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Energy sharing trading among
photovoltaic prosumers: a
dynamic game considering social
learning

Junzhuo Liu*

Shenzhen Audencia Financial Technology Institute, Shenzhen University, Shenzhen, China

This paper proposes a dynamic price-based demand response (DR) energy
sharing model for peer-to-peer (P2P) transactions of photovoltaic (PV)
prosumers in microgrids. First, a multi-subject dynamic game model is
constructed between a retail electricity provider (REP), an energy sharing
provider (ESP), and multiple prosumers participating in energy sharing
transactions. The cost model of the prosumers is designed to reflect the DR
from the perspectives of economic cost and the satisfaction of prosumers
with electricity consumption patterns. Further, the effect of social learning (SL)
among prosumers on multi-subject decision-making behavior is considered.
The model is solved using a deep reinforcement learning algorithm, and the
results show that: (1) SL reduces the volatility of electricity prices and provides
more stable price signals for market participants. (2) When prosumers are
unwilling to change their electricity consumption pattern, ESP and REP will
increase the purchase price and reduce the sale price, encouraging prosumers to
increase electricity consumption to some extent. (3) As the number of prosumers
increases, the benefits to price setters increase, but the costs to prosumers
rise accordingly. This study provides a valuable reference for promoting the
development of the PV industry and the diffusion of sustainable energy.
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1 Introduction

In recent years, the rapid development of photovoltaic (PV) technology has empowered
households and small businesses to generate their own electricity through solar panels,
creating a new category of energy users known as PV prosumers (Rathnayaka et al., 2013;
Ma et al., 2016). A prosumer is an entity that has the capacity to produce, consume
and possibly demand response (DR) at the same time (Kanchev et al., 2011). A group
of prosumers can be integrated into a prosumer energy community (Paudel et al., 2018).
Energy trading between neighboring prosumers can be considered as sharing of renewable
energy (Liu N et al., 2018). The sharing of renewable energy has significant implications for
the traditional energy industry and the broader energy system, as they have the potential
to transform the way energy is generated, consumed, and traded (Fridgen et al., 2020;
Rabaia et al., 2021; Sayed et al., 2021). Energy sharing trading among PVprosumers not only
contribute to the decarbonization of the energy sector but also promote the democratization
of energy, allowing individuals and communities to take control of their energy future
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(Y. Yang et al., 2022; Zhang et al., 2022). Hence, understanding
the behavior and decision-making of PV prosumers and promoting
the development of energy sharing models for them is of
great importance in promoting sustainable and inclusive energy
transition.

However, the uncertainty of PV energy makes it difficult
to coordinate the sharing of PV energy between prosumers
(Liu N et al., 2018). One of the main challenges is the stochastic,
volatile and intermittent of PV energy, which means that prosumers
do not always have the energy available to respond to demand
signals from the grid (Rathor and Saxena 2020). This makes it
challenging to balance supply and demand in real-time and create
a stable grid. Energy sharing providers (ESPs) have emerged as
agents to serve all PV prosumers involved in energy sharing
transactions, with the goal of ensuring a balance of power and
payments for the energy sharing community (Chen et al., 2020).
They act as intermediaries, aggregating and selling the surplus
PV energy produced by prosumers to retail electricity providers
(REPs), and purchasing electricity from REPs when PV energy
is scarce in the energy-sharing community. Hence, as microgrids
become increasingly complex and different partiesmay have varying
goals for power purchase, sale and consumption depending on
their roles (Liu et al., 2017), it is significant to study the strategies of
different actors in energy sharing communities. And a large number
of studies have been conducted on energy sharing among multiple
prosumers in smart grids, which can be broadly classified into two
categories: integrated planning of energy sharing systems based
on optimization methods and design of dynamic pricing strategies
based on game theory.

Optimization methods are commonly used in the integrated
planning of energy sharing systems for prosumers, aiming to
find the optimal solution that satisfies the multiple objectives of
the system. Alarcon-Rodriguez, Ault, and Galloway (2010) pointed
out that the integrated planning of energy sharing systems for
prosumers is a complex problem that involves optimizing multiple
objectives, including minimizing energy costs, reducing greenhouse
gas emissions, and ensuring a reliable supply of energy. Based
on this, Pourakbari-Kasmaei et al. (2019) proposed a trilateral
planning model for integrated community energy systems and
PV-based prosumers to handle a joint master-slave operation-
planning problem. Xiong, Qing, and Li (2022) designed a day-
ahead and real-time P2P power transaction mechanism based on
blockchain to meet the economic and security requirements of PV
prosumer. Yang et al. (2023) established a bi-level planning model
of DPV-energy storage systems in distribution network considering
the uncertainty of DPV output power and the DR behavior of users
under the background of coordinated operation of China’s electricity
market and carbon market.

However, it is difficult to accurately and comprehensively
analyze the P2P energy sharing transaction process at the individual
level based on optimization methods alone, because they assume
that all agents in the system have perfect information and behave
rationally (Luo et al., 2022). This assumption may not hold in real-
world situations, where agents may have incomplete information
or may not behave rationally. In contrast, game theory provides a
framework for modeling the behavior of agents in the system and
analyzing the strategic interactions between them (Jiang, Yuan, and
Li 2021). Game theory can capture the complexity anduncertainty of

real-world situations, where agentsmay have different objectives and
may behave strategically to achieve their goals. Game theory can also
handle decentralized decision-making, where agentsmake decisions
based on their own information and preferences (Soto et al., 2021).

Game theory has been extensively used in the design of
dynamic pricing models for energy sharing systems of prosumers,
including cooperative games, non-cooperative games, Stackelberg
game, and other types. The cooperative game is essentially a
benefit distribution problem, that is, when the prosumers shift
from competition to cooperation, how to reasonably distribute the
benefits of cooperation (Liu X et al., 2018). Han, Morstyn, and
McCulloch (2018) used cooperative game theory to build an energy
grand coalition and optimize the operation of distributed energy
storage systems with the goal of minimizing coalition energy costs.
Tushar et al. (2020) designed a coalition formation game to help
prosumers determine how they can opportunistically participate
in P2P transactions using their own batteries. Jiang, Yuan, and Li
(2021) analyzed the economic interaction between the community
energy manager and the PV prosumers based on Nash bargaining
game, and developed an incentive mechanism to encourage the
prosumers to actively participate in energy management.

The non-cooperative game focuses on the competitive behavior
of market members, assuming that each market member is rational
and will compete with others to maximize its own benefits (Nash
1950). Bhatti andBroadwater (2020) used a non-cooperative, infinite
strategy, multiplayer game to model energy trading interactions
among prosumers, which resulted in an increased payoffs for
prosumers and higher reliability. He and Zhang (2020) formulated
a non-cooperative game among all participants involved in the
community energy sharing market consisting of distributed solar
power prosumers and consumers to determine the double-sided
auctionmarket spot price. Luo et al. (2022) proposed a decentralized
trading scheme based on noncooperative game theory to examine
the impact of distributed energy ownership on the interests of
prosumers in the P2P trading market.

