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Application of deep forest
algorithm incorporating
seasonality and temporal
correlation for wind speed
prediction in offshore wind farm
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Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Accurate prediction of wind speed is a prerequisite for the safe and accurate
operation of wind power generation, however, WRF models typically do not
produce sufficiently accurate wind speed predictions. This study proposed a
Seasonal and Temporal Correlation - Deep Forest (STC-DF) model for offshore
wind speed prediction. Different from traditional methods, the STC-DF model
takes the advantages of the deep forest algorithm to automatically learn
complex feature interactions without manual feature engineering. The model
is designed to capture the seasonal and temporal characteristics of wind speed
variations. To test the effectiveness of the proposed method, we applied the
trained STC-DF model to an offshore wind farm in Hainan Province, China.
Seven days of data from each season were selected for testing. The results
show that the STC-DF model can effectively reduce the error caused by WRF
forecast. The error index of the corrected wind speed reduced more than 40%,
the accuracy of wind speed forecast increased 15%. And the method passed the
multi-model comparison test and robustness experiment. These research results
show that the STC-DF model has strong versatility and good correction ability,
and is suitable for wind speed forecasting in different regions, which is a feasible
method to improve the reliability of offshore wind power generation.
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wind speed prediction, wind speed correction, deep forest, seasonality, temporal
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1 Introduction

Global climate change, energy supply and energy costs are becoming increasingly
important to government authorities and society. As a result, countries are analyzing greater
diversification of their sources of power generation towards renewable resources (Díaz and
Soares, 2020). Renewable energy plays a key role in China’s energy strategy (Zhang and
Wang, 2022). Wind energy has the prospect of being an alternative source of energy for
power generation and, unlike fossil fuels, it reduces the amount of carbon dioxide emitted
into the atmosphere. This intermittent nature of energy has led to the development and
improvement of wind forecasting systems (Pereyra-castro and Caetano, 2022). China is
a vast country with a total of 300 million kilowatts of wind energy that can be exploited
annually in the country (Qian et al., 2016). As the development of onshore wind power in
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FIGURE 1
WRF model simulation area.

China is already relatively saturated, the development of offshore
wind power will become an important means of addressing
the fundamental interplay between future energy mix and
supply patterns (Chen and Lin, 2022). The continental coastline
is 18,400 km long (Zhang and Wang, 2022), with an island
coastline of 14,247 km and a total coastline length of more
than 32,600 km, there is great potential for the development
of offshore wind resources. After more than two decades of
industrialization and development, the offshore wind power
industry has gradually moved from the demonstration stage to the
commercialization stage, and is receiving more and more attention
from national governments (Soares-Ramos et al., 2020; Irena,
2016). Wind speed prediction can effectively predict the future
wind strength and power output of wind turbines, which provides
data support for wind power operators to design wind turbine
on-line strategies and maintenance plans, and can improve the
competitiveness of wind power products in the energy market.
Therefore, the accurate prediction of wind speed in offshore
wind farms is of vital importance for the development of
renewable energy.

Wind speed prediction today can be categorized into two
schemes: data-driven schemes and physical schemes. Data-driven
methods are currently a hot area for researchers in the field
of wind power. It uses the intrinsic relationship of multi-source
meteorological data to build mathematical and statistical models
(Yang et al., 2005; Zeng et al., 2012), machine learning models

