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The continuous growth of renewable energy and the load level has posed
increasingly severe operational risks to distribution systems. In view of this,
this paper combines state estimation with risk assessment, and uses the
results of distribution system state estimation based on Unscented Kalman
Filter as the input of risk assessment. With the combination, the sampling
based on probability distributions in traditional risk assessment methods is no
longer needed, thus avoiding the difficulty of updating probability distributions
timely according to the latest information in real-time operation. By applying the
proposed risk assessment method, the real-time assessment of operational risks
in perspectives of bus voltage, branch power, and renewable energy utilization is
achieved. Meanwhile, the weight of each risk index is properly determined
according to both subjective and objective knowledge by using Analytic
Hierarchy Process method and entropy weight method. Case studies show
that the proposed method achieves effective assessment of comprehensive
risks in the operation of distribution system.
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1 Introduction

With the development of the power system, the increasing penetration of the renewable
energy and the continual growth of load demand in the distribution system have led to a
more complex topology and more difficult operation of the distribution system, thus
exacerbating its risks (Zheng et al., 2021). Unfortunately, the traditional risk assessment
methods cannot satisfy the demands of the modern power system due to their
incompetency in real-time risk assessment.

The methods of risk assessment for power system are generally divided into two types:
deterministic ones and probabilistic ones. The deterministic method considers the most
serious situation and calculates the safety and stability margin of the system, which deals
with events with rare occurrence and severe impact (Xu et al., 2020; Liu et al., 2024). The
probabilistic method is further divided into analytical method and simulation method. The
analytical method is limited to small systems due to the limitation of the amount of
computation, while the simulation method simulates the operating state of the system
through a large number of samples and comprehensively considers different operating
conditions, which is more suitable for complex large-scale power systems. The simulation
method is usually based on the Monte Carlo method (Ansari et al., 2020), and the risk
severity analysis of the sampled scenarios is carried out according to the established risk
assessment standards. Ansari and Chung (2019) propose a short-term risk assessment
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model, which uses regional risk method and non-sequential Monte
Carlo simulation to realize short-term risk assessment. da Silva and
de Castro (2019) mention a model based onMonte Carlo simulation
which uses importance sampling techniques to calculate risk indices
and improves the accuracy of simulation of the probability
distribution of state variables by improving the sampling method.
Risk assessment by simulation method depends on the probability
distribution of uncertainty factors of system operation, but it is
difficult to update the probability distribution of uncertainty factors
quickly based on the latest information in real-time operation,
especially when there are many uncertainty factors involved. To
solve this problem, this paper intends to integrate state estimation
and risk assessment to achieve real-time and effective perception of
the operational risk of the distribution system.

In essence, state estimation is aimed at estimating the operating
state of the system by using sampled data of the measurement device
and filtering the original data to provide information for the optimal
control of the distribution system (Zhao et al., 2019; De Oliveira-De
Jesus et al., 2021; Feng et al., 2022). Dynamic state estimation is
based on the filtering algorithms, which predict the operating state of
the next moment based on the past state combined with the
prediction method, and amends the prediction after receiving the
latest measurement information, so as to estimate the internal state
of the dynamic system, which provides basic data support for the
operation of the power system (Ghadikolaee et al., 2020). The
traditional dynamic state estimation mainly adopts Extended
Kalman Filter, but the foundation of this method is linear
approximation of nonlinear systems and linearization by first-
order Taylor series expansion, and the error is larger in systems
that have strong nonlinear features (Zhao et al., 2017; Wang et al.,
2021). In comparison, the Unscented Kalman Filter adopts different
ideas and schemes. Considering the difficulty of approximating
nonlinear systems, Unscented Kalman Filter approximates
probability density functions by generating Sigma point sets
(Swain and Subudhi, 2019; Zhao and Mili, 2019). Compared with
extended Kalman filtering, Unscented Kalman Filtering does not
calculate the Jacobian matrix. Meanwhile, it displays higher
approximation accuracy (Yildiz et al., 2020; Wang et al., 2020,
Dang et al. (2022) probe into the problem of non-Gaussian
noises and enhance the numerical stability. Liu et al. (2020)
propose a state estimation method of medium-voltage
distribution systems based on Unscented Kalman Filter algorithm
to reduce the uncertainty of state prediction to tackle the problem of
insufficient real-time measurement of distribution system and the
assumption that the system process noise is constant in the existing
estimation methods. Mestav et al. (2019) adopt a deep learning
approach to deal with the problem of state estimation for
unobservable distribution systems and improves estimation
accuracy. During the process of state estimation, Unscented
Kalman Filter analyzes the prediction and measurement noise, so
the corresponding results can actually be utilized for risk assessment.
Based on the fact that the existing studies pay little attention to this,
this paper focuses on how to combine state estimation and risk
assessment effectively.

Dynamic state estimation of power system can reveal the
evolution of system operating state over time with strong
timeliness and reliability, and the result contains prediction
information. Therefore, using state estimation results for risk

assessment can greatly improve accuracy and efficiency and
achieve real-time risk assessment. Hence, this work proposes a
distribution system operational risk assessment method based on
Unscented Kalman Filter, which utilizes the prediction step of the
Unscented Kalman Filter to obtain the operating state of the next
moment. By using the predicted state as the input of the risk
assessment model, this work realizes real-time risk assessment of
the distribution system. In terms of risk calculation, from the
perspectives of bus voltage, power flow and renewable energy
consumption, this paper carries out risk assessment from the
component and system level and adopts the Analytic Hierarchy
Process and Entropy Weight Method to determine the
comprehensive weights of different risk indices. The effectiveness
of the proposed method is verified by several numerical examples.
Section 2 of this paper discusses the risk assessment process based on
Unscented Kalman Filter state estimation, Section 3 establishes the
comprehensive risk assessment index system, and Section 4
conducts case studies from different perspectives.

