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Introduction: An innovative methodology is proposed to delve into the pivotal
role of regional distribution networks (RDNs) in fostering low-carbon
development.

Methods: The methodology first constructs an evaluation framework
encompassing various dimensions and then integrates spherical fuzzy sets
(SFSs) with the best-worst method (BWM), enabling the precise calculation of
indicator weight parameters. Subsequently, we employ the measurement of
alternatives and ranking according to compromise solution (MARCOS) with
SFSs to process and synthesize decision making information.

Results: Take the Shanghai region as an example, results show that C4 has the
highest performance and C10 has the lowest.

Discussion: In conclusion, this research presents a significant step forward in
understanding the importance of RDNs in promoting low-carbon development
and offers a practical approach for decision-makers to assess and enhance the
performance of RDNs.
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1 Introduction

With the continuous promotion of the dual-carbon target, the gradual increase in
renewable energy penetration in urban power grids has brought about problems of strong
intermittency and uncertainty, making urban energy security face severe challenges (Zhang
and Kang, 2022). As an important part of the power system, the contribution of the regional
distribution network to carbon emission reduction directly affects the low-carbon process of
the overall power industry. By optimizing power transmission and distribution, regional
distribution networks (RDNs) can effectively reduce the line loss of the power grid and
improve energy efficiency (Yue et al., 2024; Cheng et al., 2024). Thus, RDNs bear great
responsibility in the process of sustainable development of urban energy. However, the
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current research on the carbon emission of RDNs mostly focuses on
traceability, collaboration, and reduction optimization and thus
lacks quantitative determination of the contribution of carbon
emission reduction, which weakens the green support capacity of
RDNs and makes it difficult to guarantee the effectiveness of new
energy production, transmission, and consumption in the urban
green development process (Yang et al., 2024; Yang S. et al., 2023;
Sang et al., 2024). Therefore, accurately identifying and effectively
quantifying the green support capacity of RDNs is a key link to
achieving the dual-carbon goal, and the study of the carbon emission
reduction contribution of RDNs has become a key research direction
in urban green development.

At present, in the field of carbon emission reduction
quantification, existing research revolves around the low-
carbonized economic operation of integrated energy systems in
parks, the analysis of carbon emission reduction benefits on the
urban user side, the effectiveness of green energy access, and multi-
modal transportation networks aiming at carbon emission
minimization. In order to solve the contradiction between the
power consumption of carbon capture devices and the demand
for carbon capture, Paulino E. Labis proposes a near-end strategy
optimization algorithm based on the real-time response to uncertain
source loads, which demonstrates the effectiveness and
advancement of this method in decarbonized operation (Labis
et al., 2011). Yi Xie takes the urban user side as the main body,
adopts the marginal carbon emission factor to calculate the expected
carbon reduction of user-side energy storage, and analyzes in-depth
the influence of user-side energy storage behavior on the total
carbon emission of the system, which demonstrates that the
carbon-reducing cloud energy storage model can bring better
carbon reduction advantages (Xie et al., 2023). Lijuan Yao
centers on green energy access work, combines a variety of
hierarchical control algorithms to explore the effectiveness of
green energy access in the load system, and provides clean
energy output tracking services to verify the effectiveness of the
method (Yao et al., 2023). For low-carbon multi-modal transport
planning problem research, Qin Huang proposed the Harris Hawk
optimization algorithm so that the low-carbon objectives and low-
cost objectives are optimized, verifying the correctness of the model
(Huang et al., 2023). Puliang Du proposed a quantum spherical
fuzzy environment decision-making framework for determining the
carbon reduction contribution of power companies (Du et al., 2024).
Although scholars have carried out some research in the field of
carbon emission reduction quantifications, the research for
determining the carbon emission reduction contribution of RDNs
is still to be explored.

The research on the determination of carbon emission reduction
contributions of RDNs involves many aspects of economics,
technology, environment, and management, covering many fields
such as electric energy substitution, emerging technology, smart
logistics, and line loss management, making it a typical multi-
attribute decision-making problem under fuzzy environment
(Sun et al., 2021; Li et al., 2023; Du et al., 2023; Xue and Tsai,
2022). In recent years, research on multi-attribute decision-making
problems in fuzzy environments mostly involves three aspects:
indicator weight determination, decision-making method, and
fuzzy information characterization. Among them, Qiushuang Wei
constructs a best-worst method, interval type-2 fuzzy, preference