(Liu et al, 2021a; Cassola and Burlando, 2012) and hybrid models
(Papaefthymiou and Klockl, 2008; Liu et al, 2021b) and other
prediction models to predict wind speed. However, the prediction
step provided by traditional statistical model is difficult to meet the
needs of China’s wind farms (Zheng et al., 2011). Physical methods
can be subdivided into two categories: numerical weather prediction
methods (NWP) and spatial correlation methods (Zhang et al.,
2020). The NWP method uses weather forecast data such as
temperature, pressure, surface roughness, and obstacles to predict
wind power, which is suitable for predicting wind power in power
plants because it describes atmospheric motion without the need
for large amounts of historical data (Yu et al., 2019). Currently,
there aremany different physical methods for wind speed prediction
such as high-resolution limited area model (HIRLAM) (Landberg,
1999)、Mesoscale Model5 (MM5) (Salcedo-Sanz et al., 2009) and
Weather Research and Forecasting (WRF)model (Zhao et al., 2017).
Among them, theWRFmodel can provide ultra-high resolution and
its Large Eddy Simulations (LES) scheme can effectively simulate
the atmospheric motions of wind farms due to the fact that it is
favored by wind farm operators (Prósper et al., 2019). However,
numerical weather prediction results in large errors due to imperfect
physical parameterization schemes, low resolution, and inaccurate
topography. Due to the errors in wind speed prediction, it is difficult
to meet the needs of wind farms in China (Xiong et al., 2023;
Chang et al., 2015;Hu, 2016; Zhang et al., 2013).Meanwhile, physical
algorithms have advantages in long-term forecasting. However,
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FIGURE 2
The structure of Deep Forest algorithm.

FIGURE 3
The flowchart of the proposed hybrid model.

they require a lot of computational time and are not suitable
for short-term forecasting (Liu et al., 2015). Therefore, a single
physical model needs to be assisted by other methods to realize
high-precision wind power prediction in practical engineering
applications.

Popular data-driven techniques mainly include signal
processing, machine learning and information fusion (Zhang et al.,
2023). In recent years, there has been a gradual increase in the
research of using multiple meta-learners to combine to form
highly interpretable models (Jiang et al., 2024; Liu et al., 2023;
Liu et al., 2024a; Liu et al., 2024b), and the combination of signal
processing and machine learning to construct hybrid models for

wind speed prediction has become a hot topic (Jiang et al., 2023;
Zhang et al., 2024). Literature (Chen et al., 2022) proposed a
new wind speed prediction model that combines CEEMDAN,
VMD, and LSTM. The error model combining VMD and LSTM
can extract deeper features and improve the correction effect of
the model. Zhang and Liu (2022) focused on post-processing
the error signals and proposed an ELM-ICEEMDAN-ARIMA
hybrid model for short-term wind speed forecasting. Zhou et al.
(2023) proposed a hybrid prediction method for wind speed
combining machine learning algorithms such as variational modal
decomposition (VMD), principal component analysis (PCA) and
random forest (RF). Xiong et al. (2023) extracted the wind speed
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FIGURE 4
Correlation plots between the variables of the seasonal sub-models. (A) Spring, (B) Summer, (C) Aututmn, (D) Winter.

fluctuation features and labeled them using the fluctuation stable
day model, and combined them with BO and LSTM for wind
speed prediction. Establishing a suitable AI hybrid model to predict
wind speed will be of great significance for the proper operation of
wind farms.

Deep Forest is a cascade random forest algorithm based on
deep models (Mao and Li, 2024), Compared to deep neural
networks, it has fewer hyperparameters, lower data requirements,
adaptive model complexity, and good robustness and generalization
capabilities. Therefore, it is widely used in target recognition, image
processing, text recognition, fault diagnosis, network intrusion
detection, medical diagnosis, and other fields (Zhou and Feng,
2019). Mao introduced the idea of weight distribution in the
cascade forest construction stage and proposed an improved DF
algorithm based on information theory. This algorithm evaluates
training samples to decide whether they enter the next level of
training, thereby reducing the number of samples and improving

the model’s parallel training efficiency (Mao et al., 2022). Yin et al.
(2020) applied the deep forest regression method to short-term
load forecasting in power systems. The results showed that the
default configuration parameters of the deep forest regression could
improve short-term prediction accuracy and reduce the impact
of experience on hyperparameter configuration of deep learning
models. Liu et al. (2020) proposed a combined deep forest-based
prediction model for short-term wind speed prediction. Wang et al.
(2021) combined empirical modal decomposition and deep forests
for wind speed prediction. Although the direct application of
deep forests in wind speed prediction is not yet widespread,
integrated learning methods have shown good potential in
this field. Deep forest, as a powerful integrated learning
algorithm, is expected to play a greater role in future wind speed
prediction research.