2 Real-time risk assessment of
distribution systems

2.1 State estimation based on Unscented
Kalman Filter

The key step of Unscented Kalman Filter is to generate Sigma
points through unscented transformation based on the probability
distribution of the state variable. The specific generation method is
shown in Equations 1, 2:

χk−1,j �
xk−1, j � 0
xk−1 +

��������
n + λ( )Pk

√( )j, j � 1, ..., n

xk−1 −
��������
n + λ( )Pk

√( )j, j � n + 1, ..., 2n

⎧⎪⎪⎨⎪⎪⎩ (1)

λ � α2 n + κ( ) − n (2)
where χk−1,j represents the Sigma point sets, and n is the dimension
of the state variable. α is the scale correction factor, and Κ is a free
parameter to ensure that the matrix

��������(n + λ)Pk

√
is semi-definite.

( ��������(n + λ)Pk

√ )i is column i of the matrix.
Based on the Unscented Kalman Filter algorithm, the state

estimation steps of the distribution system are as follows:
1) The Sigma point set {χk−1} is generated through unscented

transformation.
2) State prediction: In terms of prediction, machine learning and

exponential smoothing method are adopted in abundant research.
Although machine learning is better performed in many aspects, its
training relies on reliable data sets and is time-consuming.
Therefore, in this paper, the prediction of the next moment is
carried out separately for each Sigma point using exponential
smoothing method based on the previous state of these points,
and the mean and covariance of the points are calculated in
Equations 3–7:

ξk|k−1,j � f χk−1,j( ) (3)

�xk|k−1 � ∑2n
j�0

Wj,mξk|k−1,j (4)
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Pk|k−1 � ∑2n
j�0

Wj,c ξk|k−1,j − �xk|k−1( ) ξk|k−1,j − �xk|k−1( )T

+ Qk (5)

Wj,m �
λ

n + λ
, j � 0

1
2 n + λ( ), j � 1, ..., 2n

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

Wj,c �
λ

n + λ
+ 1 − α2 + β( ), j � 0

1
2 n + λ( ), j � 1, ..., 2n

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where Qk is the process noise covariance matrix, Wj,m is the weight
of the mean of the Sigma point set, and Wj,c is the weight of the
covariance of the Sigma point set.

3) Measurement prediction: Based on themeasurement function
and the state variable, the prediction of measurement point set
zk|k−1,j{ } and its mean �zk|k−1 are obtained in Equations 8, 9. The
covariance matrix Pk,zz of the measurement prediction, the
covariance matrix Pk,xz of the state variable prediction and the
measurement prediction and the Kalman gain Kk are calculated
respectively in Equations 10–12.

zk|k−1,j � h ξk|k−1,j( ) (8)

�zk|k−1 � ∑2n
j�0

Wj,mzk|k−1,j (9)

Pk,zz � ∑2n
j�0

Wj,c zk|k−1,j − �zk|k−1( ) zk|k−1,j − �zk|k−1( )T

+ Rk (10)

Pk,xz � ∑2n
j�0

Wj,c ξk|k−1,j − �xk|k−1( ) zk|k−1,j − �zk|k−1( )T

(11)

Kk � Pk,xz Pk,zz( )−1 (12)
where Rk is the covariance matrix of the measurement noise.

4) State update: After obtaining a new round of measurement zk,
the state estimation xk and its covariance matrix Pk are updated
according to Equations 13, 14.

xk � �xk|k−1 + Kk zk − �zk|k−1( ) (13)
Pk � Pk|k−1 −KkPk,zz Kk( )T (14)

2.2 Risk assessment based on Unscented
Kalman Filter

In traditional risk assessment, a sampling process based on the
probability distribution of uncertainty factors is often required
before conducting risk assessment with the scenarios it obtained.
However, in real-time operation, it is difficult to adjust the
probability distribution of uncertainty factors simultaneously
according to the real measurement information, which means
that the traditional risk assessment methods are lack of
timeliness and not suitable for real-time dynamic risk assessment
of the system.

There are two core steps in the process of state estimation of
the distribution system based on Unscented Kalman Filter. The
first is to predict the state variable through Sigma points, and the

second is to revise the prediction of state variable according to new
measurement data. The sampling that is completed in the
prediction step of the Unscented Kalman Filter algorithm can
not only be combined with the measurement information of the
next moment to estimate the operational state of the distribution
system, but also be used for the early evaluation of the operational
risk before the measurement information of the next moment is
obtained. Therefore, this paper takes the output of the prediction
step of the Unscented Kalman Filter as the input of the risk
assessment model, and the complete process is shown in
Figure 1. Based on the various Sigma points generated by the
Unscented Kalman Filter, the system’s operational state at the next
moment, namely the voltage amplitude and phase of all buses, can
be forecasted, and the power flow can be calculated immediately
based on the bus voltage. Then, the operational risk of the
distribution system is fully evaluated with the obtained
operational state and the established risk indices. By making
full use of the state estimation results, the difficulty of
simultaneously updating the probability distribution is avoided
and the calculation efficiency is significantly improved, so as to
enable real-time operational risk assessment and provide the
corresponding data basis for the risk control, which contributes
to better operation of the distribution system.

3 Comprehensive risk assessment
index system

In order to evaluate the operational risk of the distribution
system, this paper constructs risk indices from the perspectives of
bus voltage, line power flow and renewable energy utilization, and
evaluates the operational risk from the component and system level.
This paper focuses on real-time risk assessment based on state
estimation, and the failure of the equipment will be reflected on the
system operational state and the risk indices considered in this
paper. Because of the low probability of the malfunction of
equipment in a small time-span of real-time operation, it is not
considered as a separate risk in this paper.