ranking organization method for enrichment evaluations (BWM-
IT2F-PROMETHEE-II) model to calculate indicator weights and
recognize the solution of barriers based on the fact that barriers to
the implementation of carbon sink projects have the problems of
complexity, multiplicity, and uncertainty. The PROMETHEE-II
method is cumbersome and requires a complicated calculation
process when dealing with large-scale datasets and real-time
decision-making, and the interrelationships among the programs
are not taken into account (Wei et al., 2023). Therefore, Yongji Wu
proposes the measurement of alternatives and ranking according to
the compromise solution (MARCOS) method, which effectively
avoids the above problems and considers the impact of decision
makers’ preferences on the evaluation process (Wu et al., 2023).
Xiaomin Gong develops a hybrid decision-making framework to
address the problem of renewable energy hosting potential
assessment using an interval 2-type fuzzy best-worst method for
determining indicator weights and introduces an extended
MARCOS method for ranking alternatives (Gong et al., 2021).
Based on a spherical fuzzy environment, Rajput Laxmi portrays
the importance of indicators and effectively preserves the
uncertainty of multi-dimensional information (Laxmi et al.,
2024). In addition, the spherical fuzzy set (SFS), as a kind of
fuzzy number with three-dimensional degrees of affiliation, non-
affiliation, and hesitation, is more in line with the actual situation
than the existing linear relationship, which opens up a new way to
deal with complex decision-making problems and is widely used in
the field of fuzzy decision-making to recognize the effective
transformation of fuzzy information (Geng and Li, 2023).

Based on the above analysis, this article proposes a decision-
making framework determining the carbon emission reduction
contribution of RDNs based on the BWM-MARCOS in an SFS
environment to fill the gaps in existing research. First, an indicator
system is constructed from economic, technological, environmental,
and management dimensions to perceive the carbon emission
reduction contribution of RDNs for the first time. Second, the
collected expert semantic evaluation information is converted

TABLE 1 Carbon emission reduction contribution indicator system for
RDNs.

Normative level Indicator level

Economic level The rate of return on investment A1

Policy enforcement costs A2

The cost of purchasing carbon allowances A3

Technical level Digitization technology A4

Smart grid technology A5

Troubleshooting technology A6

Energy storage technology A7

Environmental level Environmental status of the region A8

New energy penetration A9

Regulatory level Blockage management A10

Third-party carbon verification A11

Grid loss management A12
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into spherical fuzzy numbers with the BWM to recognize the
subjective assignment of the relevant indicators, effectively
solving the limitations of traditional methods in dealing with
complex and multi-dimensional uncertain information. Then, the
weights are incorporated into the developed SFS-MARCOS model
for accurate determination relative to traditional methods, which
considers the influence of decision makers’ preferences on the
evaluation process and improves the scientificity and
practicability of decision-making. Finally, the effectiveness of the
proposed modeling approach is verified by taking 11 RDNs in
Shanghai as examples.

2 Evaluation indicators for carbon
emission reduction contribution
of RDNs

2.1 Construction of the indicator system

Existing studies mainly diagnose the degree of influence of
important operation-related parameters of electricity enterprises
on carbon emissions from a global perspective; however, there is
a lack of a set of indicator systems to perceive the contribution of
carbon emission reduction of RDNs, making it difficult to explain
the support of urban green transformation (Yang Y. et al., 2023). In
order to solve the above problems, the carbon emission reduction
contribution evaluation indicator system of RDNs is constructed
from four dimensions of economy, technology, environment, and
management, as shown in Table 1.

2.2 Analysis of the indicator system

2.2.1 Economic dimension
The rate of return on investment (A1) (Avdasheva and Orlova,

2020): A measure of the ratio of investment in carbon reduction
projects in the distribution grid to long-term benefits. A high ROI
indicates that the project is economically viable, as shown in
Equation 1.

UI � CI

CR
× 100%, (1)

where UI, CI, and CR, respectively, represent the rate of return on
investment, the cost of investment on distribution networks, and
the return.

Policy enforcement costs (A2): Policy implementation costs refer
to the various expenses that the government must pay in the process
of promoting the implementation of carbon emission reduction
policies, including the costs of policy publicity, supervision,
subsidies, and tax exemptions. These are the economic costs paid
by the government to guide and support the electric industry and all
sectors of society in participating in carbon emission reduction.

The cost of purchasing carbon allowances (A3) (Zhong et al.,
2024): These costs are the fees that enterprises or individuals must
pay in order to obtain a certain number of carbon emission
allowances in the carbon emission trading market. As an
economic incentive, the purchase fee of carbon allowances can

encourage industries to reduce carbon emissions, improve energy
efficiency, and promote green and low-carbon development.

