training and
testing sets.The tests are carried out on aDell PowerEdge T430GPU
with an 8 GB graphics card, as well as twin Intel Xeon eight-core
CPUs running at 2.8 GHz and 32 GB of DDR4 RAM. The studies
were done in the Jupyter Notebook environment, with Python and
Anaconda as programming languages. Additional information is
provided in Table 5.

In this research, the CNN, LSTM, CNN-LSTM, and ConvLSTM
deep learning models were employed. These models underwent a
comprehensive comparative analysis using five publicly available
datasets: KDD Cup 99, NSL-KDD, Drone, WSN-DS, and CICIDS
2017. The primary objective of this analysis was to evaluate the
effectiveness of these deep learning models in the context of
intrusion detection within UAVs or drones. The results of deep
learning models on KDD Cup-99 presented in Table 6 and Figure 2
provide a comprehensive overview of their performance. CNN

achieved an accuracy of 89.10%, indicating the percentage of
correctly classified instances. Its precision, recall, and F1-score
are 87.23%, 85.43%, and 86.31%, respectively. The LSTM model
demonstrated higher accuracy, reaching 92.25%. The hybrid model
(CNN-LSTM) performed exceptionally well, with an accuracy of
95.11%. It also exhibited a high precision of 95.31% and a recall of
98.21%, leading to an F1-score of 96.16%. However, the ConvLSTM
model outperformed all others, achieving an astonishing accuracy
of 99.99%. It also achieved exceptional precision, recall, and F1-
score, all 99.99%.

Table 7 and Figure 3 summarize the performance of
various deep learning models on the NSL-KDD dataset for
intrusion detection. CNN achieved an accuracy of 87.10%, with
corresponding precision, recall, and F1-score values of 85.13%,
82.42%, and 84.35%, respectively. LSTM showed an accuracy of
89.25% and performed well with 90.62% precision, 94.16% recall,
and 92.34% F1-score. CNN-LSTM achieved an accuracy of 92.21%,
and ConvLSTM demonstrated exceptional results, with accuracy,
precision, recall, and an F1-score of 99.99%.

Table 8 and Figure 4 display the performance results of various
deep learning models for intrusion detection on the WSN-DS
dataset. The CNN achieved 90.10% accuracy, 87.23% precision,
89.83% recall, and 88.71% F1-score. LSTM demonstrated an
accuracy of 94.25%, and CNN-LSTM exhibited an accuracy
of 97.31%. ConvLSTM outperformed the other models with
remarkable results, showing an accuracy of 99.99%.

Table 9 presents the performance results of various deep
learning models on the CICIDS2017 dataset, which is used for
intrusion detection. CNN achieved an accuracy of 91.10% and
demonstrated good performance in precision, recall, and F1-score.
LSTM showed an accuracy of 95.25% and performed well in
precision, although it had a slightly lower recall and F1-score. CNN-
LSTM exhibited high accuracy, scoring 98.11%, and also delivered
excellent results in precision, recall, and F1-score. ConvLSTM
outperformed the other models with outstanding results, achieving
an accuracy, precision, recall, and F1-score of 99.99%.
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FIGURE 3
Results of deep learning models on WSN-DS.

TABLE 8 Results of deep learning models on WSN-DS.

Model Accuracy Precision Recall F1-score

CNN 90.10% 87.23% 89.83% 88.71%

LSTM 94.25% 93.82% 94.86% 93.84%

CNN-LSTM 97.31% 98.31% 99.51% 98.26%

ConvLSTM 99.99% 99.99% 99.99% 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

Table 10 presents the results of deep learning models on the
Drone dataset. CNN achieved an accuracy of 87.10% and showed
good performance in precision (88.23%), recall (87.43%), and
F1-Score (86.31%). LSTM demonstrated an accuracy of 90.25%,
and CNN-LSTM exhibited an accuracy of 94.11%. ConvLSTM
outperformed the other models with outstanding results, achieving
accuracy, precision, recall, and F1-score of 99.99%.This suggests that
ConvLSTM is highly effective in making accurate predictions on the
Drone dataset.