However, offshore wind farms are subject to various factors
due to their unique topographical characteristics, resulting in poor
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TABLE 1 Evaluation of the seasonal sub-models forecast effect.

RMSE
(m/s)

rRMSE
(%)

FA (%) R

Spring
WRF 2.57 24.6 34.2 0.87

STC-DF 1.78 18.8 47.5 0.94

Summer
WRF 3.77 24.5 11.9 0.94

STC-DF 2.63 19.6 20.1 0.94

Autumn
WRF 2.94 35.4 12.5 0.1

STC-DF 1.97 27 32 0.72

Winter
WRF 2.02 35.6 37.2 0.28

STC-DF 1.32 21.3 56.2 0.72

wind speed stability. Wind speed prediction models will face greater
challenges and need to be updated more frequently to adapt to the
changes brought about by different influencing factors. In summary,
the field of wind speed prediction has the following issues to
be addressed:

(1) The influencing factors of wind speed prediction methods
are not comprehensively considered. Wind speed exhibits
seasonality, with variations in speed and volatility across
different seasons. Seasonal factors have a significant impact on
wind speed sequences.

(2) The feature factors input into wind speed prediction models
are highly limited. Traditional prediction models only use
wind speed data as input, without considering the impact of
meteorological elements on wind speed variations and the
historical autocorrelation of the input data. Therefore, it is
difficult to capture subtle changes and short-term fluctuations
in the data.

To address the above issues, we propose a model named
Seasonal and Temporal Correlation - Deep Forest (STC-DF), which
considers the impact of seasonal characteristic changes and temporal
correlation of wind speed variations on wind speed prediction for
offshore wind farms. The contributions of this study to the above
two issues are as follows:

(1) Seasonal Training Correction Model: By extracting the main
features from various meteorological elements of NWP
predictions for each season, the input feature factors of the
model are enriched. Appropriate models are selected for
training and prediction on specific data to more accurately
capture the randomness, intermittency, and volatility
characteristics of actual wind speed.

(2) Incorporating Data Differencing: By including adjacent
differences in predicted wind speed, trends and seasonality
are eliminated, and lag effects are reduced.This reveals hidden
patterns and relationships in the original time series, providing
the model with more useful features and thereby improving
prediction performance.

Through multi-model comparison test and robustness
experiment, the effectiveness and generalizability of this method
for wind speed prediction correction have been verified.

2 Data and methods

2.1 Data

The target wind farm for this study is an offshore wind farm
in Hainan Province, and the wind speed data used are system
derived wind speeds at the wind farm level with a time resolution
of 15 min. The forecast data were generated by the WRF system,
and since the turbine hub height is 70 m, 70-m wind speed (WS_
pre), 2-m temperature (T), 2-m surface pressure (PRS), precipitation
(PRE) and 2-m humidity (RH) were selected as input features
for the correcting model. Connect all the data according to the
timestamp and perform preprocessing such as fusion and cleaning.
The data of the target wind farm in 2023 was selected as the
study data. In the field of meteorology, seasons are usually divided
according to the change of temperature patterns: spring (March-
May), summer (June-August), autumn (September-November) and
winter (December-February) (Linacre, 1992).The data from the last
7 days of each season was selected as the test set and the rest of the
data was used as the training set.