3.1 Voltage risk and power flow risk

The overvoltage risk index reflects the risk when the voltage of
each bus of the distribution system exceeds the safe voltage range, as
is calculated in Equation 15:

Rvh
i � ∑

s∈D
τsB

vh
i,s Vi,s( )Sevvh Vi,s( ) (15)

where Rvh
i is the overvoltage risk of bus i, and τs is the probability of

the scene. Bvh
i,s is a flag which indicates whether there is risk on bus i.

Vi,s is the voltage of bus i in scene s, and Sevvh is a function
describing the severity of the risk, as is shown in Equation 16:

Sevvh Vi,s( ) � eVi,s−Vmax − 1
e − 1

(16)

where Vmax � 1.05p.u.
The low voltage risk index reflects the risk when the bus voltage

falls below the lower voltage limit and is calculated in Equation 17:
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Rvl
i � ∑

s∈D
τsB

vl
i,s Vi,s( )Sevvl Vi,s( ) (17)

where Rvl
i is the low voltage risk of bus i, and Bvl

i,s is a flag which
indicates whether there is risk on bus i. Sevvl is a function describing
the severity of the risk, as is shown in Equation 18:

Sevvl Vi,s( ) � eVmin−Vi,s − 1
e − 1

(18)

where Vmin � 0.95p.u.
The line overload risk index reflects the risk when the active

power flow of the line exceeds the maximum limit, as is calculated in
Equation 19:

Rp
j � ∑

s∈D
τsBj,s Pj,s( )SevP Pj,s( ) (19)

where Rp
j is the line overload risk of branch j; Bj,s marks whether

branch j is overloaded in scene s; Pj,s is the active power flow of line j
in scene s; SevP is a function that describes the severity of the line
overload risk, as in Equation 20:

SevP Pj,s( ) � Pj,s − Pj,max (20)

where Pj,max is the rated capacity of branch j.
Unlike line overload risk which results from high load demand

at buses, reverse line overload is caused by high renewable energy
penetration in the system. When there is a large amount of
renewable power in the system, the residual power will be
transmitted backwards through the line from the installation
point of the renewable power to the head of the line. The reverse
line overload risk index reflects the risk that the reverse active power
carried on the line exceeds the maximum limit, (the risk of bus

voltage increase caused by incomplete absorption of the renewable
power has been included in the overvoltage operational risk
mentioned previously, so only the risk caused by its impact on
the power flow is considered here), and it is calculated in
Equation 21:

Rpr
j � ∑

s∈D
τsB

r
j,s Pj,s( )SevPr Pj,s( ) (21)

where Rpr
j is the risk of reverse line overload at branch j; Br

j,s marks
whether branch j is reversely overloaded in scene s; SevPr is a
function describing the severity of the risk of reverse line
overload, as is calculated in Equation 22:

SevPr Pj,s( ) � −Pj,s( ) − Pj,max (22)

Because of the different location of each bus in the distribution
system and their different amount of load demand, the voltage risk
of each bus has varying degrees of impact, so this paper assigns
different weights to each bus, and summarizes voltage risks of buses
to the system level using the bus weight, as is shown in Equations
23, 24.

Rvh
sys � ∑Nb

i�1
wiR

vh
i (23)

Rvl
sys � ∑Nb

i�1
wiR

vl
i (24)

where Rvh
sys and Rvl

sys are the risks of overvoltage and low voltage in
the distribution system, respectively;Nb is the total number of buses
in the distribution system; wi is the weight coefficient of each bus,
and the calculation is shown in Equation 25:

FIGURE 1
Risk assessment of distribution system based on Unscented Kalman Filter.
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wi � Li
E Pi( )∑E Pi( ) (25)

where E(Pi) is the active power of bus i; Li is the number of branches
connected to the bus.

The overload and reversing overload operational risks of
distribution lines are the cumulative sum of the overload
operational risks of each branch in the distribution system, as is
shown in Equations 26, 27:

Rp
sys � ∑Nl

j�1
Rp
j,i (26)

Rpr
sys � ∑Nl

j�1
Rpr
j,i (27)

where Rp
sys and Rpr

sys are the risks of overload and reverse line
overload in the distribution system, respectively; Nl is the total
number of branches in the distribution system.

3.2 Risk of renewable energy curtailment

When there is an excessive amount renewable energy that
cannot be fully absorbed, it can lead to serious overvoltage and
reverse line overload risks in the distribution system. In this case,
the impact of renewable energy can be diminished by curtailing
power, but it can also result in lower utilization rates of renewable
energy. By using the prediction of the system operational state,
namely the bus voltage, during the state estimation process, the
power flow on each branch can be quickly calculated, and the
injection power of each bus can be obtained. Based on this, this
section constructs an optimization model to optimize the amount
of renewable energy curtailment required to avoid serious voltage
and power flow risks before calculating the risk of renewable
energy curtailment. The objective function of the optimization
model is described in Equation 28:

f Cr, Uo, Po( ) � Cr +M Uo + Po( ) (28)
where Cr represents the amount of curtailed renewable energy
power, M is a relatively large adjustment coefficient that ensures
that the voltage and current can be controlled within the specified
limits through renewable energy curtailment, and U0 and P0

represent the degree to which the voltage and the power flow
exceed the specified limits. If M is too large, it may lead to
computational difficulties. However, if M is too small, it may
result in insufficient renewable energy curtailment. For a specific
distribution system, the value of M can be figured out through
testing to confirm its appropriateness. Specifically, if the
optimization results show that the voltage and power flow are
not controlled within the limits and there is room for further
curtailment of renewable energy, it indicates that the value of M
needs to be increased. The triggering point of curtailment is
determined based on the notion that it only occurs when the
risks reach a certain level, and the appropriate points can be set
based on varying conditions in different models. For bus voltage
beyond the limit, this optimization model sets the action of
renewable energy curtailment when the bus voltage amplitude

reaches below 0.9 times or above 1.1 times the standard value
per unit. For line power flow exceeding the limit, the renewable
energy curtailment is triggered when the power flow or reverse
power flow exceeds 1.2 times the standard value per unit. The
expressions for U0 and P0 are described in Equation 29.