The ConvLSTM model is highly effective in identifying
intrusions in UAV and smart grid communication systems, thanks
to its capability to concurrently capture spatial and temporal
characteristics.The convolutional layers within the model efficiently
learn local patterns from spatial information, while the LSTM units
manage temporal relationships, making the model ideally designed
for complex time-series data such as intrusion detection (Wu et al.,
2020). Furthermore, the hybrid structure of ConvLSTM overcame
the limitations seen in standalone CNNand LSTMmodels, resulting
in improved generalization and heightened accuracy for processing
sequential network data (Altunay and Albayrak, 2023). Research
indicates that ConvLSTM models surpass traditional machine

learning techniques in detecting advanced cyberattacks, especially
inUAVnetworks where the data involve temporal dependencies and
spatial correlations (Dubey et al., 2024). The model’s exceptional
performance is further supported by leveraging large, varied
datasets, which boost its robustness and adaptability to various
network conditions (Sharafaldin et al., 2018). This flexibility is vital
in environments like smart grids and UAVs, where threats are
dynamic and constantly evolving.

6.2 Statistical analysis

This subsection presents the results of a statistical t-test analysis
between the two best-performing models on all datasets. The t-test
results for comparing CNN-LSTM and ConvLSTM models across
different datasets are as follows:

• KDD Cup-99:
• t-statistic = −5.35
• p-value = 0.0127
• NSL-KDD:
• t-statistic = −20.84
• p-value = 0.0002
•WSN-DS:
• t-statistic = −3.64
• p-value = 0.0356
• CICIDS 2017:
• t-statistic = −41.98
• p-value = 0.00003
• Drone dataset:
• t-statistic = −3.51
• p-value = 0.0391

In all cases, the p-values are below the significance level
(0.05), indicating that the performance differences between CNN-
LSTM and ConvLSTM are statistically significant, with ConvLSTM
outperforming CNN-LSTM.
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FIGURE 4
Results of deep learning models on CICIDS 2017.

TABLE 9 Results of deep learning models on CICIDS 2017.

Model Accuracy Precision Recall F1-score

CNN 91.10% 92.23% 91.53% 91.61%

LSTM 95.25% 94.82% 91.66% 93.84%

CNN-LSTM 98.11% 98.31% 98.21% 98.16%

ConvLSTM 99.99% 99.99% 99.99% 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

TABLE 10 Results of deep learning models on the Drone dataset.

Model Accuracy Precision Recall F1-score

CNN 87.10% 88.23% 87.43% 86.31%

LSTM 90.25% 91.82% 93.86% 92.74%

CNN-LSTM 94.11% 92.31% 98.21% 96.76%

ConvLSTM 99.99% 99.99% 99.99% 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

6.3 Sensitivity analysis

The sensitivity analysis demonstrates that while the ConvLSTM
model maintains high performance metrics across various
hyperparameters, slight adjustments can affect specific performance
measures such as accuracy, precision, recall, and F1 score.The results
indicate a strong robustness in the model, reinforcing its suitability
for intrusion detection in UAV communication networks. This

analysis highlights the importance of hyperparameter tuning in
optimizing model performance for various operational conditions.
The results of the sensitivity analysis on the Drone dataset
are shared in Table 11.

