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In recent years, electric vehicle (EV) battery-swapping technology has rapidly
evolved and is expected to become widely prevalent shortly. Therefore, it is
crucial to develop efficient battery-swapping scheduling algorithms to optimize
the operations of battery-swapping systems. This paper proposes a non-
cooperative game approach for the battery-swapping scheduling of EVs. To
reduce the waiting time for battery swapping and improve the scheduling
efficiency of EVs, a swapping processmodel inspired by the job-shop scheduling
problem is proposed, and the cost function of each EV comprehensively
considers the travel time, waiting time, and battery swapping price. To capture
the competitive relationship among EVs, a non-cooperative game model for
battery swapping scheduling is established considering the finite quantities of
batteries and swapping grippers. To find the pure strategy Nash equilibrium, an
iterative best response algorithm is developed, satisfying constraints including
those couple decisions of different EVs. Case studies demonstrate the fairness
and scheduling efficiency of the proposed approach.

KEYWORDS

battery swapping, electric vehicle, integer programming, non-cooperative game,
transportation electrification

1 Introduction

In recent years, the rapid growth of electric vehicles (EVs) has been considered
an effective method to address environmental and energy crises (Kocer et al., 2022;
Yu et al., 2024). Replacing internal combustion engine vehicles with EVs can reduce
greenhouse gas emissions (Cui et al., 2023) and significantly improve air quality. As an
industry encouraged by the government, EVs have been widely promoted in many cities
(Zhao et al., 2024). In the logistics sector, given that the external costs of logistics are
primarily associated with air pollution and noise, many logistics companies have already
introduced electric trucks for operations (Jie et al., 2019). However, the widespread adoption
of EVs is limited by-long charging times (Zhang et al., 2017; Zeng et al., 2023) as well
as the increased peak-to-valley difference of the power grid caused by the simultaneous
charging of a large number of EVs (Yong et al., 2023). To address these issues, battery
swapping stations (BSSs) have been developed as a new method to provide energy to
EVs. When EVs arrive at a swapping station, they can replace exhausted batteries with
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fully charged ones in several minutes (Yang et al., 2023).
Moreover, swapping stations can centrally manage batteries
that need recharging, thus avoiding adverse impacts
on the grid (Ko et al., 2020).

Because of the immense potential of the battery-swapping
model, research in this area has been rapidly expanding in recent
years. Studies have focused on various aspects such as pricing
and charging strategies (Liang and Zhang, 2018), operational
models of swapping stations (Sarker et al., 2014), evaluation
of the service capacity of a swapping station (Zhang et al.,
2018), swapping demand forecasting (Wang et al., 2023), and
construction planning for swapping stations (Zhang F. et al.,
2024; Zhang Y. et al., 2024). With the widespread proliferation of
EVs and swapping stations, allowing EVs to approach swapping
stations without coordination may lead to congestion and queues
at some stations while others remain underutilized (You et al.,
2020). Therefore, the battery swapping scheduling for EVs plays
a crucial role in enhancing the operational efficiency of swapping
stations. Centralized (You et al., 2017a) and distributed (You et al.,
2017b) swapping scheduling methods for electric vehicles were
proposed, taking into account constraints related to EVs and
power grid operations. An online station allocation algorithm was
developed to reduce costs for EVs and alleviate congestion at
swapping stations (You et al., 2020). Recently, a swapping station
recommendation method based on game theory was presented
(Ran et al., 2023).

Existing research on battery swapping scheduling has two main
limitations. First, exiting swapping scheduling models ignored the
waiting time of EVs caused by a finite number of swapping grippers.
A similar issue of waiting time resulting from the occupation of
charging equipment was studied in previous works on electric
vehicle charging (Guo et al., 2017; Yang et al., 2018), where
linear expressions of queue length were used to roughly estimate
waiting times affected by variable charging times of vehicles.
However, in the context of swapping processes, the swapping
time is roughly constant, typically about 5 min (Yang et al., 2014).
Furthermore, the approach in (Guo et al., 2017; Yang et al.,
2018) overlooked the coupled relationship between waiting time
and vehicle arrival time, and might thus lead to inaccurate
scheduling results.