2.2 Method

2.2.1 WRF model
In this study, the WRF regional mesoscale numerical prediction

model is used to simulate the offshore wind farm, and the WRF
model adopts a three-layer nested grid structure, with the grid
numbers of 180 × 190, 100 × 90, and 110 × 110, and the
grid spacings of 27 km, 9 km, and 3 km, respectively, and the
initial field and boundary conditions are based on the Global
Weather Forecast (GWF) data provided by the National Centers for
Environmental Prediction (NCEP). The initial field and boundary
conditions are based on the global weather forecast data provided
by the National Centers for Environmental Prediction (NCEP)
of the United States, with a temporal resolution of 7 days and a
spatial resolution of 1° × 1°. Figure 1 shows the basic operation of
the WRF model. In the WRF model setup, the physical process
parameterization schemes, such as the Yonsei University boundary
layer parameterization scheme (Hong et al., 2006), the Grell-Freitas
convective parameterization scheme (Grell and Freitas, 2014), the
RRTMGshort- and long-wavelength radiation scheme (Iacono et al.,
2008), and the Noah surface process scheme (Chen and Dudhia,
2001), are used. The time integration is based on the Runge-Kutta
3rd order scheme, and the computational time step is adaptively
adjusted according to the CFL conditions.

2.2.2 Deep forest
Deep Forest (DF) (Zhou and Feng, 2019) is an integrated

learning algorithm based on deep learning. The method stacks
multiple random forest models together to form a deep network
structure, and uses the output of each layer of random forest as the
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FIGURE 5
Comparison of observed wind speed, WRF forecast wind speed and STC-DF forecast wind speed time series in the seasonal sub-models.

input features of the next layer. Specifically, Deep Forest consists of
the following steps:

Step1: gcForest employs a cascade structure to enable level-
by-level processing, where each level of the cascade
receives feature information processed by its predecessor
level and outputs the results of its processing to the
next level.

Step2: Each level is a collection of decision tree forests, i.e., a
collection of sets, including different types of forests to
encourage diversity. Each forest contains multiple trees,
where the number of trees is a hyperparameter.

Step3: Each forest processes raw features to generate class vectors
and augmented feature vectors, which are then used to train
the forest in the next cascade.This process is implemented by
multi-granularity scanning, where the original features are

scanned using a sliding window to produce feature vectors
of different sizes.

Step4: Each forest generates class vectors through k-fold cross-
validation. During training, cross-validation is used to
evaluate the performance of the entire cascade and terminate
the training if necessary to prevent overfitting.

Step5: The number of classes in the cascade is automatically
determined by estimating the performance of the entire
cascade on the validation set, and the training process is
terminated if there is no significant performance gain.

Unlike traditional integrated learning methods, Deep Forest
is able to automatically learn the complex interactions between
features without relying on manually designed feature engineering.
In addition, the method has low computational complexity, is not
easy to overfitting, and shows excellent classification performance
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FIGURE 6
Distribution of wind speed in the seasonal sub-models.

FIGURE 7
Regression scatter plot of predicted wind speed. (A) WRF model, (B) STC-DF model.

on multiple benchmark datasets. The structure of Deep Forest
is shown in Figure 2.

2.2.3 Seasonal and temporal correlation - deep
forest model

In order to better capture the relationship between
seasonality, temporal correlation and meteorological factors

in wind speed prediction problems, we propose to use STC-
DF model to achieve better performance in wind speed
prediction tasks. The model consists of the following main
components:

(1) Seasonal sub-model: the year is divided into four seasons, and
four sub-models are trained to capture the characteristics of
wind speed changes in different seasons.
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TABLE 2 The result of multi-model comparison test.

RMSE (m/s) rRMSE (%) FA (%) R

WRF 2.45 15.5 24 0.83

STC-DF 1.42 10.4 39 0.89

DF 2.17 14.6 29.1 0.68

RF 2.28 14.9 24.9 0.59

XGBoost 2.36 15.1 24.4 0.63

LightGBM 2.33 15 28.7 0.55

MLP 2.08 13.2 29.8 0.72

LSTM 1.76 11.9 31 0.84

FIGURE 8
Boxplot distribution of errors for seasonal sub-models.

(2) Integration time-series features: In addition to the
conventional features of temperature, humidity, pressure
and other meteorological elements, the difference between
the wind speed (WS_diff) at the previous moment and the
current moment was also added to reflect the correlation in
the time series.