6.4 Comparing the performance of the
proposed ConvLSTM method to existing
approaches

Table 12 presents the performance comparison of the proposed
approach alongside state-of-the-art models on different datasets.
The comparison table includes the dataset name, the method
used, and the corresponding accuracy achieved by each method.
The proposed ConvLSTM method outperforms other models,
achieving an accuracy of 99.99%. Comparatively, the deep neural
model (Andresini et al., 2020) achieved an accuracy of 92.49%,
and the DNN model (Vinayakumar et al., 2019) achieved 93%
accuracy on the KDDCup-99 dataset. In contrast, the SVM-
ANN model (Hussain et al., 2016) achieved an accuracy of
91.48%, the deep hierarchical model (Jiang et al., 2020b) achieved
83.58% accuracy, and the DNN model (Vinayakumar et al., 2019)
attained 80% accuracy on NSL-KDD dataset. The DNN model
(Vinayakumar et al., 2019) obtained an accuracy of 99.2% on the
WSN-DS dataset and 96.3% on the CICIDS-2017 dataset. The
RegressionNet model (Alturki et al., 2023) reached an accuracy
of 99.89%. Overall, the proposed ConvLSTM method consistently
demonstrates superior performance across all datasets compared to
the referenced state-of-the-art models, highlighting its effectiveness
in intrusion detection.

6.5 Discussion

Table 12 shows the performance of four deep learning models:
CNN, LSTM, CNN-LSTM, and ConvLSTM. The performance of
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TABLE 11 Sensitivity analysis results for the ConvLSTMmodel on the Drone dataset.

Learning
rate

Batch size Layers Dropout
rate

Sequence
length

Accuracy
(%)

Precision
(%)

Recall (%) F1 score
(%)

0.00375 64 2 0.1082 30 98.01 99.94 99.96 98.03

0.00951 64 5 0.4880 42 98.05 98.46 98.93 99.87

0.00732 64 5 0.4330 85 99.04 98.18 99.71 99.12

0.00599 64 5 0.1849 67 98.80 99.23 99.35 98.77

0.00157 128 4 0.1727 31 98.09 98.76 98.90 98.03

TABLE 12 Comparative analysis of the proposed methodology and
state-of-the-art model performance.

Dataset Approach Accuracy

KDDCup-99

Deep neural model (Andresini et al., 2020) 92.49%

DNN (Vinayakumar et al., 2019) 93%

Proposed ConvLSTM 99.99%

NSL-KDD

SVM-ANN (Hussain et al., 2016) 91.48%

Deep hierarchical model (Jiang et al., 2020b) 83.58%

DNN (Vinayakumar et al., 2019) 80%

Proposed ConvLSTM 99.99%

WSN-DS
DNN Vinayakumar et al., 2019) 99.2%

Proposed ConvLSTM 99.99%

CICIDS-2017
DNN (Vinayakumar et al., 2019) 96.3%

Proposed ConvLSTM 99.99%

Drone
RegressionNet (Alturki et al., 2023) 99.89%

Proposed ConvLSTM 99.99%

The bold values indicating that the proposed model accuracy is better than all other models
compared with it.

each model is assessed, and the corresponding values are shown
in the table. ConvLSTM performs better than the others, with
the highest accuracy, precision, recall, and F1-score of 99.99%.
The findings derived from the study involving experiments on
those various datasets for intrusion detection in UAVs or drones
help evaluate deeper models’ efficiency. The figures clearly show
that the proposed ConvLSTM model performs exceptionally well
in all the datasets used in the experiments, with an accuracy of
99.99% PDR on all the datasets, implying the model’s excellent
performance on intrusion detection in UAV’s communication
network. Such accuracy is important for strongly securing UAV

1: Input: ConvLSTM model and Datasets {KDD Cup-99,

NSL-KDD, WSN-DS, CICIDS 2017, Drone}

2: Output: Evaluation metrics (Accuracy,

Precision, Recall, F1-score)

3: Step 1: Data Preprocessing

4: For each dataset:

  5: Load the dataset

  6: Normalize and standardize feature values

  7: Split the dataset into training and

testing sets

8: Step 2: ConvLSTM Model Training

 9: Initialize the ConvLSTM model architecture

 10: For each dataset:

  11: Train the ConvLSTM model on the training set

  12: Use cross-validation for

hyperparameter tuning

13: Step 3: Model Evaluation

 14: For each dataset:

  15: Test the trained ConvLSTM model on the

testing set

  16: Calculate evaluation metrics:

   17: Accuracy = TP+TN
TP+TN+FP+FN

   18: Precision = TP

TP+FP

   19: Recall = TP

TP+FN

   20: F1-score = 2× Precision×Recall
Precision+Recall

21: Step 4: Comparison of Results

 22: Compare the evaluation metrics across all

five datasets

 23: Highlight performance differences of the

ConvLSTM model

24: Step 5: Conclusion

 25: Analyze the ConvLSTM model’s strengths and

weaknesses across datasets

 26: Provide recommendations for future work based

on performance results

Algorithm 1. Evaluation of ConvLSTMModel Using KDDCup-99, NSL-KDD,
WSN-DS, CICIDS 2017, and Drone datasets.
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operations, unauthorized access, or cyberthreats that could lead to
critical consequences. This outcome supports the understanding
that more complex neural network architectures are needed for
fully modeling both spatial and temporal structures of traffic data
obtained from drone networks.

The datasets used in those experiments were selected in a
manner that matches realistic business environments. They include
various types of network traffic and intrusions that may exist in a
mission field using UAVs. The datasets give a range of intrusions
such as DoS, unauthorized access, probing, etc. This diversity
ensures that intrusion detection models are exposed to a wide
range of challenges, increasing their immunity to new challenges.
These datasets, therefore, act as the gold standard against which the
performance of intrusion detection models can be measured.

Last but not least, findings from such experiments demonstrate
that ConvLSTM outperforms other models and, at the same time,
stresses the necessity to leverage high-quality datasets for training
and testing IDS solutions in the UAV setting. Both datasets are
fundamental as they contribute to the formulation of effective
security measures for drones, thus bringing safety to countless uses.

7 Conclusion

This work has explored the fundamental domain of
cybersecurity for unmanned aerial vehicles (UAVs), which are
increasingly integrated into various sectors, including agriculture,
surveillance, and logistics. AsUAV technology continues to advance,
the need for robust IDS to protect these communication networks
from cyber threats has become critical.

7.1 Findings

In this study, we investigated four deep learning models—CNN,
LSTM, CNN-LSTM, and ConvLSTM—within the context of
intrusion detection in UAV communication networks. Among these
models, the ConvLSTMmodel demonstrated superior performance,
achieving an accuracy of 99.99% across multiple datasets. This
high level of accuracy suggests that complex neural network
structures like ConvLSTM can be effectively leveraged to enhance
cybersecurity for UAVs, offering a promising solution to counter
evolving cyber threats.

7.2 Limitations

Despite the high accuracy of the ConvLSTM model, some
limitations exist in this research. First, the datasets used, while
diverse, may not cover all potential cyberattack scenarios that
UAVs could encounter in real-world applications. Additionally, the
computational complexity of ConvLSTM could pose a challenge
for real-time deployment on resource-constrained UAV systems,
limiting its practicality in some cases. Lastly, this study focused on
intrusion detection by ignoring other factors of UAV cybersecurity,
such as real-time anomaly detection or attackmitigation techniques.

7.3 Recommendations

Future research should address these limitations by exploring
lighter, more efficient models that can be deployed in real-
time on UAV systems with limited computational power.
Furthermore, it would be beneficial to incorporate more diverse and
representative datasets that simulate a wider range of cyberattacks
in realistic environments. Expanding the scope to include real-
time anomaly detection and response mechanisms could further
enhance the robustness of UAV cybersecurity frameworks.
Additionally, collaboration between cybersecurity experts and UAV
manufacturers is recommended to develop standardized security
protocols that can be integrated directly into the design of UAV
communication networks.

7.4 Conclusion

The findings of this study highlight the potential of ConvLSTM
models to improve the safety, security, and reliability of UAV
operations across various industries. As UAVs become more
prevalent in daily activities, enhancing intrusion detection
techniques will be crucial in minimizing cyber threats and ensuring
the safe deployment of these systems.
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