The Stackelberg game, a branch of non-cooperative games, is
most commonly used to study how stakeholders make optimal
decisions when there is a leader-follower structure of energy trading
relationships between community energy managers and prosumers
(Erol and Filik 2022). Cui, Wang, and Liu (2018) formulated the
energy sharing problem in a microgrid as a Stackelberg game, where
themicrogrid operator is the leader of the game and sets the internal
buying and selling prices for energy sharing, and PV prosumers
are the followers and decide their energy sharing allocation based
on the internal prices. Ahmadi et al. (2020)modeled a bilevel
retail market among an aggregator and multiple microgrids as a
single-leader-multi follower game to determine the optimal demand
scheduling for prosumers and the price-power bidding strategies
for microgrids. Dong et al. (2022) proposed a P2P energy trading
strategy in the blockchain environment and established a two-layer
model of the leader and follower to determine prices using the
Stackelberg game.

The existing literature has extensively studied the trading
strategies of prosumers, microgrid operators, and other agents
in energy-sharing communities using optimization, game theory,
and other methods. However, these studies have not considered
the impact of social learning (SL) among prosumers. SL among
prosumers refers to the process by which individuals learn from the
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behavior and experiences of others in their social network (Hampton
and Simon, 2013; Kendal et al., 2018). In themarketing literature, the
SL theory has been widely used. Scholars have extensively studied
the marketing strategies of companies under the influence of SL
behavior, including quality disclosure strategy (Zhu et al., 2021),
inventory ordering strategy (Zheng, Shou, and Yang 2021), return
policies (B. Liu et al., 2022), and so on. They confirmed that SL
behavior influences consumers’ purchase intention and decision-
making process, thus changing the profitability of companies and
the welfare of consumers.

The presence of the SL effect is often considered in the study
of dynamic pricing. Papanastasiou and Savva (2017) investigated
how the presence of SL affects the strategic interaction between
a dynamic-pricing monopolist and a forward-looking consumer
population, within a simple two-periodmodel. Cao, Fang, andWang
(2021) investigated the impacts of SL on a real-time pricing scheme
in the electricity market, and found that SL helps power companies
balance the demand and supply. Wang, Fang, and Cao (2022)
examined the influence of SL on customer behavior under time-of-
use pricing implementation in electricity retail market, and showed
that SL brings volatility to the market. These studies demonstrate
that it is informative to consider consumer SL behaviors in dynamic-
pricing design and inform. And in the spread of more efficient and
sustainable energy consumption patterns, which ultimately benefits
the entire microgrid. By considering the impact of SL on decision-
making behavior, the energy sharing model can be more accurately
designed and optimized, leading to more efficient and sustainable
energy sharing transactions among PV prosumers.

To this end, this paper aims to address the problem of energy
sharing transactions among PV prosumers, ESPs and RSPs in
microgrids, taking into account the impact of SL on the agents’
decision making. The main contributions are as follows:

(1) A dynamic pricing model for energy sharing in microgrids
based on a multi-subject dynamic game is proposed, in which
the interaction of PV prosumers, ESPs and RSPs is considered.

(2) A cost model of the prosumers is designed to reflect the DR
from the perspectives of economic cost and the satisfaction of
prosumers with electricity consumption patterns.

(3) The effect of SL among prosumers on multi-subject decision-
making behavior is investigated, and results show that SL
reduces the volatility of electricity prices and decreases
market risk.

The remainder of this paper is organized as follows. Section 2
describes the multi-subject dynamic game model, DR, and
SL mechanisms. Section 3 presents the simulation results and
sensitivity analysis. Section 4 concludes the full paper and suggests
future research directions.

2 The model

2.1 Problem description

PV prosumers consist of PV systems, loads, customer energy
management systems and smart meters. PV prosumers can share
energy, and their additional PV energy can be shared among PV
prosumers rather than traded directly with outside REPs. It is

assumed that the ESP is the agent of PV prosumers and provides
energy sharing services to all PV prosumers and is responsible for
ensuring the balance of electricity in the energy sharing area. And
the ESP trades directly with outside REPs. As indicated in Figure 1,
self-consumption of PV energy is preferred by PV prosumers in
the energy sharing area. If the PV energy does not meet the load
demand, the PV prosumer will purchase energy from the ESP. If
the demand of PV prosumer is less than PV’ production, the excess
PV power will be sold to the ESP. In addition, if the power balance
cannot be achieved within the shared area, the ESP will purchase or
sell power from the REP depending on the internal power deviation.

2.2 Basic model

Suppose there are n PV prosumers. An ESP, dedicated to
managing these n PV prosumers, facilitates priority trading among
PV prosumers. A REP trades electricity with the ESP outside the
shared area to meet the balance of supply and demand within the
shared area. The original load and the predicted generation of PV
production consumer i are Qini

i = (q
ini
i1 ,⋯,q

ini
it ,⋯,q

ini
iT ) and Qout

i =
(qouti1 ,⋯,q

out
it ,⋯,q

out
iT ), respectively, where qiniit denotes the initial

electricity consumption of PV prosumer i at time t, and qoutit denotes
the predicted generation of PV prosumer i at time t. If qiniit − q

out
it <

0, then PV prosumer i is playing the role of selling electricity at
time t and can sell electricity |qiniit − q

out
it |. If q

ini
it − q

out
it ≥ 0, then PV

prosumer i is in the role of selling buying electricity at time t and
needs to buy electricity qiniit − q

out
it .

Due to the priority trading within the shared area, for the ESP, if
the electricity within the shared area cannot be balanced through the
production consumers, then the electricity needs to be purchased or
sold from the retailers to achieve the balance of supply and demand.
The electricity Qini

sell,t that needs to be sold and the electricity Qini
buy,t

that needs to be purchased within the shared area are denoted as

Qini
sell,t = −

n

∑
i=1
(qiniit − q

out
it ), i f q

ini
it − q

out
it < 0 (1)

Qini
buy,t =

n

∑
i=1
(qiniit − q

out
it ), i f q

ini
it − q

out
it ≥ 0 (2)

If Qini
sell,t −Q

ini
buy,t < 0, the ESP needs to purchase electricity

|Qini
sell,t −Q

ini
buy,t| from the REP. If Qini

sell,t −Q
ini
buy,t ≥ 0, the ESP needs to

sell electricity Qini
sell,t −Q

ini
buy,t to the REP.

2.3 Demand response

It is assumed that all PV prosumers participating in energy
sharing have a certain percentage of shiftable load. The REP sets
prices μsell,t and μbuy,t based on electricity demand. At the same time,
the ESP adjusts its internal prices psell,t and pbuy,t in real time based
on μsell,t and μbuy,t, as well as the load and energy output of the PV.
PVprosumers,motivated by prices, decide to change their electricity
consumption, resulting in a new load curve that deviates from the
initial one.