Uo �
Vi,s − 1.1p.u.,
0,
0.9p.u. − Vi,s,

⎧⎪⎨⎪⎩
ifVi,s ≥ 1.1p.u.

if 0.9p.u.≤Vi,s ≤ 1.1p.u.
ifVi,s ≤ 0.9p.u.

,

Po � Pj,s

∣∣∣∣ ∣∣∣∣ − 1.2p.u.,
0,

{ if
if

Pj,s

∣∣∣∣ ∣∣∣∣≥ 1.2p.u.
Pj,s

∣∣∣∣ ∣∣∣∣< 1.2p.u.

(29)

In addition, the optimization model of renewable energy
curtailment is also constrained by power flow and power balance.
As optimization problems based on accurate power flow constraints
cannot be solved, this paper adopts the following linear approximation
power flow constraints (Yang et al., 2018; Yang et al., 2019).

Pij � vi − vj( )gij − bijθij + ΔPij (30)
Qij � − 1 + 2vi( )bij,0 − vi − vj( )bij − gijθij + ΔQij (31)

In the Equations 30, 31, Pij and Qij represent the active and
reactive power flowing from bus i to bus j respectively; ΔPij andΔQij

represent active and reactive power losses respectively; gij and bij
represent the conductance and susceptance of the branch from bus i
to bus j respectively; θij represents the voltage phase difference
between bus i and bus j.

Given the complicated operational requirements of distribution
systems and the requirement for timeliness of its real-time risk
assessment, the simplification of calculation needs to be
considered. Although approximating network losses may sacrifice a
bit of accuracy, it is an effective way to decouple voltage amplitude v
and phase angle θ, as well as greatly reduce computational burden. In
order to obtain approximate expressions for the network losses ΔPij

and ΔQij, this paper uses a quadratic Taylor expansion of the cosine
function of the phase angle difference, θij ≈ 1 − θ2ij/2, and ignores
higher-order terms given that the voltage phase angle difference is
small. In addition, considering that the bus voltage amplitude is close
to 1p.u., an approximate value ofViVjθ

2
ij ≈ θ2ij is used for the product

of voltage phase angle difference and amplitude. Afterwards, first-
order Taylor expansions are applied to the square of the voltage phase
angle difference and the square of the amplitude difference,
respectively, and high-order terms are ignored, reaching an
approximate expression of the losses shown in Equations 32, 33.

ΔPij � gij v2i + v2j( ) − 2vivjgij cos θij ≈ gij vi − vj( )2 + gijθ
2
ij

≈ 2gij vi,0 − vj,0( ) vi − vj( ) − gij vi,0 − vj,0( )2 + 2gijθij,0θij

−gijθ
2
ij,0 (32)

ΔQij � −bij v2i + v2j( ) + 2vivjbij cos θij ≈ − bij vi − vj( )2 − bijθ
2
ij

≈ − 2bij vi,0 − vj,0( ) vi − vj( ) + bij vi,0 − vj,0( )2 − 2bijθij,0θij
+bijθ2ij,0 (33)

The constraints for bus injection power are described in
Equations 34, 35.

Pi � ∑
i,j( )∈Κ

Pij + ∑N
j�1
Gij

⎛⎝ ⎞⎠v2i (34)
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Qi � ∑
i,j( )∈Κ

Qij + ∑N
j�1

− Bij
⎛⎝ ⎞⎠v2i (35)

where Pi and Qi represent the active and reactive injection power at
bus i respectively. Gij and Bij are the elements in the bus
admittance matrix.

The constraints on nodal power balance are shown in Equations
36, 37.

Pres,i − Pquit
res,i − Pd,i � Pi (36)

−Qd,i � Qi (37)
where Pd,i and Qd,i represent the active and reactive power of the
load at bus i respectively. Pres,i and Pquit

res,i represent the total
renewable energy power and curtailed power at bus i respectively.

The constraint for renewable energy curtailment is described in
Equation 38.

Pquit
res,i ≤P

q,max
res,i (38)

where Pq,max
res,i is the maximum amount of curtailed renewable power

at bus i.
The renewable energy curtailment won’t happen unless the bus

voltage or branch power flow reach the triggering point. When they
reach the threshold for triggering curtailment, the optimization
model reduces the part of bus voltage and power flow exceeding
the threshold limit by curtailing part of the renewable energy,
thereby reducing the overall operational risk of the distribution
system. In the cases where renewable energy curtailment is called
for, the distribution system status after curtailment will be calculated
through power flow calculation before calculating the voltage and
power flow related risks.

3.3 Subjective and objective weights of
risk indices

The various operational risk indices of the distribution system
reflect different kinds of operational risks. In order to evaluate the
overall risk of the system, appropriate weights need to be assigned to
each risk index to form a comprehensive risk index system. In order
to achieve reasonable risk assessment, this paper combines the
Analytic Hierarchy Process and Entropy Weight Method. The
Analytic Hierarchy Process determines index weights subjectively
based on past knowledge (Saaty, 1990), while the Entropy Weight
Method determines index weights objectively based on the amount
of information contained in the data (Chen, 2020). The objective
weights calculated by the Entropy Weight Method are objective and
unbiased for it eliminates the different dimensions of various indices
before comparing them. However, the method is based solely on the
characteristics of data without considering the actual meaning of it,
which may lead to results that go against common sense. Thus, in
this paper, subjective weights with experts’ intelligence and
experience contained are combined to objective weights to obtain
comprehensive weights of the risk indices.