(3) Deep forest model: The deep forest algorithm was used as the
base model, and its powerful feature learning and non-linear
modelling capabilities were used to predict wind speed.

The flowchart of the proposed hybrid model is given in Figure 3.
The STC-DF model is carried out in the following three steps:

Step 1: Model training. Four sub-models were trained for different
seasons. For each sub-model, the corresponding features
were extracted and trained.

Step 2: Model predictions. Wind speed predictions were made
by first identifying the season based on the current time
and then using the appropriate sub-model to make the
predictions. The predictions will reflect both seasonal and
temporal correlations.

Step 3: Results evaluation. The accuracy of the model was evaluated
by the wind speed evaluation index. In order to verify the
validity as well as the generalizability of the model, multi-
model comparison experiment and robustness experiment
will be conducted for the model.

Through the integration of the above seasonal sub-models,
time-series features and meteorological element features, the STC-
DF Model is able to better learn the intrinsic law of wind speed
change, and thus improve the accuracy and reliability of wind speed
prediction.

2.2.4 Error analysis method
In order to evaluate the correction effect of the model, four

error metrics, namely, Root Mean Square Errors (RMSE, Equation
1), Relative Root Mean Square Errors (rRMSE, Equation 2),
Forecast Accuracy (FA, Equation 3) of wind speed, and Correlation
Coefficient R (Equation 4), are chosen to measure the correction
effect in this paper.The formulas for the error metrics are as follows:

RMSE = √ 1
n

n

∑
i−1
( ̂yi − yi)

2 (1)

rRMSE =

√ 1
n

n

∑
i=1
(yi − ŷi)

2

i
n

n

∑
i=1

yi

× 100% (2)

FA =
N r

N f
× 100% (3)

R =

n

∑
i=1
(xi − x)(yi − y)

√
n

∑
i=1
(xi − x)

2√
n

∑
i=1
(yi − y)

2

(4)

where ̂yi represents the i th predicted value, yi denotes the i th
observation, n is the total number of time samples, and y is the
average of the observed values. Here, Nr stands for the number of
samples with an absolute deviation of the wind speed forecast less
than 1 m/s, while N f is the number of samples forecasted.

3 Results and discussion

3.1 Result of seasonal sub-models

Four seasonal sub-models were developed using the above
methodology to forecast corrected wind speeds for each of
the four seasons of the offshore wind farm. The correlations
between the variables of the test set in the seasonal sub-models
are given in Figure 4, and the correlations between the observed
wind speed and each of the variables are different for each season.
Since DF possesses a natural anti overfitting property, i.e., it comes
with a cross-validation process. It can achieve to a better result
without any parameter tuning.There is a strong correlation between
observed wind speed andWRF predicted wind speed in both spring
and summer. Except in winter, the correlation between each variable
and the observed wind speed is strong, and the positive and negative
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values of the correlation will change significantly with the change
of season. It can be seen that seasonal sub-model training for wind
speed prediction correction is very necessary.

The forecast impact of the seasonal sub-models was assessed
and compared with that of WRF (Table 1). The STC-DF model led
to varying degrees of improvement in wind speed error correction
across different seasons. The original WRF exhibited the largest and
smallest prediction errors in summer and winter, respectively. The
RMSE decreased by 30.74%, 30.24%, 32.99%, and 34.65% for the
four seasons, all surpassing a 30% reduction. In autumn and winter,
R showed the most significant increase, from 0.1 to 0.72 and from
0.28 to 0.72, respectively.

After counting the various error indicators of the seasonal sub-
models, the prediction results are visualized. As shown in Figure 5
time series comparison chart, it can be intuitively seen that the
seasonal sub-models improved the inaccuracy ofWRF forecast wind
speed in different degrees, making the corrected wind speed closer
to the observed wind speed as a whole. Moreover, the models have
the best correction effect in the middle of the wind speed, and the
performance will be reduced when the wind speed is very high or
very low. By observing the overall distribution of wind speed in
the test set in the seasonal sub-models (Figure 6), it is not difficult
to find that the wind speed forecast in summer is overall high,
while the other three seasonal forecasts are overall low. Through
the correction of the STC-DF model, the forecast deviation of
the four seasons is reduced, and the quantiles are closer to the
true values.