2.2.2 Technical level
Digital technology (A4) (Sun et al., 2021): The use of the

Internet, big data, artificial intelligence, blockchain, artificial
intelligence, and other new-generation information technology at
all levels of the distribution networks to carry out systematic and
comprehensive changes.

Smart grid technology (A5) (Sun et al., 2021): An integrated,
high-speed two-way communication network that supports the
application of advanced sensing and measurement technologies,
advanced equipment technologies, advanced control methods, and
advanced decision support system technologies.

Fault handling technology (A6) (Liu et al., 2023): Detect and
locate fault points in the distribution network in a timely manner so
that remedial measures can be taken quickly to reduce the time of
unplanned power outages caused by faults. Rationally arrange
maintenance plans and resource allocation to avoid unnecessary
waste of resources and duplication of work, thereby improving
overall operational efficiency and indirectly reducing
carbon emissions.

Energy storage technology (A7) (Li et al., 2024): The process of
storing energy through a medium or device and releasing it when
needed. Stored surplus renewable energy can be released during
peak energy demand to ensure a stable supply of renewable energy.

2.2.3 Environmental level
Environmental status of the region (A8): The conditions of air

quality, water quality conditions, soil quality, plant ecology, animal
ecology, human health, and natural resource conditions. When the
environmental state of an area is better, it can not only utilize
resources more efficiently and reduce energy consumption in the
production process but also reduce the negative impact on the
environment.

New energy penetration rate (A9) (Sun et al., 2021): The
proportion of power generation from new energy projects in the
areas to total power generation, as shown in Equation 2.

PNE � CNEG

CTG
× 100%, (2)

where PNE, CNEG, and CTG, respectively, represent the new energy
penetration rate, the amount of new energy power generation, and
the total power generation of RDNs.

2.2.4 Management level
Blockage management (A10) (Qiu et al., 2024): The integration

and utilization of renewable energy can be prioritized by adjusting
power generation plans and load allocation. Because the carbon
intensity of renewables is much lower than that of fossil fuels,
increasing the proportion of renewable energy can help reduce
the overall carbon emissions of regional distribution grids.

Third-party carbon verification (A11): Verification of the
greenhouse gas emission reports submitted by carbon emission
entities participating in carbon emission trading by independent
third-party service providers to ensure the validity and accuracy of
the emission data submitted by carbon emission entities.
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Grid line loss management (A12) (Xue and Tsai, 2022): The
power losses and damages incurred in transmission, substation,
distribution, and marketing during the transmission of electrical
energy from power plants to customers. With the rapid development
of renewable energy, the distribution system must strengthen its
ability to absorb and dispatch renewable energy.

3 Spherical fuzzy set theory

Fuzzy sets are powerful tools for dealing with uncertain
information and are widely used in areas such as evaluation
decision making (Yu et al., 2021). Spherical Fuzzy Sets (SFSs) is a
concept that extends the traditional fuzzy sets, which contains
extended forms of traditional fuzzy sets such as Intuitionistic
Fuzzy Sets (IFS), Intuitionistic Fuzzy Sets of the second type
(IFS2) and Neutrosophic Fuzzy Sets (NFS), providing more
powerful tools for decision analysis, data processing, and other
fields. Figure 1 illustrates the differences between IFS, IFS2, NFS,
and SFS. For example, the affiliation dimension for the rating
“absolutely much important” can be set to be close to 0.9, and the
neutrality and non-affiliation dimensions can be set to be
close to 0.1.

First, an SFS can transform semantic evaluation into fuzzy
numbers, providing a wider value domain for each parameter,
better dealing with uncertainty and expert’s hesitation, and
accurately reflecting decision maker’s preferences and judgments,
which is a significant feature of an SFS that distinguishes them from
other fuzzy sets. In addition, decision makers often rely on subjective
judgment and experience when assessing the contribution of
regional distribution grids to carbon emission reduction. An SFS
can allow decision makers to express their subjective judgments in a
more flexible and precise way, thus better reflecting the actual
situation. Finally, an SFS can enhance decision support by
helping decision makers better understand and analyze the
relationships between various factors and thus make more
rational decisions.

Therefore, this article adopts the SFS to accurately characterize
the evaluation information of high-dimensional uncertainty
indicators in the carbon emission reduction contribution of RDNs.