1) Subjective weights. The Analytic Hierarchy Process
decomposes complex decision-making problems into a series of
sub-problems, and then further divides sub-problems to build a

hierarchical evaluation index system, which fully considers the
relationship between various influencing factors. When the
Analytic Hierarchy Process is used to determine the subjective
weights, a three-layer structure of “target layer - criterion layer -
scheme layer” is constructed, and the number of elements in each
layer usually does not exceed nine. The structure is shown
in Figure 2.

Assuming that the criterion layer has m elements, the scheme
layer has n elements, and the elements in the criterion layer and the
scheme layer are compared in pair-to-pair to form a judgment
matrix Am×m and m n-order judgment matrices (B1)n×n ~ (Bm)n×n.
Take matrix A as an example, and its expression is shown in
Equation 39:

A �
a11 . . . a1m
..
.

aij
..
.

am1 / amm

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ (39)

In the formula, aij represents the evaluation value obtained by
comparing elements ai and aj, and the value of aij is determined by
inviting experts according to the scale shown in Table 1. If i = j, aij =
1; If i≠j, aij = 1/ aji.

Consistency test was performed on the judgment matrix, and the
consistency index CI is calculated in Equation 40:

CI � λmax −m

m − 1
(40)

where λmax is the largest eigenvalue of matrix A.
The random consistency index RI is obtained according to

Table 2, and then the consistency ratio CR is calculated in
Equation 41:

CR � CI

RI
(41)

If CR < 0.1, matrix A is considered to pass the consistency test,
and then the weights corresponding to each judgment matrix A �
(aij)m×m are calculated in Equation 42.

ωi �
∏m

j�1aij( ) 1
m

∑m
k�1

∏m
j�1akj( ) 1

m

, i � 1, 2, ..., m (42)

Record the weight set of matrix A as vector wA � ωA
1 , . . . ,ω

A
m{ }.

Likewise, the consistency tests of matrix (B1)n×n ~ (Bm)n×n are
carried out respectively, and the weight vectors wB1 ~ wBm are

FIGURE 2
Three-layer structure of the Analytic Hierarchy Process.
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calculated after passing the test. Ultimately, the subjective weight set
is calculated in Equation 43.

W1×n � ωC
1 , . . . ,ω

C
n( )1×n � wA( )1×m

wB1

..

.

wBm

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠
m×n

� ωA
1 , . . . ,ω

A
n( )

ωB1
1 . . . ωB1

n

..

.
1 ..

.

ωBm
1 / ωBm

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(43)

2) Objective weights. Assuming that there are a total of s risk
assessment indices, and each risk assessment index has n samples. The
objective weight evaluation matrix J is established in Equation 44:

J �
b11 . . . b1t
..
.

bij
..
.

bs1 / bst

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
s×t

(44)

where element bij represents the jth sample risk value of the ith risk
assessment index. The standardized matrix C � (cij)s×t is obtained
by standardizing matrix J in Equation 45.

cij �
bij −min bi( )

max bi( ) −min bi( ), the index is positive
max bi( ) − bij

max bi( ) −min bi( ), the index is negative

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (45)

where max (bi) represents the maximum value of the element in row
i of matrix J, and min (bi) represents the minimum value in row i
of matrix j.

The entropy calculation formula of the risk assessment index is
shown in Equation 46:

Ei � − 1
ln t

∑t
j�1
⎛⎝ cij

∑t
j�1
cij
⎞⎠ · ln⎛⎝ cij

∑t
j�1
cij
⎞⎠,

i � 1, 2, ..., s, j � 1, 2, ..., t

(46)

The information utility value is defined as 1 − Ei and it can be
normalized to obtain the objective weight set Z of s risk assessment
indicators in Equation 47.

Zi � 1 − Ei

s − ∑s
i�1
Ei

, i � 1, 2, ..., s (47)

After determining subjective and objective weights, they are
integrated to form the comprehensive risk index weights, as is shown
in Equation 48.

wi � μZi + 1 − μ( )Wi (48)
where W is the subjective weight set obtained through the Analytic
Hierarchy Process, Z is the objective weight set calculated by the
Entropy Weight Method, and μ is the weight coefficient used to
combine subjective and objective weights. The coefficient μ is
determined based on the quality of historical data in the Entropy
Weight Method and the authority of expert information in the
Analytic Hierarchy Process.

After determining the weight of risk indices, the comprehensive
operational risk of the distribution system can be calculated by
weighted sum of overvoltage risk, low voltage risk, line overload,

TABLE 1 Nine-scale risk level.

Scale aij Meaning

1 Element i is as important as element j

3 Element i is slightly more important than element j

5 Element i is obviously more important than element j

7 Element i is strongly more important than element j

9 Element i is extremely more important than element j

2, 4, 6, 8 Compared to element j, element i’s importance is between the levels mentioned above

TABLE 2 Random consistency index values.

Matrix dimension 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

TABLE 3 Resistance and reactance of the distribution system.

Branch Resistance(Ω) Reactance(Ω)

1-2 1.093 0.455

2-3 1.184 0.494

3-4 2.095 0.873

4-5 3.188 1.329

5-6 1.093 0.455

6-7 1.002 0.417

7-8 4.403 1.215

8-9 5.642 1.597

9-10 2.89 0.818

10-11 1.514 0.428

11-12 1.238 0.351
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reverse line overload risk, and renewable energy curtailment risk, as
is shown in Equation 49.