The adjusted electricity consumption can be denoted as Qi =
(qi1,⋯,qit,⋯,qiT), where qit represents the adjusted electricity
consumption of PV prosumer i at time t. The total electricity
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FIGURE 1
Power trading chart.

consumption of prosumer i during time period T is made
up of both immutable and variable electricity consumption.
The immutable electricity consumption is defined as qYit =
∑y∈Yq

y
it, where y represents immutable load types, and the set

Y = {re frigerator,Router,Security system}. These loads represent
appliances that must operate continuously or are essential for daily
life, thus their electricity consumption cannot be easily shifted.

On the other hand, the variable electricity consumption is
represented as qxit = ∑x∈Xq

x
it, where x stands for variable load types,

and the set X = {Waterheater,Dryer,Microwaveoven}. These loads
are flexible and can be adjusted or rescheduled based on demand
response signals or price incentives, allowing the prosumer to shift
their usage to more favorable times during the day when electricity
prices are lower.

In addition, when implementing DR, it is important to consider
not only the cost of electricity consumption by PV prosumers, but
also PV prosumers’ satisfaction with the electricity consumption
pattern (Lu and Zhang 2022). When the difference in electricity
consumption before and after DR is large for PV prosumers, their
satisfaction with the electricity consumption pattern will be lower
and vice versa. Thus, the utility function of PV prosumer i can
be denoted as

cit = pit(qit − q
out
it ) + αit(qit − q

ini
it )

2 (3)

pit = {
pbuy,t, i f qit − q

out
it < 0

psell,t, i f qit − q
out
it ≥ 0

(4)

where pit denotes the DR price. Equation 4 shows that if qit − q
out
it <

0, PV prosumer i needs to sell electricity to the ESP and pit refers to
the purchase price pbuy,t set by the ESP. If qit − q

out
it ≥ 0, PV prosumer

i needs to buy electricity from the ESP and pit refers to the selling
price psell,t set by the ESP. αi is the preference weight of PV prosumer
i for satisfaction with the electricity consumption pattern.

In pursuit of cost minimization, PV prosumer i will
respond to the prices set by the ESP by adjusting the electricity
consumption in a timely manner. Taking the first order derivative
of Equation 3, obtain Equation 5

∂cit
∂qit
= pit − 2αit(qit − q

ini
it ) (5)

The relationship between adjusted electricity consumption and
price is obtained after simplification as follows

qit =
2αitq

ini
it − pit
2αit

(6)

According to Equation 6, when αit decreases, prosumer i
becomes more sensitive to price changes. Specifically, αit represents
the preference weight of prosumer i for maintaining their initial
electricity consumption pattern. A larger αit indicates that prosumer
i prefers to keep their initial consumption behavior and is less
responsive to price fluctuations. Conversely, when αit decreases, it
signifies that prosumer i is more sensitive to price changes and will
adjust their electricity consumption more significantly in response
to price variations.

Thus, when αit is smaller, changes in the price pit will have a
greater impact on qit, and prosumers are more likely to alter their
consumption behavior based on price signals. On the other hand,
when αit is larger, prosumers’ consumption behavior remains more
fixed and less affected by price fluctuations.

This implies that by adjusting the value of αit, the sensitivity
of prosumers to price changes can be controlled. This allows for
the optimization of demand response strategies, enabling better
load management and price adjustments under different market
conditions.

The ESP acts as an agent of PV prosumers, not for profit, but
only as a bridge between PV prosumer. Therefore, the profit of the
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ESP can be denoted as Equation 7

fESP,t = {
−μbuy|Qsell,t −Qbuy,t|, i f Qsell,t −Qbuy,t < 0

μsell|Qsell,t −Qbuy,t|, i f Qsell,t −Qbuy,t ≥ 0
(7)

Where

Qsell,t = −
n

∑
i=1
(qit − q

out
it ), i f qit − q

out
it < 0 (8)

Qbuy,t =
n

∑
i=1
(qit − q

out
it ), i f qit − q

out
it ≥ 0 (9)

Equations 8, 9 has the meaning assigned as Equations 1, 2.

2.4 Social learning

Since consumers pay more attention to the decisions of friends
around them when making decisions, this paper consider the
impact of SL among production consumers on the decision-making
behavior of multiple subjects such as retailers, ESPs, and production
consumers in social networks. Assume that m PV prosumers
occupy the network vertices. Since the communication between
PV prosumers is bidirectional, each interaction between two PV
prosumers is represented by an undirected edge.

The network of m PV prosumers is denoted as a symmetric

matrix G = (gij)m×m =
[[[[[

[

g11 g12 ⋯ g1m
g21 g22 ⋯ g2m
⋮ ⋮ ⋮ ⋮
gm1 gm2 ⋯ gmm

]]]]]

]

, where gii = 0, gij =

gji, i, j = 1,2,⋯,m. gij = 1 denotes that there is social communication
between PV prosumer i and PV prosumer j, gij = 0 denotes that
there is no social communication between PV prosumer i and PV
prosumer j.

After communicating with other neighbors, PV prosumer i can
learn the electricity consumption strategies of all neighbors and
update its strategy according to Equation 10, as follows:

αit: = ωitαit + (1−ωit)γDRt
1
ni
∑

j∈Ni
αjt (10)

Where ωit represents the weight between prosumer i s own
electricity consumption preference and the behavior of neighbors
at the current moment. It can dynamically change to adapt to the
influence of different strategies on user behavior. γDRt is a weighting
factor representing different demand response strategies, used to
adjust the effects of different strategies:

When implementing a peak shaving and valley filling strategy,
γDRt can be set higher to encourage users to reduce electricity
consumption during peak hours and increase it during valley hours
(The scenario is named DR1).

When implementing a load shifting strategy, γDRt can flexibly
adjust user electricity consumption behavior according to price
fluctuations during different periods (The scenario is named DR2).

When implementing a load curtailment strategy, γDRt can control
the overall load reduction intensity, enabling users to reduce total
electricity consumption during specific periods (The scenario is
named DR3).

3 Simulation

3.1 The algorithm

The deep deterministic policy gradient (DDPG) algorithm is
a commonly used deep reinforcement learning algorithm, mainly
for solving problems in continuous action space. The algorithm
is based on a strategy gradient approach that uses a deep neural
network to approximate the value function and the strategy
function. Specifically, The DDPG algorithm uses an Actor network
and a Critic network, where the Actor network is used to learn
the optimal strategy, which receives the current state as input
and outputs a continuous vector of actions. The Critic network
is used to evaluate the goodness of the strategy, which receives
the current state and the actions as input and outputs a Q
value indicating the long-term cumulative reward. In addition, to
improve learning, the DDPG algorithm utilizes an experience replay
mechanism for storing past experiences in order to learn them
repeatedly.