3.1 Definition of spherical fuzzy sets

AD � ADt|t � 1, 2, ..., K{ } is the set of semantic evaluations
provided by the decision expert Dt. ADt is converted to a
spherical fuzzy number ~AS on the argument domain U, as shown
in Equation 3.

~AS � u, μ ~AS
u( ), υ ~AS

u( ), π ~AS
u( )( )∣∣∣∣∣u ∈ U{ }. (3)

μ ~AS
: U ∈ 0, 1[ ] υ ~AS

: U ∈ 0, 1[ ] π ~AS
: U ∈ 0, 1[ ]. (4)

The values μ ~AS
, υ ~AS

, and π ~AS
, which are the degree of

subordination, non-subordination, and hesitation of u to ~AS,
respectively, are satisfied:

0≤ μ2~AS
u( ) + υ2~AS

u( ) + π2
~AS

u( )≤ 1,∀u ∈ U. (5)

3.2 Operations on spherical fuzzy numbers

The basic operations of ~AS � (μ ~AS
(u), υ ~AS

(u), π ~AS
(u)) and ~BS �

(μ ~AS
(u), υ ~AS

(u), π ~AS
(u)) for any two spherical fuzzy numbers ~AS

and ~BS, where λ is real and λ≥ 0, are as follows:

~AS ⊕ ~BS � μ2 ~AS
+ μ2 ~BS − μ2 ~AS

μ2 ~BS
( )1/2{ , v ~AS

v~BS,

× 1 − μ2 ~BS( )π2
~AS
+ 1 − μ2 ~AS
( )π2

~BS
− π2

~AS
π2

~BS[ ]1/2}, (6)

λ · ~AS �
												
1 − 1 − μ2 ~AS

( )λ√
, vλ~AS

,{
×

																									
1 − μ2 ~AS
( )λ − 1 − μ2 ~AS

− π2
~AS

( )λ√ }, (7)

where λ> 0. The spherical distance between ~AS and ~BS is
expressed as

D ~AS, ~BS( )
� arccos 1 − 1

2
μ ~AS

2 − μ~BS
2( )2[{ + v ~AS

2 − v~BS
2( )2 + π ~AS

2 − π ~BS
2( )2]},

(8)
where the defining factor 2

π makes the spherical distance between the
spherical fuzzy numbers to be [0, 1], instead of [0, 2π] because
μ2~AS

(u) + v2~AS
(u) + π2

~AS
(u) � 1, which is obtained by simplification:

D ~AS, ~BS( ) � 2
π
∑n
i�1
arccos μ ~AS

ui( )μ~BS
ui( )[ + v ~AS

ui( )v~BS ui( )
+ π ~AS

ui( )π ~BS ui( )]. (9)

The spherical weighted arithmetic mean operation of ~ASi(i �
1, 2, ..., n) is as follows
Mw AS1, AS2, ..., ASn( ) � w1AS1 + w2AS2 + ... + wnASn

�
															
1 −∏n

i�1
1 − μ2ASi
( )wi

√
,∏n
i�1

vwi
ASi

⎧⎨⎩ ,

FIGURE 1
Geometric representation of IFS, IFS2, NFS, and SFS.
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																															∏n
i�1

1 − μ2ASi
( )wi −∏n

i�1
1 − μ2ASi

− π2
ASi

( )wi

√ ⎫⎬⎭,

(10)
where wi ∈ [0, 1], ∑n

i�1wi � 1. The clear value of the spherical fuzzy
number ~AS is calculated as follows:

Def ~AS( ) � μ ~AS
− π ~AS

( )2 − v ~AS
− π ~AS

( )2. (11)

4 Evaluation method for carbon
emission reduction contribution
of RDNs

Considering the uncertainty of indicator evaluation, a hybrid
model is proposed for analyzing the carbon emission reduction
contribution of RDNs. The evaluation process consists of three
stages, as shown in Figure 2. When evaluating the carbon emission
reduction contribution of urban RDNs, the alternative to be
evaluated is Cj(j � 1, 2, ..., n), the evaluation indicator is

Ai(i � 1, 2, ..., m), and the decision-making expert is
Dt(1≤ t≤ k), t ∈ N+. According to Table 2, the semantic
evaluation information of qualitative indicators is converted into

FIGURE 2
Evaluation process of carbon emission reduction contribution of RDNs.

TABLE 2 Semantic evaluation and corresponding spherical fuzzy numbers
applied to SFS-BWM and SFS-MARCOS.