CRI � w1R
vh
sys + w2R

vl
sys + w3R

p
sys + w4R

pr
sys + w5R

quit
sys (49)

where w1, w2, w3, w4, w5 are the weights of each kind of operational
risk respectively, and they sum up to 1.

4 Results

The example analysis is based on the 12-bus distribution system
provided by Matpower, and the line impedance and initial load are
recorded in Table 3 and Table 4 respectively.

4.1 Impact of load and renewable energy
on risk

The operational risk of the distribution system is mainly determined
by the connected load and renewable energy, in addition to its own
topology and network parameters. This section will discuss their impact
on the operational risk of the distribution system from the perspectives of
load power, renewable energy power, and the location of renewable
energy. The results are shown in Figures 3–5. It can be seen that high load
and renewable energy injection will bring about different kind of risks.
Along with the increase of load and renewable energy, the operational
risk significantly increases, and the growth is not linear. The growth rate
increases with the increase of load and renewable energy power. In
addition, as is shown in Figure 5, the location of renewable energy also
has a significant impact on the risk of the distribution systems. When
renewable energy is connected to the head of the line, its power flows to
the transmission network through fewer branches, and the bus voltage in
the distribution system gradually decreases from the first bus to the end
without any occurrence of overvoltage. When renewable energy is
connected to the middle section of the line, its power flows through
more branches, resulting in a gradual increase in bus voltage from the
head to the middle section of the distribution system, and overvoltage

risk occurs at buses from the middle to the end.When renewable energy
is connected to the end of the line, its output is transmitted backwards
through the entire distribution system, posing a serious risk of
overvoltage in the distribution system.

4.2 Objective weight of entropy
weight method

The entropy weight method is used to determine the weight of risk
indices objectively based on the amount of information reflected in
historical data, as a supplement to subjective weights. For different
systems and when different operating modes are adopted, the risks
faced by the distribution system vary, and the objective weights of the
risk indices calculated by the entropy weight method also differs. This
section discusses the entropy weight method from the perspective of
whether renewable energy curtailment is carried out, and it can be seen
from the results shown in Figure 6 that after considering the curtailment
of renewable energy, the weights of the remaining four risk indices have
decreased due to the addition of one risk index. However, compared to
low voltage risk and overload risk, the objective weight of overvoltage
risk and reverse line overload risk has decreasedmore significantly. This
is due to the decrease of overvoltage and reverse line overload risk
resulting from renewable energy curtailment. According to the Entropy
Weight Method, the information contained in a risk index is positively
correlated with its degree of dispersion. The wider its variation range,
the more information it contains. After conducting the curtailment
operations, the overvoltage risk and reverse line overload risk are
reduced to the threshold limit, so the originally different severity of
overvoltage and reverse line overload risks become similar, which
means their fluctuation ranges are narrowed and the information
contained in these two indices is reduced, thus resulting in a
significant decrease in the objective weights assigned to them.

4.3 Impact of curtailed renewable energy
on risks

Curtailing renewable energy sources can alter the operational status
of the distribution system, thereby affecting its risk level. This section
discusses the effect and the results are shown inTable 5. It can be seen that
after the curtailment, the overvoltage risk and reverse line overload risk
caused by renewable energy have decreased. Although the renewable
energy curtailment risk has significantly increased, due to the fact that it
only occurs when the voltage and overload risks reach a certain level and
that its value is less dispersed than the other risks, both the subjective and
objective weights of renewable energy curtailment risk we obtained are
relatively lower than voltage and overload risks, so the weighted total risk
of the distribution system is been reduced after curtailment.

4.4 Impact of state estimation on risk
assessment

This paper utilizes the results of the prediction step of the
Unscented Kalman Filter state estimation as the input for risk
assessment, so the risk assessment is closely related to the accuracy
of the state estimation. In order to demonstrate the relationship between

TABLE 4 Active and reactive loads.

Bus Active power (kW) Reactive Power (kVAr)

1 0 0

2 60 60

3 40 30

4 55 55

5 30 30

6 20 15

7 55 55

8 45 45

9 40 40

10 35 30

11 40 30

12 15 15
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state estimation and risk assessment in detail, this paper conducted
comparative experiments by adjusting the variance of measurement
noise. In order to simulate the measurement information of SCADA
data containing noise, this paper randomly generates noise based on the
proposed measurement noise variance, and adds it to the accurate
information from power flow calculation to substitute themeasurement
data used in state estimation. Table 6 records the three noise variances
used in this section, and demonstrates the impact of state estimation
accuracy on risk assessment through the differences in numerical values
of these three variances. In practical applications, noise variances need
to be selected based on the characteristics of the measuring device. Due
to the randomness of noise, the experimental results also have a certain
degree of randomness. In order to better compare the results under
different noises, this section conducted 10 experiments for each group,
and took the average value for comparison between groups. According

to the results recorded in Table 6, as the variance of measurement noise
increases, the risk of the distribution system also increases. This is due to
deteriorated accuracy of state estimation and the greater variance of the
results of state estimation under larger measurement noise, which also
means that the possible distribution system states fluctuate in a wider
range, and that there is a threat of greater risks, ultimately leading to an
increase in the value of comprehensive risk.

5 Discussion

This paper proposes a real-time risk assessment method for
distribution systems using Unscented Kalman Filter state estimation
results as inputs of the risk assessment. Risk indices including low
voltage, overvoltage, line overload, reverse line overload and renewable

FIGURE 3
The impact of load amount on the risk of distribution system.