3.2 Result of STC-DF model

The corrected results of the seasonal sub-models were
summarized to obtain the overall test set correction results. By
comparing the regression scatter density plots of the forecast
results from the WRF model and the STC-DF model (Figure 7),
it can be seen that the forecast values of the STC-DF model
are more convergent than those of the WRF model, with fewer
outliers and a more concentrated distribution of data points. The
forecast wind speed of the STC-DF model compared with that of
the WRF model shows that the RMSE decreased from 2.45 m/s
to 1.42 m/s, the rRMSE decreased from 15.5% to 10.4%. And
the FA increased from 24% to 39%, R increased from 0.83 to
0.89. The error metric RMSE is reduced by 42.04%, which shows
that the STC-DF model has considerable effect on wind speed
correction.

3.3 Multi-model comparison test

In order to verify the effectiveness of the STC-DF model, we
chose the DF, RF, XGBoost, LightGBM, MLP and LSTM algorithms
for the wind speed data of the target wind farm to conduct a
multi-model comparison test. The same data were chosen as the
training set and test set in the experiment. The error values of the
experimental results are given in Table 2. After comparison, the
STC-DF model has lower RMSE and rRMSE, higher FA and R. The
hybrid model proposed in this study can successfully reduce the
errors brought by theWRFmodel and shows excellent performance.

3.4 Robustness experiment

In order to test the generality of the proposed method in this
study, we applied the trained STC-DF model to an offshore wind
farm in Guangdong Province for robustness experiment. Seven days
of data are randomly selected from each season for the test, and the
error distributions of the wind speed forecasted by the WRF model
and those forecasted by the STC-DF model are shown in Figure 8.
Themethod in this paper can effectively reduce the errors caused by
WRF forecasts, and the outliers of predictedwind speed are reduced,
with different degrees of improvement in each season.The RMSE of
the sub-model forecast data in all seasons decreased from2.78 m/s to
1.86 m/s, the FA increased from 25.4% to 42%, and the R increased
from 0.57 to 0.8. The results fully demonstrate that the STC-DF
model has strong generality, and it also has a better correction ability
for wind speed of wind farm in different regions.

4 Conclusion and discussion

4.1 Conclusion

In order to solve the problem of feature extraction limitations
and incomplete consideration of wind speed influence factors in
wind speed correction methods, this study proposed a correction
method based on deep forest algorithm integrating seasonal and
temporal correlation. The proposed STC-DF model considered the
seasonal difference and time correlation of wind speed, combined
meteorological data and wind speed difference, and showed good
performance in wind speed correction of offshore wind farms
in Hainan Province and Guangdong Province. Compared with
WRF data, the error index of the corrected wind speed reduced
more than 40%, the accuracy of wind speed forecast increased
15%. In summary, the STC-DF model can effectively reduce the
error caused by the WRF model forecast, improve the accuracy
of the forecast, and contribute to the stable operation of the
offshore wind farm, so as to improve the economic benefits of
wind power.

4.2 Discussion

Through the robustness experiment, it is easy to see that
the STC-DF model performed well for wind speed prediction in
different offshore wind farms. However, due to the lack of data
information of wind farms in different terrains, it is uncertain about
the performance of the model in different terrain wind farms, such
as mountain wind farms and plateau wind farms. In addition, since
the wind farm data is only for 1 year, the time series input into
the seasonal sub-model is not long enough, and the model still has
room for improvement. The model is not effective in forecasting
the extreme value of wind speed, and the amount of data input to
the model will be increased in the future to get better prediction
results. In the future research, stabilization models adapted to the
characteristics of different wind farms or the number of hidden
features to be mined according to different types of wind farms will
also be considered.
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