Second, few studies consider the complex competitive
relationships among EVs in the context of swapping scheduling. EVs
may belong to different entities, and battery swapping decisions of
an EV not only impact its own swapping efficiency and costs but also
potentially influence the decisions of others. Consequently, vehicle
owners might not comply with centralized scheduling results. So
far, only (Ran et al., 2023) utilized game theory to analyze this
issue, where the swapping station with the lowest total cost was
recommended for EVs with a pricing function designed to adjust
swapping prices. In addition, it is difficult to directly apply game
theory-based methods from the related electric vehicle charging
scheduling problem (Guo et al., 2017; Yang et al., 2015; Chen and
Leung, 2019; Wan et al., 2020) to battery swapping scheduling,
since the availability of batteries was not considered. Therefore, it is
necessary to develop a new game theory-based method specifically
tailored to address the swapping scheduling problem to enhance
overall operational efficiency at swapping stations and improve the
swapping experience for vehicle owners.

To overcome the above limitations, this paper proposes a non-
cooperative game approach for the battery swapping scheduling of
EVs. The main contributions are threefold:

1) To reduce the waiting time for battery swapping and improve
the scheduling efficiency of EVs, a swapping process model
inspired by the job-shop scheduling problem is proposed, and
the cost function of each EV comprehensively considers the
travel time, waiting time, and battery swapping price.

2) To capture the competitive relationship among EVs, a non-
cooperative game model for battery swapping scheduling is
established considering the finite quantities of batteries and
swapping grippers.

3) To find the pure strategy Nash equilibrium, an iterative
best response algorithm is developed satisfying constraints
including those couple decisions of different EVs.

The remainder of this paper is organized as follows.
Section 2 formulates the problem. Section 3 develops the
solution methodology. Section 4 presents the numerical
results. Finally, Section 5 concludes the study.

2 Problem formulation

As illustrated in Figure 1, the battery-swapping system consists
of EVs, a cloud platform, and BSSs. The cloud platform collects
relevant information from BSSs and EVs, runs the scheduling
algorithm, and then distributes the results to all EVs and BSSs.

2.1 Operation constraints

This paper focuses on a single scheduling period
(Ran et al., 2023; Guo et al., 2017). Let  = {1,2, ..., I} denote the set
of EVs requesting battery swapping indexed by i, and  = {1,2, ...,K}
represent the set of BSSs indexed by k. Let  = {1,2, ...,T} denote
the set of minutes (sufficient) to complete battery swapping actions,
indexed by t, determined in this scheduling period. The number
of minutes T should be sufficiently large to ensure that all vehicles
can complete the battery-swapping process within the time interval
from 0 to T. In the worst case,T can be calculated as the latest arrival
time among all EVs, plus the product of the average swapping time
and the number of EVs. The swapping system administrator can
also set the value of T based on his/her experience. It is assumed
that the total number of available batteries is greater than or equal
to the number of EVs requesting swapping.

1) Decision variables: For each EV i, integer variables bi and
ci represent the beginning time and completion time of
the battery swapping process, respectively. Binary decision
variables, ui,k, represent the assignment relationship between
EVs and BSSs: If EV i is assigned to BSS k for battery swapping,
then ui,k = 1; otherwise, ui,k = 0. The assignment vector of
EV i is represented as ui = (ui,1, ui,2, … , ui,k, … , ui,K). To
further capture the status of EV i at time t, binary decision
variables, xi,k,t , are used: If EV i is engaged in battery swapping
at BSS k at time t, then xi,k,t = 1; otherwise, xi,k,t = 0. The
swapping matrix of EV i is represented as xi = [xi,k,t]k∈,t∈ In
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FIGURE 1
Battery swapping system.

FIGURE 2
Illustration of EV schedule update in an iteration.

TABLE 1 Initial SOCs of EVs in case 1.

EV Initial SoC (%) EV Initial SoC (%)

1 32 6 34

2 34 7 35

3 32 8 36

4 39 9 37

5 31 10 37

TABLE 2 Input data of BSSs in Case 1.

BSS Swapping price ($) Number of batteries

A 49 10

B 21 6

C 42 8

addition, the decision variables of EV i are summarized as vi =
(bi,ci,ui,xi).

2) BSS selection constraints: Each EV i chooses one BSS for
swapping, i.e.,

∑
k∈

ui,k = 1, ∀i ∈ , (1)

3) Travel distance constraints:The assigned BSS should be within
the driving distance of the EV given its initial states of charge
(SoC), i.e.,

ui,ksi,k ≤ γqi,∀i ∈ , ∀k ∈ , (2)

where si,k denotes the distance between EV i and BSS k, γ denotes
the electric energy consumption per kilometer, and qi denotes the
initial SoC of EV i.