FIGURE 4
The impact of renewable energy amount on the risk of distribution system.
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energy curtailment risk are established in this paper and summarized by
subjective and objective weights, thus achieving effective perception of
comprehensive risks in distribution systems. The case studies show that

the risks increase exponentially with the growth of renewable energy
and load demand and risk levels vary according to different locations of
renewable energy. Meanwhile, case analysis shows that appropriate
curtailment can reduce the overall risk of the distribution system by up
to 10.5%. Furthermore, as different operating modes bring about
different risks, the Entropy Weight Method proves to be effective in
determining the weight of risk indices according to the specific scenario
faced by the distribution system. In addition, risk assessment is affected
by the accuracy of state estimation, and differentmeasurement noises in

FIGURE 5
The impact of renewable energy location on the risk of distribution system.

FIGURE 6
Comparison of the objective weight of risk indices considering and not considering curtailment of renewable energy.

TABLE 5 Risks when curtailment of renewable energy is conducted and not.

Overvoltage risk Reverse line overload risk Renewable energy curtailment
risk

Comprehensive risk

Without
curtailment

0.1777 0.0743 0 0.0544

With curtailment 0.0627 0 0.305 0.0487

TABLE 6 Risks under different measurement noises.

Measurement noise variance 10–4 2.5*10−3 10–2

Comprehensive noise 0.1124 0.1164 0.1203
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state estimationmay cause a 7% change in the risk assessment results. In
this paper, there are still some deficiencies, and the following aspects
need to be improved in future research. On the one hand, more risk
indices should be added so that the assessment model may evaluate the
operational risks more comprehensively and cater to more scenarios.
For instance, risks caused by energy storage devices and photovoltaic
inverters can be considered. On the other hand, the estimation effects of
various existing approaches including the Cubature Kalman Filter can
be compared and analyzed to improve the state estimation process.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://pan.baidu.com/s/
1VO3eqQpzI-3g7g6wtOE6LA?pwd=8xmx.

Author contributions

CW: Methodology, Writing–original draft. HJ:
Conceptualization, Writing–review and editing. DC: Validation,
Writing–review and editing. WC: Validation, Writing–review and
editing. SL: Validation, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by the Science and Technology Project of State Grid
Jiangsu Electric Power Co., Ltd. under Grant J2023007.

Conflict of interest

Authors CW, HJ, DC, WC, and SL were employed by State Grid
Jiangsu Electric Power Co., Ltd.

The authors declare that this study received funding from State
Grid Jiangsu Electric Power Co., Ltd. The funder had the following
involvement in the study: study design, decision to publish.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ansari, O. A., and Chung, C. Y. (2019). A hybrid framework for short-term risk
assessment of wind-integrated composite power systems. IEEE Trans. Power Syst. 34,
2334–2344. doi:10.1109/TPWRS.2018.2881250

Ansari, O. A., Gong, Y., Liu, W., and Chung, C. Y. (2020). Data-driven operation risk
assessment of wind-integrated power systems via mixture models and importance
sampling. J. Mod. Power Syst. Clean Energy 8, 437–445. doi:10.35833/MPCE.2019.000163

Chen, C.-H. (2020). A novel multi-criteria decision-making model for building
material supplier selection based on entropy-AHP weighted TOPSIS. Entropy 22,
259. doi:10.3390/e22020259

Dang, L., Wang, W., and Chen, B. (2022). Square root Unscented Kalman Filter with
modified measurement for dynamic state estimation of power systems. IEEE Trans.
Instrum. Meas. 71, 1–13. doi:10.1109/TIM.2022.3157005

da Silva, A. M. L., and de Castro, A. M. (2019). Risk assessment in probabilistic load
flow viaMonte Carlo simulation and cross-entropy method. IEEE Trans. Power Syst. 34,
1193–1202. doi:10.1109/TPWRS.2018.2869769

De Oliveira-De Jesus, P. M., Rodriguez, N. A., Celeita, D. F., and Ramos, G. A. (2021).
PMU-based system state estimation for multigrounded distribution systems. IEEE
Trans. Power Syst. 36, 1071–1081. doi:10.1109/TPWRS.2020.3017543

Feng, F., Zhang, P., and Zhou, Y. (2022). Authentic microgrid state estimation. IEEE
Trans. Power Syst. 37, 1657–1660. doi:10.1109/TPWRS.2022.3143362

Ghadikolaee, E. T., Kazemi, A., and Shayanfar, H. A. (2020). Novel multi-objective
phasor measurement unit placement for improved parallel state estimation in
distribution network. Appl. Energy 279, 115814. doi:10.1016/j.apenergy.2020.115814

Liu, H., Hu, F., Su, J., Wei, X., and Qin, R. (2020). Comparisons on kalman-filter-
based dynamic state estimation algorithms of power systems. IEEE Access 8,
51035–51043. doi:10.1109/ACCESS.2020.2979735

Liu, X., Liu, J., Zhao, Y., Ding, T., Liu, X., and Liu, J. (2024). A bayesian deep learning-
based probabilistic risk assessment and early-warning model for power systems
considering meteorological conditions. IEEE Trans. Industrial Inf. 20, 1516–1527.
doi:10.1109/TII.2023.3278873

Mestav, K. R., Luengo-Rozas, J., and Tong, L. (2019). Bayesian state estimation for
unobservable distribution systems via deep learning. IEEE Trans. Power Syst. 34,
4910–4920. doi:10.1109/TPWRS.2019.2919157

Saaty, T. (1990). How tomake a decision - the analytic Hierarchy process. Eur. J. Oper.
Res. 48, 9–26. doi:10.1016/0377-2217(90)90057-I