According to the real-time pricing model in Section 3, to
test different demand response strategies and pricing methods,
this paper adjusted the time intervals for price decision-
making and designed multiple scenarios to evaluate the
pricing decisions of the ESP and REP. In these settings, the
effectiveness of various demand response schemes is assessed,
and the DDPG algorithm is used to achieve dynamic pricing
optimization, enabling better adaptation to supply and demand
fluctuations in different market conditions. The specific details
are as follows:

Real-Time Pricing Scheme (RTP Scheme): In this paper, a day
is divided into T periods (with T = 24 in the simulation), defined
as the set TR = {1,2,⋯24}. In each period t ∈ TR, the REP makes
separate decisions on μsell,t and μbuy,t, while the ESP makes decisions
on psell,t and pbuy,t.

Time-Of-Use Pricing Scheme (TOU Scheme): A day is divided
into three periods: peak, off-peak, and valley. In the simulation,
the off-peak period is set from 8 a.m. to 4 p.m., the peak period
is from 7 p.m. to 12 a.m., and the valley period is from 12 a.m.
to 8 a.m., defined as the set TM = {peak,off− peak,andvalley}.
In each period t ∈ TM, the REP makes separate decisions on
μsell,t and μbuy,t, while the ESP makes decisions on psell,t and
pbuy,t.

Fixed Pricing Scheme (FP Scheme): In this scheme, the REP
only needs to make one fixed decision on μsell and μbuy for the entire
day, and the ESP similarly makes one fixed decision on psell and pbuy.

It is assumed that all PV prosumers participating in energy
sharing have a certain percentage of shiftable load. The REP sets
prices μsell,t and μbuy,t based on electricity demand. At the same time,
the ESP adjusts its internal prices psell,t and pbuy,t in real time based
on μsell,t and μbuy,t, as well as the load and energy output of the PV.
PVprosumers,motivated by prices, decide to change their electricity
consumption, resulting in a new load curve that deviates from the
initial one.

The ESP has to consider the electricity consumption of all
PV prosumers at different times, and its state information can be
noted as SESP,t = (s1ESP,t, s

2
ESP,t, s

3
ESP,t, s

4
ESP,t, s

5
ESP,t, s

6
ESP,t), where s1ESP,t,

s2ESP,t, s3ESP,t, s4ESP,t, s5ESP,t and s6ESP,t refer to time t, the actual
electricity consumption in the energy sharing region at time t,
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FIGURE 2
Multi-subject reinforcement learning environment interaction process.

the electricity generation in the energy sharing region at time
t, the unbalanced electricity in the energy sharing region at
time t, the electricity purchase price set by the REP at time
t, and the electricity sale price set by the REP at time t,
respectively.

The REP mainly considers transactions with the ESP, whose
status information can be noted as SREP,t = (s

1
REP,t, s

2
REP,t, s

3
REP,t, s

4
REP,t),

where s1REP,t, s
2
REP,t, s

3
REP,t and s4REP,t refer to time t, electricity traded

with the ESP at time t, the electricity purchase price set by the ESP
at time t, and the electricity sale price set by the ESP at time t,
respectively.

The REP will reformulate prices μbuy,t+1 and μsell,t+1 at time t+ 1
based on SREP,t, while the ESP will reformulate prices pbuy,t+1 and
psell,t+1 at time t+ 1 based on SESP,t. In addition, the experience
replay mechanism of the DDPG algorithm further improves the
stability of the model. By storing past decision-making experience,
the algorithm can randomly extract these experiences during the
training process to update the model parameters, avoiding over-
reliance on current state information. This mechanism helps to
speed up convergence and enable the model to maintain efficient
decision-making in the face of complex market fluctuations. The
fundamentals of multi-subject reinforcement learning for the REP
and ESP are shown in Figure 2.

3.2 Parameter setting

This paper utilizes daily residential energy consumption and
PV generation data and applies cluster analysis to generate typical
scenarios for PV generation (shown in Figures 3A, B, and the data is
sourced from https://www.energymadeeasy.gov.au/). First, daily PV
generation curves are constructed based on historical PV generation
data, and cluster analysis is conducted according to the variations
in generation across different time periods. Using the K-means
clustering algorithm, the original PV generation data is divided
into 3 clusters (There are three scenarios: high, medium and low),
with each cluster representing a typical generation scenario. Then,
the centroid or the point closest to the centroid is selected as the
representative scenario for each cluster, ensuring that these scenarios
capture the variability in PV generation under different weather
conditions. Finally, corresponding probability weights are assigned
to each representative scenario to construct a probabilistic scenario
set for PV generation, thereby effectively capturing the uncertainties
in generation for subsequent analyses.

Figure 3A shows the daily electricity consumption of PV
prosumer. From about 5:00 a.m., their electricity consumption
gradually increased and continued until 8:00 a.m. During the
period from 8:00 a.m. to 4:00 p.m., electricity consumption basically
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FIGURE 3
Basic Data. (A) Daily residential load curve. (B) PV daily power generation.

remained in a stable state. Then, electricity consumption gradually
increased until it reached a peak at 7:00 p.m., and then began
to gradually decrease. This is in line with the characteristics of
residential customers’ electricity consumption. Figure 3B shows the
power generation of the PV panels in the producer-consumer
households. Around 8:00 a.m., the power generation of PV panels
starts to increase rapidly and continues until 12:00 noon. After 12:00
a.m., the power generation gradually decreases until it drops to 0 at
night, indicating that the PV panels mainly work during the daytime
and do not produce electricity at night.

3.3 Analysis of results

In this section, this paper explore the pricing of the ESP and
REP and the benefits of different subjects under SL and no SL,
respectively, to reveal the impact of SL on the decision-making
behavior of multiple subjects.

3.3.1 Simulation results under no SL
Without considering the SL scenario, Figure 4A shows the

average daily electricity sale and purchase prices of ESP and REP.
This paper concludes that the average electricity sale price of
ESP gradually increases and stabilizes around 24, and the average
electricity purchase price gradually stabilizes around 2.58. The
average daily electricity sales price of REP is stabilized around 9.5,
and the average electricity purchase price is gradually stabilized
around 7.6. Figure 4B shows the electricity prices set by ESP and
REP at different times of the day. It exhibits two distinct phases.
Firstly, from 8 p.m. to 10 a.m. the next day, the electricity sale price of
ESP is approximately 20 and the electricity purchase price is about
5, while the electricity sale price of REP is approximately 9.7 and
the electricity purchase price is about 7.5. Secondly, from 10 a.m.
to 8 p.m., the electricity sale price of ESP is approximately 30 with
a close-to-zero the electricity purchase price, while the electricity
sale price of REP is about 9 and the electricity purchase price is
about 8. Figure 4C shows the total daily revenue of the ESP and
REP, and the daily electricity cost of PV prosumers. The total daily

revenue of ESP eventually stabilizes at about 33,000,000, while the
total daily revenue of REP eventually stabilizes at about 16,000,000.
At the same time, the daily electricity cost of PV prosumers is about
30,000,000. Figure 4D further shows the revenue of the ESP andREP
in 1 day. For the ESP, its revenue rises from about 500,000 at 4:00
a.m. to about 1,300,000 at 12:00 a.m., then drops to about 500,000,
rises rapidly to about 3,800,000 after 3:00 p.m., and finally drops
again. For the REP, its revenue rises from about 400,000 at 4 a.m. to
about 700,000 at 12 a.m., then drops to about 200,000, rises rapidly
to about 1,300,000 after 3 p.m., and finally drops again to about
400,000. The electricity cost of PV prosumers is 0 from 11 a.m. to
7 p.m., and in the range of 1,000–3,500 for the rest of the day.