4) Swapping process model: Inspired by the processing time
model of the job shop scheduling problem (Yan et al., 2021), the
swapping process is modeled as follows. The battery swapping
time is roughly constant (typically about 5 min), and the
average swapping time is denoted by λ. The swapping process
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FIGURE 3
Scheduling results of centralized optimization.

FIGURE 4
Scheduling results of our approach in Case 1.

is non-preemptive, meaning that the end time is equal to the
start time plus the required swapping time (minus 1), i.e.,

ci = bi + λ− 1,∀i ∈ , ∀t ∈ , (3)

0 ≤ bi,ci ≤ T, ∀i ∈ . (4)

If EV i is assigned to BSS k, the time interval [bi, ci]
represents the duration when the swapping occurs. According to the
definition of binary variables xi,k,t , the following constraint should be
satisfied:

xi,k,t =
{
{
{

1, ifbi ≤ t ≤ ci andui,k = 1,

0, otherwise.
(5)
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FIGURE 5
Total costs of EVs over iterations in Case 1.

TABLE 3 Comparison of average waiting times between two models.

Model Waiting time (min)

Without considering waiting time 14.2

With considering waiting time 4.8

This logical relationship is linearized through the big-Mmethod:

t ≥ bi −M(1− ∑
k∈

xi,k,t), ∀i ∈ ,∀t ∈ , (6)

t ≤ ci +M(1− ∑
k∈

xi,k,t), ∀i ∈ ,∀t ∈ , (7)

∑
t∈

xi,k,t = ui,kλ,∀i ∈ , ∀k ∈ , (8)

whereM is a big number.
Based on the distance from EV i to BSS k, the corresponding

arrival time can be calculated and is denoted by ai,k. The start time
for the battery swap should not be earlier than this arrival time, i.e.,

bi ≥ ∑
k∈

ui,kai,k, ∀i ∈ . (9)

5) Capacity constraints: Each BSS k has a finite number
of swapping grippers (typically 1 or 2), denoted by nGk ,

TABLE 4 Initial SOCs of EVs in case 2.

EV Initial SoC (%) EV Initial SoC (%)

1 32 16 34

2 30 17 31

3 30 18 38

4 39 19 30

5 30 20 39

6 35 21 38

7 38 22 36

8 38 23 31

9 39 24 32

10 31 25 30

11 38 26 30

12 37 27 32

13 33 28 38

14 30 29 37

15 33 30 33
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TABLE 5 Input data of BSSs in Case 2.

BSS Swapping price ($) Number of batteries

A 35 7

B 35 5

C 34 8

D 35 6

E 34 7

constraining the maximum number of swaps that can be
conducted simultaneously at that BSS, i.e.,

∑
i∈

xi,k,t ≤ n
G
k , ∀k ∈ , ∀t ∈ . (10)

Each BSS k, has a finite number of batteries available for swaps,
denoted by nBk , representing the maximum number of swapping
services that BSS can support for the scheduling period, i.e.,

∑
i∈

ui,k ≤ nBk , ∀k ∈ . (11)

2.2 Game model

It is assumed that each EV acts selfishly, aiming to minimize its
own cost. It is evident from Equations 10, 11 that the BSS selection
strategies of individual EVs are interdependent. Therefore, the cost
for each EV is not only determined by its own decisions but also
influenced by the decisions of others. To describe the strategic
interactions among EVs, a non-cooperative gamemodel is proposed
to ensure fairness in BSSmatching.This gameQ is defined as follows:

Q = {, {Vi}i∈, {∏i
}
i∈
} (12)

• Player set : The EVs that request for battery swapping.
• Strategy set Vi: The nonempty, compact, and discrete set of
feasible decisions for each EV i.

• Cost function∏i: For each EV i, the cost is a weighted sum of
the swapping start time and the battery swapping price.

∏
i
(vi,v−i) = fi = αbi + ∑

k∈
pkui,k (13)

where v-i = (v 1, … , v i-1, v i+1, … , v I) is the strategies of all
EVs except for that of i, α is a coefficient to convert time into
cost, and pk denotes the swapping price at BSS k. According to
Equation 3, considering the swapping start time bi in Equation 13
is equivalent to considering the swapping end time ci. Moreover, the
travel time (counted in the arrival time ai,k) and waiting time for
battery swapping are considered in bi based on the swapping process
model Equations 3–9.