Swain, S., and Subudhi, B. (2019). Grid synchronization of a PV system with power
quality disturbances using unscented kalman filtering. IEEE Trans. Sustain. Energy 10,
1240–1247. doi:10.1109/TSTE.2018.2864822

Wang, T., Huang, S., Gao, M., and Wang, Z. (2021). Adaptive extended kalman filter
based dynamic equivalent method of PMSG wind farm cluster. IEEE Trans. Ind. Appl.
57, 2908–2917. doi:10.1109/TIA.2021.3055749

Wang, W., Tse, C. K., and Wang, S. (2020). Dynamic state estimation of power
systems by $p$ -norm nonlinear kalman filter. IEEE Trans. Circuits Syst. I Regul. Pap.
67, 1715–1728. doi:10.1109/TCSI.2020.2965141

Xu, Y., Korkali, M., Mili, L., Chen, X., and Min, L. (2020). Risk assessment of rare
events in probabilistic power flow via hybrid multi-surrogate method. IEEE Trans.
Smart Grid 11, 1593–1603. doi:10.1109/TSG.2019.2940928

Yang, Z., Xie, K., Yu, J., Zhong, H., Zhang, N., and Xia, Q. X. (2019). A general
formulation of linear power flow models: basic theory and error analysis. IEEE Trans.
Power Syst. 34, 1315–1324. doi:10.1109/TPWRS.2018.2871182

Yang, Z., Zhong, H., Bose, A., Zheng, T., Xia, Q., and Kang, C. (2018). A linearized
OPF model with reactive power and voltage magnitude: a pathway to improve the MW-
only DC OPF. IEEE Trans. Power Syst. 33, 1734–1745. doi:10.1109/TPWRS.2017.
2718551

Yildiz, R., Barut, M., and Zerdali, E. (2020). A comprehensive comparison of
extended and Unscented Kalman Filters for speed-sensorless control applications
of induction motors. IEEE Trans. Industrial Inf. 16, 6423–6432. doi:10.1109/TII.
2020.2964876

Zhao, J., and Mili, L. (2019). A decentralized H-infinity Unscented Kalman Filter for
dynamic state estimation against uncertainties. IEEE Trans. Smart Grid 10, 4870–4880.
doi:10.1109/TSG.2018.2870327

Zhao, J., Netto, M., and Mili, L. (2017). A robust iterated extended kalman filter for
power system dynamic state estimation. IEEE Trans. Power Syst. 32, 3205–3216. doi:10.
1109/TPWRS.2016.2628344

Zhao, J., Qi, J., Huang, Z., Meliopoulos, A. P. S., Gomez-Exposito, A., Netto, M., et al.
(2019). Power system dynamic state estimation: motivations, definitions,
methodologies, and future work. IEEE Trans. Power Syst. 34, 3188–3198. doi:10.
1109/TPWRS.2019.2894769

Zheng, Y., Yan, Z., Chen, K., Sun, J., Xu, Y., and Liu, Y. (2021). Vulnerability
assessment of deep reinforcement learning models for power system topology
optimization. IEEE Trans. Smart Grid 12, 3613–3623. doi:10.1109/TSG.2021.3062700

Frontiers in Energy Research frontiersin.org11

Wu et al. 10.3389/fenrg.2024.1488029

https://pan.baidu.com/s/1VO3eqQpzI-3g7g6wtOE6LA?pwd=8xmx
https://pan.baidu.com/s/1VO3eqQpzI-3g7g6wtOE6LA?pwd=8xmx
https://doi.org/10.1109/TPWRS.2018.2881250
https://doi.org/10.35833/MPCE.2019.000163
https://doi.org/10.3390/e22020259
https://doi.org/10.1109/TIM.2022.3157005
https://doi.org/10.1109/TPWRS.2018.2869769
https://doi.org/10.1109/TPWRS.2020.3017543
https://doi.org/10.1109/TPWRS.2022.3143362
https://doi.org/10.1016/j.apenergy.2020.115814
https://doi.org/10.1109/ACCESS.2020.2979735
https://doi.org/10.1109/TII.2023.3278873
https://doi.org/10.1109/TPWRS.2019.2919157
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1109/TSTE.2018.2864822
https://doi.org/10.1109/TIA.2021.3055749
https://doi.org/10.1109/TCSI.2020.2965141
https://doi.org/10.1109/TSG.2019.2940928
https://doi.org/10.1109/TPWRS.2018.2871182
https://doi.org/10.1109/TPWRS.2017.2718551
https://doi.org/10.1109/TPWRS.2017.2718551
https://doi.org/10.1109/TII.2020.2964876
https://doi.org/10.1109/TII.2020.2964876
https://doi.org/10.1109/TSG.2018.2870327
https://doi.org/10.1109/TPWRS.2016.2628344
https://doi.org/10.1109/TPWRS.2016.2628344
https://doi.org/10.1109/TPWRS.2019.2894769
https://doi.org/10.1109/TPWRS.2019.2894769
https://doi.org/10.1109/TSG.2021.3062700
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1488029

	Real-time risk assessment of distribution systems based on Unscented Kalman Filter
	1 Introduction
	2 Real-time risk assessment of distribution systems
	2.1 State estimation based on Unscented Kalman Filter
	2.2 Risk assessment based on Unscented Kalman Filter

	3 Comprehensive risk assessment index system
	3.1 Voltage risk and power flow risk
	3.2 Risk of renewable energy curtailment
	3.3 Subjective and objective weights of risk indices

	4 Results
	4.1 Impact of load and renewable energy on risk
	4.2 Objective weight of entropy weight method
	4.3 Impact of curtailed renewable energy on risks
	4.4 Impact of state estimation on risk assessment

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