In summary, first, the electricity price fluctuation for the ESP
and REP reflects the supply and demand. During the period from
10:00 a.m. to 8:00 p.m., the electricity purchase price for ESP drops
to close to zero and the electricity sale price is higher because
of the high generation of PV panels, which leads to sufficient
electricity supply. During the other hours, the electricity purchase
price of ESP is relatively high due to the tight electricity supply
caused by the low generation of PV panels. This price fluctuation
encourages PV prosumers to use more electricity during the time
when the electricity supply is sufficient, thus keeping the whole
system in balance in terms of supply and demand. Second, the
revenues fluctuations of the ESP and REP reflect their strategies at
different times of the day. During the daytime, especially during
peak PV generation periods, the ESP earns higher revenue by
purchasing excess electricity from PV prosumers at lower prices
and selling it to other PV prosumers who need electricity at higher
prices. In turn, the REP purchases electricity during relatively low
electricity demand periods to cope with electricity shortages during
high demand periods. Finally, the electricity cost of PV prosumers
is zero from 11 a.m. to 7 p.m. because the PV panels generate
enough electricity to meet their electricity demand during this
period. During the rest of the day, PV prosumers need to purchase
electricity from the ESP because the PV panels are not generating
enough electricity, thus incurring some electricity costs. This cost
encourages PV prosumers to plan their electricity consumption
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FIGURE 4
Decision-making results under no SL. (A) Average daily price. (B) Daily price. (C) Daily Profit. (D) Each Moment Profit.

more rationally and reduce their demand during non-peak PV
generation periods.

3.3.2 Simulation results under SL
Considering the SL scenario, Figure 5A shows the average daily

electricity sale and purchase prices for the ESP and REP. It can be
observed that the average electricity sale price of the ESP gradually
increases and stabilizes around 28, and the electricity purchase price
gradually stabilizes around 2.4. While the average daily electricity
sales price of REP stabilizes around 9.2, and the electricity purchase
price gradually stabilizes around 8.1. Figure 5B shows the electricity
prices for the ESP and REP at different times of the day under SL.
Two distinct phases are presented. First, during the period from
8:00 p.m. to 10:00 a.m. the next day, the electricity sale price of
the ESP is about 25 and the electricity purchase price is about 1.5.
The electricity sale price of the REP is about 9.3 and the electricity
purchase price is about 8.1. Second, during the period from 10:00
a.m. to 8:00 p.m., the electricity sale price of the ESP is about 34 and
the electricity purchase price is about 4. The electricity sale price
of the REP is about 9.3 with the electricity purchase price about
8.1. Figure 5C shows the total daily revenue of the ESP and REP
and the daily electricity cost of PV prosumers under SL. The daily
total revenue of the ESP eventually stabilizes around 40,000,000,
while the daily total revenue of REP eventually stabilizes around
17,000,000. Meanwhile, the daily electricity cost of PV prosumers

is about 23,000. Figure 5D further shows the revenue of the ESP and
REP during the day under SL. For the ESP, its revenue rises from
about 840,000 at 4:00 a.m. to about 1,500,000 at 12:00 p.m., then
drops to about 500,000, rises rapidly to about 4,400,000 after 3:00
p.m., and finally drops again. For the REP, its revenue rises from
about 400,000 at 4 a.m. to about 740,000 at 12 a.m., then drops to
about 175,000, rises rapidly to about 143,000 after 3 p.m., and finally
drops again to about 400,000. The electricity cost of PV prosumers
rises from about 300 at 4:00 a.m. to about 1,150 at 12:00 a.m., then
falls to about 400, rises rapidly to about 3,400 after 3:00 p.m., and
then continues to fall again to about 300.

Compared to scenarios where SL does not exist, SL scenarios
show advantages in the following areas: (1) Efficiency is improved.
Through SL, PV prosumers can better understand and predict the
dynamic changes of the electricity market, so as to reasonably adjust
electricity consumption plans and generation strategies and improve
the utilization rate of PV electricity generation. At the same time,
ESP and REP can adjust the electricity purchase and sale price
more flexibly according to the market demand, thus improving the
operational efficiency of the whole system. (2) Costs are reduced.
In the SL scenario, PV prosumers have lower daily electricity costs,
which means they are able to meet their electricity needs at a lower
cost. The lower cost is due to the fact that PV prosumers make
better use of their own PV generation by communicating with
other PV prosumers and adjusting their electricity consumption
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FIGURE 5
Decision-making results under SL. (A) Average daily price. (B) Daily price. (C) Daily Profit. (D) Each Moment Profit.

strategies, as well as buying electricity more rationally during the
hours when electricity prices are low. (3) Revenue is increased.
The total daily revenue of both ESP and REP increased under SL.
This suggests that by better understanding and anticipating the
dynamics of the market, both subjects can achieve higher economic
efficiency in the electricity market. (4) Price volatility is reduced.
The reduced electricity price volatility under SL compared to that
without SL helps to reduce the overall market risk and provides
a more stable price signal to market participants. (5) Promoting
sustainable development. The pricing strategy under SL encourages
PV prosumers to be more active in PV power generation and reduce
carbon emissions through reasonable electricity consumption plans,
thus promoting the popularity of renewable energy and helping to
achieve the goals of energy transition and sustainable development.

In conclusion, the operational efficiency, economic efficiency,
and sustainability of the overall electricity market are improved
under SL. SL, as an information sharing and learning mechanism,
helps market participants to better cope with the complexity and
uncertainty of the electricity market and thus achieve optimization
of the whole system. In addition, the model proposed in this paper
demonstrates significant economic and environmental advantages
compared to traditional energy systems. Firstly, by introducing
DR and SL mechanisms, the model effectively reduces dependence
on external electricity. PV prosumers can better meet their own
electricity needs by sharing their self-generated power, thus lowering

the costs of purchasing external electricity.Thismechanism not only
enhances the economic benefits for prosumers but also reduces the
use of traditional fossil fuels, thereby lowering carbon emissions
and environmental pollution. Secondly, the model promotes the
utilization of distributed PV energy, fostering the widespread
adoption of renewable energy and contributing to the achievement
of sustainable development goals. Under this model, the power
system becomes more flexible and efficient, meeting user demands
while significantly reducing the environmental burden.

3.4 Sensitivity analysis

To further verify the validity of the method in this paper, this
paper explored the influence of PV prosumers’ preference weights
for electricity consumption satisfaction and the number of PV
prosumers on the experimental results.