Definition 1: Consider the game Q, a vector v∗ = (vi∗,v−i∗) ∈ V is
called a generalized Nash equilibrium if no player can reduce its cost

by unilaterally changing his decisions (Facchinei andKanzow, 2010),
i.e.,∏i(vi

∗,v−i∗) ≤ ∏i(vi,v−i
∗),∀(vi,v−i∗) ∈ V holds for all ∀i ∈ .

The existence of the Nash equilibrium in game Q is discussed
inTheorem 1.

Theorem 1: For the battery swapping scheduling game Q =
{, {Vi}i∈, {∏i}i∈}, the pure strategy Nash equilibrium always exists.

Similar to the proof of Theorem 1 in (Ran et al., 2023),
Theorem 1 here can be proven based onTheorem 3.1 in (Tian 2015).

3 Solution methodology

To find the pure strategy Nash equilibrium, this section
presents a best response algorithm that extends a Jacobi-type
algorithm (Sagratella, 2016) to suit for the generalized Nash
equilibrium game Q.

The difficulty is to preserve the satisfaction of constraints
Equations 1–4 and Equations 6–11 during the iterative solution
process, especially constraints Equations 10, 11 that couple different
EVs. When updating the decisions of EV i, the original Jacobi-type
method that fixes the strategies of all EVs except for EV i cannot be
directly applied. To overcome this difficulty, our idea is that decisions
of EVs arriving before i should still be kept unchanged, while those
of EVs arriving after i should be adjusted properly.

Let i ⊆  represent the set of EVs that arrived before
it, when EV i is updating its decisions. Constraints
Equation 10 become Equation 14,

∑
j∈i

xj,k,t + xi,k,t ≤ n
G
k ,∀k ∈ ,∀t ∈ , (14)

where ∑
j∈i

xj,k,t is fixed as input data, while xi,k,t are decision variables.

Similarly, Equation 11 becomes Equation 15,

∑
j∈i

uj,k + ui,k ≤ nBk , ∀k ∈ , (15)

where ∑
j∈i

uj,k is fixed as input data, while ui,k are decision variables.

For EV i, its response at an iteration is obtained by solving
problem Pi as follows:

{{{{{
{{{{{
{

min
ui,k,xi,k,t,bi,ci

fi = αbi + ∑
k∈

pkui,k,

s.t. (1) − (4), (6) − (9) for i,

 (14), (15).

(16)

EV i selects its target BSS by solving problem Pi (Equation 16)
in order to minimize its cost iteratively in Algorithm 1. EVs that
were originally scheduled to arrive after EV i may need to adjust
their schedules to reflect shifts in their timings in line 7. If EV i
was scheduled to BSS k1 (in the previous iteration) and is updated
to BSS k2, EVs that would arrive at k1 will be moved forward in
time, while those that would arrive at k2 will be moved backward.
As illustrated in Figure 2, if EV 3 was originally scheduled to BSS
k1 in iteration m-1 and is then updated to BSS k2 (in line 5) in
iteration m, the schedules of EVs 4, 6 and 7 will be adjusted. EV 4
will bemoved forward in the queue at BSS k1, while EVs 6 and 7, will
be moved backward in the queue at BSS k2. The algorithm iterates
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Input: Initial SoC, distance to BSS, arrival time

at the BSS, swapping price;

Output: Scheduling results v

1: choose a starting point v0 ∈ V and set m: = 1,

i: = 1;

2: while vm is not a solution of the Nash

equilibrium do

3:  for j ∈  do

4:   set vm
j
: = vm−1

j
;

5:  compute a best response vm
i
∈ Vi(vm−i) by solving

Pi (Equation 16);

6:  for j ∈ −− {i} do

7:   adjust vm
j
;

8:  end

9:  set m: = m+1, i: = i+1;

10:  if i = I+1

11:   i: = 1

12:  end if

13: end

Algorithm 1. Extended Jacobi-type method.

until no EV deviates from its decisions, i.e., a Nash equilibrium has
been found.

4 Case studies

The proposed battery-swapping scheduling approach is tested
in two cases. In Case 1, a smaller size example is tested to

demonstrate the fairness and reduced waiting time of our approach.
In Case 2, a larger size example is tested to demonstrate the
advantages of our approach on the swapping success rate and
average cost compared with the shortest arrival time approach. Both
cases demonstrate the computational efficiency of the proposed
algorithm.

Testing is conducted on a system with an Intel Core i5-
13500H CPU, 32 GB of RAM, using Python 3.11 in PyCharm and
Gurobi 10.0.1.

4.1 Case 1

In this example, we consider an area with 3 BSSs and
10 EVs requesting battery swapping. Each EV’s location and
initial SoC are generated randomly, with an average driving
speed of 24 km/h. All batteries are of the same specification,
allowing a battery-swapped EV to travel up to 230 km. The
swapping prices and the number of batteries at each BSS are
also generated randomly. Input data of EVs and BSSs are
presented in Tables 1, 2, respectively. The number of minutes T
is set to 70.

Figure 3 illustrates the results using a centralized optimization
approach that minimizes the total cost of all EVs. In the scheduling
results, two EVs highlighted in the green box have tendencies to
change their target BSSs. EV 6 prefers to switch its target from
BSS B to BSS C, reducing its cost from $54.4 to $49.8, and EV 9
prefers to switch from BSS C to BSS B, lowering its cost from $63.4
to $48.6. This indicates that the centralized optimization method
lacks fairness.

Figure 4 displays the results using the proposed non-cooperative
game approach. The results compose a schedule where no EV can

FIGURE 6
Scheduling results of shortest arrival time.
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FIGURE 7
Scheduling results of our approach in Case 2.

FIGURE 8
Total costs of EVs over iterations in Case 2.

reduce its cost by unilaterally changing its decisions, i.e., a Nash
equilibrium.

To demonstrate Algorithm 1’s performance, iteration results
are illustrated in Figure 5. After 15 iterations, each EV’s cost
becomes a stable value (and then examined in the last 9

iterations), confirming that the algorithm successfully converges
to a pure strategy Nash equilibrium. The solution time of 24
iterations is 1.01 s.

To demonstrate the benefits of our swapping process
model, the following battery swapping waiting time is
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TABLE 6 Comparison of results.

Approach
Swapping

success rate (%)
Average cost ($)

Shortest arrival time 86.7% 81.7

Non-cooperative game 100% 62.8

calculated from the scheduling results, according to
Equation 17

wi = bi − ∑
k∈

ai,kui,k. (17)

For comparison purposes, our non-cooperative game approach
is also tested without considering the waiting time, i.e., the swapping
processmodel is omitted and the swapping start time in Equation 13
is substituted by the arrival time. The average waiting times
of all EVs with and without considering the waiting time are
compared in Table 3. The results demonstrate that modeling the
waiting time in the scheduling formulation can significantly reduce
the average waiting time.

4.2 Case 2

In Case 2, we increase the number of BSSs to 5 and the number
of EVs to 30. Input data of EVs and BSSs are presented in Tables 4, 5,
respectively. The number of minutes T is set to 100.

Figure 6 presents the scheduling results using the shortest arrival
time approach. BSS A is assigned 9 EVs despite having only 7
batteries, andBSSD is assigned 8 EVs despite having only 6 batteries.
Although each EV reaches the nearest BSS, 4 EVs failed to swap their
batteries.

Figure 7 illustrates the scheduling results using our
method. The iterative process of the algorithm is shown in
Figure 8, where Algorithm 1 converges after 128 (= 99 +
29) iterations. The solution time is 8.24 s, demonstrating the
computational efficiency of our method.

For better comparison, Table 6 summarizes the swapping
success rates and average total costs using these two approaches.
It appears that the swapping success rate of the shortest arrival
approach is only 86.7%, while that of our approach is 100%.
Furthermore, the average cost of all EVs is reduced from $81.7 using
the shortest arrival time approach to $62.8 using our approach, by
23.1%. Note that for a convenient comparison of the average cost,
the number of batteries in BSS A is increased to 9, and that in
BSS D is increased to 8 to avoid EVs from unsuccessful battery
swapping.These results demonstrate that the non-cooperative game
approach increases the swapping success rate while reducing the
average cost of EVs.

5 Conclusion

This paper proposes a non-cooperative game approach for the
battery-swapping scheduling of EVs. A swapping process model
inspired by the job-shop scheduling problem is proposed, and the

cost function of each EV comprehensively considers the travel time,
waiting time, and battery swapping price. A non-cooperative game
model for battery swapping scheduling is established considering the
finite quantities of batteries and swapping grippers. An iterative best
response algorithm is developed satisfying constraints including
those couple decisions of different EVs. Two cases are tested. In
Case 1, a smaller size example is tested to demonstrate the fairness
and reduced waiting time of our approach. In Case 2, a larger size
example is tested to demonstrate the advantages of our approach
on the swapping success rate and average cost compared with
the shortest arrival time approach. Both cases demonstrate the
computational efficiency of the proposed algorithm.
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