α indicates PV prosumers’ preference weights for electricity
consumption satisfaction. Figure 6A shows that, in the absence
of SL, the average daily purchase price of electricity for the ESP
decreases from 12 to about 8 as α increases, while the average daily
sale price increases from about 16.6 to about 17.3. The decrease in
the purchase price is much larger than the increase in the sale price,
economically encouraging PV prosumers to use more electricity. At
the same time, the average daily purchase price of electricity for
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FIGURE 6
Effect of α on decision results. (A) Average daily price without SL. (B) Daily Profit/Cost without SL. (C) Average daily price with SL. (D) Daily
Profit/Cost with SL.

the REP increases from 8.4 to approximately 8.8, while the average
daily sale price decreases from approximately 8.7 to approximately
8.3, indicating that the REP and ESP have the same objective of
wanting PV prosumers to usemore electricity. Figure 6B shows that,
in the absence of SL, as α increases, the total daily benefit of the ESP
increases from about 710,000 to about 740,000, the total daily benefit
of REP increases from about 720,000 to about 770,000, and the
cost of the producer-consumer decreases from about 4,500 to about
2,800.This indicates thatwhenPVprosumers are reluctant to change
their electricity consumption, the ESP and REP will set reasonable
prices to help reduce the costs of PV prosumers, which in turn will
encourage PV prosumers to increase their electricity consumption,
indirectly increasing the benefits for both price setters.

Figure 6C shows that under SL, the average daily electricity
purchase price increases from 11.2 to about 11.4 and the average
daily electricity sale price increases from about 8.3 to about 13.4
for the ESP as α increases. The average daily electricity purchase
price increases from 8.1 to about 9.2 and the average daily electricity
sale price decreases from about 8 to about 7.8 for the REP. This
indicates that under SL, the electricity purchase price increases
and electricity sales prices decrease, suggesting that SL among PV
prosumers weakens the dominance of price setters. Figure 6D shows
that under SL, as α increases, the total daily revenue of the ESP
increases from about 37,000 to about 338,000, the total daily revenue

of the REP increases from about 708,000 to about 798,000, but the
cost of PV prosumers increases from about 1,300 to about 3,000.
This indicates that under SL, the information sharing among PV
prosumers makes the price setters both benefit. However, the cost
to PV prosumers increases because the reduction in the electricity
sale price increases PV prosumers’ electricity consumption, which
in turn increases their costs.

Figure 7A shows that without SL, the average daily electricity
purchase price of the ESP increases from 1.4 to about 14.3 and the
average daily electricity sale price decreases from about 16 to about
14.3 as the number of PV prosumers increases. This is due to the
fact that the increase in the number of PV prosumers increases
market competition, causing the ESP to have to reduce the electricity
sale price to attract more PV prosumers. In addition, the average
daily electricity purchase price of the REP decreases from 9.2 to
approximately 7.1 and the average daily sale price increases from
approximately 7.8 to approximately 9.2. This is due to increased
competitionwithin the shared area causing outside REP to choose to
adjust its pricing strategies tomaximize its revenue. Figure 7B shows
that as the number of PVprosumers increases, the total daily revenue
of ESP increases from about 57,000 to about 1,650,000, the total daily
revenue ofREP increases fromabout 260,000 to about 1,600,000, and
the cost of PV prosumers decreases from about 600 to about 5,000.
This shows that in the absence of SL, as themarket size increases, the
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FIGURE 7
Effect of the number of PV prosumers on the decision results. (A) Average daily price without SL. (B) Daily Profit/Cost without SL. (C) Average daily price
with SL. (D) Daily Profit/Cost with SL.

benefits of price setters increase and costs of PV prosumers decrease
in relative terms. Figure 7C shows that under SL, as the number of
PVprosumers increases, the average daily purchase price for the ESP
increases from7 to about 14 and the average daily sale price increases
from about 10 to about 19. Meanwhile, the average daily purchase
price for the REP increases from 8.5 to about 9 and the average daily
sale price decreases from about 9.7 to about 6.6. This reflects the
fact that SL helps balance the shared regional internal supply and
demand, weakening the price dominance of external REP. Figure 7D
shows that as the number of PV prosumers increases, the total daily
revenue of the ESP rises from about −188,000 to about 1,920,000,
the total daily revenue of the REP rises from about 160,000 to about
1,960,000, and the cost of PV prosumers rises from about 1,200 to
about 5,800.This suggests that under SL, as themarket size increases,
the benefits to price setters increase, but the costs of PV prosumers
increase accordingly.

In summary, markets under SL exhibit greater efficiency, which
means that resources are allocated and used more rationally,
contributing to lower waste and higher overall welfare. However,
it may also lead to higher costs for PV prosumers. Therefore, in
practical applications, policymakers and market regulators need to
weigh the interests of all parties in order to maximize economic
efficiency and balance social welfare. In the absence of SL, the ESP
may focus more on short-term benefits and lower electricity sales

prices to gain more PV prosumers and thus increase its revenue.
In this case, the costs of PV prosumers are reduced, but the overall
efficiency of the market may not be as high as under SL. Hence,
policymakers and regulators should encourage information sharing
and collaboration among PV prosumers in order to promote market
efficiency.

3.5 Comparative analysis

3.5.1 Comparison of different pricing schemes
Figure 8 presents the profit and cost performance of ESPs,

REPs, and users under three different pricing schemes: Real-Time
Pricing Scheme (RTP Scheme), Time-Of-Use Pricing Scheme (TOU
Scheme), and Fixed Pricing Scheme (FP Scheme) across high,
medium, and low output scenarios. To effectively compare profits
and costs across different scenarios, this paper standardized the
original data. In the actual data, the profits of ESP and REP
are in the range of millions or thousands, while the users’ costs
are relatively smaller. A direct comparison would cause visual
discrepancies. Through standardization, this paper scaled all the
data to the same range (0–4), making the differences in performance
across different pricing schemesmore visible.This approach clarifies
how profits and costs change under different output scenarios,
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FIGURE 8
Comparative analysis of different pricing schemes and scenarios.

allowing for a clearer understanding of the impact on market
participants.

First, examining the heat map of REP profits, under the RTP
Scheme, REP’s profits decrease significantly as output decreases,
dropping from 3.0 in the high output scenario to 1.0 in the low
output scenario. This indicates that when PV generation decreases,
REPs need to purchase electricity at higher costs, reducing their
profits. Although this pricing scheme can flexibly respond to market
demand changes, it negatively impacts REP’s profitability under low
output scenarios. In contrast, under the TOU Scheme, REP’s profits
remain relatively stable, ranging from 2.8 in the high output scenario
to 1.5 in the low output scenario, showing that this scheme adapts
better to fluctuations in output levels. The TOU Scheme, by dividing
peak and off-peak periods,mitigates large fluctuations in profits.The
FP Scheme, on the other hand, shows the most stability but yields
relatively lower profits. Particularly in the low output scenario, REP’s
profits drop to only 1.7, demonstrating that the FP Scheme lacks
flexibility in responding to output fluctuations, leading to overall
poorer profit performance.

TheESPprofit heatmap reflects similar trends. ESP profits under
the RTP Scheme fluctuate the most, with profits reaching 3.5 in the
high output scenario but dropping to 1.5 in the low output scenario.
The flexibility of the RTP Scheme allows ESPs to purchase electricity
at lower costs when PV generation is abundant and sell it at higher
prices, thereby generating higher profits. However, when output
is low, ESP’s profits are constrained, showing the high-risk, high-
reward nature of the RTP Scheme. Under the TOU Scheme, ESP’s
profits fluctuate less, ranging from 3.0 to 1.8, indicating that this
scheme provides more stable returns. Although the TOU Scheme
does not deliver as high profits as the RTP Scheme, the balance
between peak and off-peak periods makes ESP’s earnings relatively
predictable. Under the FP Scheme, ESP’s profits are relatively lower,
especially in the low output scenario where profits drop to 1.9,
suggesting that this scheme lacks the flexibility to adapt to market
fluctuations.

In the user cost heat map, although the variations in user
costs are relatively moderate across all three pricing schemes, a
clear trend can still be observed. In the high output scenario,
user costs are the lowest, particularly under the RTP Scheme
where costs are as low as 0.4. This indicates that users can reduce
external electricity purchases by utilizing self-generated power,
thereby effectively lowering their costs. As output decreases, user

costs gradually increase, especially in the low output scenario where
user costs under the RTP Scheme rise to 1.0. This suggests that
users rely more on external electricity and their costs increase
accordingly. In comparison, user costs under the TOU and FP
Schemes are more stable, but user costs are slightly higher under the
FP Scheme. Particularly in the low output scenario, user costs reach
0.95, highlighting the disadvantage of the FP Scheme in controlling
costs when electricity supply is insufficient.

3.5.2 Comparison of different demand response
strategies

Figure 9 illustrates the changes in average selling and buying
prices for REP and ESP under three demand response strategies
(DR1, DR2, DR3) and three different output scenarios (high
output, medium output, and low output). The figure clearly shows
that different demand response strategies and output scenarios
significantly impact the pricing of REP and ESP. Notably, as output
decreases, electricity prices tend to rise, reflecting the changes in
supply and demand.

Firstly, the average selling price of REP fluctuates significantly
across different output scenarios. Under high output conditions,
REP’s selling price remains relatively low, especially under DR1
and DR2 strategies, with prices ranging from around 9 to 9.3.
This indicates that when the electricity supply is abundant, REP
can sell electricity at lower prices to meet market demand.
However, as output decreases, particularly in low-output scenarios,
REP’s selling price rises sharply, reaching 10.1 under the DR3
strategy. This reflects the scarcity of electricity resources in low-
output conditions, leading REP to raise selling prices to maintain
profitability. Meanwhile, REP’s buying prices also adjust according
to output changes. In high-output scenarios, REP’s buying price
remains around 7.0 to 7.2, indicating sufficient electricity supply at
lower costs. However, as output decreases, REP’s buying price rises
significantly, especially in low-output scenarios, where it reaches 7.7
to 7.8. This suggests that under tighter electricity supply conditions,
REP has to pay higher prices to procure electricity to meet its needs.

Similarly, ESP’s selling and buying prices are also affected
by output changes. In high-output scenarios, ESP’s selling price
is relatively low, around 23.0 to 23.2. This suggests that under
high-output conditions, ESP can sell electricity at lower prices,
attracting more users to consume electricity. However, as output
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FIGURE 9
Comparative analysis of different pricing schemes and strategies.

decreases, ESP’s selling price gradually rises, particularly in low-
output scenarios, reaching around 24.4. ESP’s buying price shows a
similar trend. In high-output scenarios, ESP’s buying price remains
around 3.0, but it increases to 3.5 under low-output conditions. This
reflects that when electricity supply is constrained, ESP has to pay
higher costs to purchase electricity to maintain operations.

Demand response strategies also have a significant impact on
REP and ESP pricing. Under the peak shaving and valley filling
strategy (DR1), price fluctuations are most pronounced, especially
in low-output scenarios, where prices increase sharply. This strategy
works by raising electricity prices during peak demand periods to
encourage users to reduce consumption and balance supply and
demand. Under the load shifting strategy (DR2), price fluctuations
are relatively moderate, indicating that this strategy allows for
flexible adjustments based on different time periods and demand
changes, better managing imbalances in supply and demand. In
contrast, under the load curtailment strategy (DR3), electricity
prices are generally higher, especially in low-output scenarios,
where both ESP and REP’s selling prices rise significantly. This
suggests that the load curtailment strategy increases electricity
prices to encourage users to reduce consumption and cope with the
challenges of limited electricity supply.

3.5.3 Comparison of different network structure
Network density refers to the ratio of the actual number of edges

present in a network to the maximum possible number of edges. To
reflect differences in network structures, this paper set three different

network densities: 0.3, 0.6, and 0.9, representing sparse, medium-
density, and dense networks, respectively. With these settings, this
paper are able to explore how different network densities affect
prosumers’ electricity consumption costs and the decision-making
processes of REPs and ESPs. In networks with varying densities, the
speed and scope of information dissemination differ, which in turn
influences the decision-making behavior of market participants,
leading to different market outcomes and economic efficiencies. To
better compare the impact of different network structures on SL and
decision-making behavior, this paper normalized all data to a range
of 0–1, as shown in Figure 10:

In Figure 10, sparse, medium-density, and dense networks each
illustrate how SL under different network structures influences
consumer behavior, as well as REP and ESP pricing and consumer
electricity costs. These differences in network density are reflected
in the speed and scope of information dissemination, which
significantly impacts market pricing and electricity costs.

First, in sparse networks (network density 0.3), the connections
between consumers are few, meaning that information is exchanged
only through a limited number of neighbors. Information
dissemination is slow and limited in scope. In this situation, SL
is less effective, and consumers are unable to respond quickly
to price fluctuations, making their decisions more reliant on
personal experience. As a result, both REP and ESP pricing tends
to be conservative. The average daily selling price or REPs is
relatively high, while the buying price is lower because demand
is relatively stable and consumers lack the ability to adjust their
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FIGURE 10
Comparison of Different network structure.

electricity consumption through SL. Similarly, ESP selling prices
remain high due to sluggish market demand, while buying prices
remain relatively stable. Consumer electricity costs are higher in
sparse networks because consumers cannot effectively adjust their
consumption during peak periods, leading them to purchase more
electricity during high-price periods. As a result, overall electricity
costs for consumers remain elevated.

In medium-density networks (network density 0.6), the
connections between consumers increase, allowing more
information to be shared across a larger number of neighbors.
Social learning becomes more effective, and information flows more
smoothly. As a result, market demand becomes more sensitive, and
consumers are able to adjust their electricity usage based on price
fluctuations. REP and ESP pricing begins to reflect this increased
flexibility.The selling price for REPs decreases slightly as consumers,
with the help of SL, avoid peak periods and reduce demand pressure.
The buying price increases, indicating that more consumers are
shifting their electricity purchases to low-price periods. ESP pricing
similarly reflects market demand fluctuations, with both selling
and buying prices starting to show some volatility, suggesting that
consumers are becoming more responsive to market prices and
are able to plan their electricity usage more effectively. Consumer
electricity costs decrease in medium-density networks, as SL helps
them avoid high-price periods.

In dense networks (network density 0.9), consumers are highly
connected, and information spreads rapidly and comprehensively
throughout the network.Most consumers can quickly access market

information and adjust their electricity consumption based on price
changes, leading to the highest level of SL effectiveness. In this
case, market demand fluctuations are much more pronounced. REP
selling prices decrease significantly as most consumers reduce their
electricity usage during peak periods, relieving market pressure.
Meanwhile, REP buying prices increase as consumers collectively
shift their electricity purchases to low-price periods, increasing
demand during those times. ESP selling prices also decrease
significantly as dense SL enables more consumers to fully utilize
low-price electricity periods, reducing demand during peak periods.
However, ESP buying prices exhibit greater volatility as demand
concentrates in low-price periods, putting pressure on electricity
supply. For consumers, the efficiency of SL allows them to avoid
high-price periods more effectively, reducing overall electricity
costs. However, as demand becomes overly concentrated during
certain periods, there may be shortages of low-price electricity,
preventing some consumers from fully lowering their costs in
extreme cases.

In summary, as network density increases, consumers’ ability
to learn socially improves significantly, allowing them to more
accurately adjust their electricity usage, which in turn influences
REP and ESP pricing strategies. In dense networks, SL intensifies
supply and demand fluctuations, leading to lower consumer
electricity costs and improved market efficiency. However, this may
also result in excessive concentration of electricity demand during
certain periods, affecting the balanced distribution of electricity
resources.
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4 Conclusion

Recent years, the global energy crisis and climate change
issues have become increasingly severe, making renewable energy
an urgent type of energy to develop. PV power generation, as
a clean and renewable energy source, has received widespread
attention. However, in the promotion of distributed PV power
generation, the key issue is how to improve energy utilization
efficiency, reduce costs, balance supply and demand, and achieve
sustainable development. To address these challenges, researchers
have begun to explore new market models and energy sharing
mechanisms, such as P2P microgrids for PV prosumers. This
study proposes a price-based DR energy sharing model, aiming to
provide stable, efficient, and sustainable development paths for PV
power users.

To achieve this goal, this paper first constructed a pricing
model based on SL and energy sharing. SL is an information
sharing and learning mechanism that helps consumers better cope
with the complexity and uncertainty of the electricity market.
Through SL, consumers can more accurately predict and assess
market demand, thereby optimizing the entire system. In the
pricing model, ESP and REP determine the purchase and sale
prices of electricity based on market supply and demand, user
behavior, and demand forecasts. This pricing mechanism, based
on the market and user behavior, helps to achieve the operational
efficiency, economic benefits, and sustainable development of the
electricity market.

Secondly, this paper designed a prosumer cost model from the
perspective of economic costs and user satisfaction with electricity
consumption patterns. In this model, the cost of prosumers includes
the cost of purchasing electricity, sales revenue, and equipment
operation costs, among others. In addition, user satisfaction
measures the subjective feelings of prosumers when using electricity
and can be used to guide prosumers to adjust their electricity
consumption patterns. By optimizing the prosumer cost model, we
can maximize the economic benefits and satisfaction of electricity
usage for prosumers.

Lastly, this paper employed reinforcement learning algorithms
to solve the problem. Reinforcement learning is a machine
learning method that obtains the best strategy through continuous
trial and learning. In this study, the reinforcement learning
algorithm learns the behavior and feedback of market participants,
providing optimal solutions for the pricing model and prosumer
cost model.

The research results show that: (1) SL can reduce electricity price
fluctuations, decrease market risks, and provide more stable price
signals for market participants. With SL, the operational efficiency,
economic efficiency, and sustainability of the electricity market are
improved. This helps to enhance the confidence and participation
of market participants, promoting the healthy development of the
electricitymarket. (2)Whenprosumers are unwilling to change their
electricity consumption patterns, ESP and REP will increase the
purchase price of electricity and reduce the sales price, encouraging
prosumers to increase electricity consumption to some extent. This
strategy is beneficial for PV power users to use more electricity
when the power supply is sufficient, thereby maintaining the

balance of supply and demand in the entire system. At the same
time, this also helps to alleviate grid load and improve system
stability. (3) As the scale of prosumers expands, the revenue of
price setters increases, but the cost of prosumers correspondingly
increases. This means that in practical applications, policymakers
and market regulators need to weigh the interests of all parties to
achieve the maximization of economic efficiency and the balance of
social welfare, and encourage information sharing and cooperation
among PV power users to improve market efficiency and promote
sustainable development.

In summary, this study proposes a price-based DR energy
sharing model for P2P PV prosumer microgrids. By constructing
a pricing model based on SL and energy sharing, as well as
designing a prosumer cost model from the perspective of economic
costs and user satisfaction with electricity consumption patterns,
provide an effective method to improve the energy utilization
efficiency of PV power users, reduce system operation costs,
promote market economic benefits, and support sustainable energy
development. In addition, the application of reinforcement learning
algorithms offers an effective means to solve the complex problems
in pricing and cost models. This research would provide valuable
references for policymakers and market regulators, promoting
the development of the PV industry and the popularization of
sustainable energy.

Nevertheless, this paper still has some limitations to be solved.
Firstly, prosumers can be classified into three types, including those
who only optimize their usage rate without directly connecting to
the power grid, those who optimize their usage while maintaining
their connection to the grid, and enterprises that provide flexible
services at the system level (such as virtual power plants). And
this study did not analyze multiple types of prosumers. Secondly,
this study is limited to PV power generation prosumers, and
has not conducted a comprehensive analysis of other renewable
energy prosumers. Hence, future research can delve deeper into
the following aspects: Firstly, the reduction in Distributed energy
resources (DER) hardware, installation, and maintenance costs
benefits both small-scale prosumers and utility level hardware
buyers. This means that the types of prosumers will continue
to increase, and the scale of DER will continue to expand.
Hence, exploring how to adjust pricing strategies and optimize
cost models based on the characteristics of different types of
prosumers is of great practical significance. Secondly, future work
can combine other types of renewable energy (such as wind
energy, hydropower, etc.) and explore different market mechanisms
to promote more efficient renewable energy sharing and trading
between producers and consumers. Finally, future research should
consider the potential impact of emerging technologies such
as blockchain or artificial intelligence on energy sharing and
demand response.
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