Semantic evaluation (μ, v, π) CIs

Absolutely Much Important (AMI) (0.9, 0.1, 0.1) -

Very Highly Important (VHI) (0.8, 0.2, 0.2) -

Highly Important (HI) (0.7, 0.3, 0.3) -

Slightly Much Important (SMI) (0.6, 0.4, 0.4) -

Equally Important (EI) (0.5, 0.5, 0.5) 3.00

Slightly Less Important (SLI) (0.4, 0.6, 0.4) 3.80

Less Important (LI) (0.3, 0.7, 0.3) 5.29

Very Less Important (VLI) (0.2, 0.8, 0.2) 6.69

Absolutely Less Important (ALI) (0.1, 0.9, 0.1) 8.04
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spherical fuzzy numbers, where ~xt,ij � (μt,ij, vt,ij, πt,ij) denotes the
spherical fuzzy evaluation information of the expert Dt for regional
distribution network Cj in indicator Ai. The decision assembly
information ~xij is denoted as:

~xij � ∑k
t�1
wt ~xt,ij, (12)

where wt represents the expert’s ability in the relevant domain and
satisfieswt ≥ 0,∑k

t�1wt � 1. The degree of expert semantic evaluation
can be compared by using Equations 9 and 10.

4.1 Measurement of indicator weights

The weights play a crucial role in the model-solving process;
however, the constructed indicator system contains a variety of
uncertain information. Accordingly, accurate quantification of
indicator weights will become a key problem in determining
carbon emission reduction contributions.

The evaluation indicator system constructed in this study has
many indicators. The commonly used indicator weight
determination methods (for example, hierarchical analysis) are
cumbersome and complex to calculate, so this article adopts the
BWM to prioritize the priority ranking of the indicator
assignment weights to obtain consistent results through less
pairwise comparison information (Xiao et al., 2023). In
addition, the “best-worst” comparison can more directly
reflect the relative importance of each criterion, which can
help researchers identify the key influencing factors more
quickly and formulate targeted emission reduction measures
(Jia et al., 2019). The BWM method ensures the scientificity
and rationality of the decision-making results through steps such
as consistency checking, which helps reduce the influence of
subjective judgments on the decision-making results and
improves the objectivity and accuracy of the study.

Therefore, the BWM is expanded into the SFS to develop a new
method of determining indicator weights. The specific steps are
as follows:

FIGURE 3
Preferential comparison.
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a. For the constructed evaluation indicator system Ai, determine
the best and the worst indicators, denoted as AB and AW,
respectively.

b. Construct the preference vector matrices ~O
0
B and ~O

0
W.

The preference comparison shown in Figure 3 is carried out and
converted into the corresponding spherical fuzzy numbers, as shown
in Table 2.

~O
t
B and ~O

t
W separately represent the vector of fuzzy preferences

of the best indicator AB over the other indicators provided, and the
other indicators over the worst indicator AW provided by the expert
Dt. The form of ~O

t
B is as follows:

~O
t

B � ~O
t

B1, ~O
t

B2, ..., ~O
t

Bn( ), (13)

where ~O
t
Bj � (μtBj, vtBj, πt

Bj). Integrate theK fuzzy preference vectors
~O
t
B(t � 1, 2, ..., k) provided by experts in the matrix ~O

0
B. It is

as follows:

~O
0

B �

~O
1

B1
~O
1

B2 / ~O
1

Bn

~O
2

B1
~O
2

B2 / ~O
2

Bn

..

. ..
.

1 ..
.

~O
K

B1
~O
K

B2 / ~O
K

Bn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (14)

Similarly, the fuzzy preference vectors of other indicators are
compared to the worst indicator ~O

t
W(t � 1, 2, ..., k) in matrix ~O

0
W. It

is as follows:

~O
0

W �

~O
1

1W
~O
1

2W / ~O
1

nW

~O
2

1W
~O
2

2W / ~O
2

nW

..

. ..
.

1 ..
.

~O
K

1W
~O
K

2W / ~O
K

nW

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

c. Integrate the preference vector matrices ~OB and ~OW.

According to Equations 3–7, integrate matrix ~O
0
B andmatrix ~O

0
W

into matrix ~OB and matrix ~OW as follows:

~OB � ~OB1, ~OB2, ..., ~OBn( ), (16)
~OW � ~O1W, ~O2W, ..., ~OnW( ), (17)

where ~OBB � (0.5, 0.5, 0.5), ~OWW � (0.5, 0.5, 0.5), ~OBj, and ~OjW are
calculated as follows:

~OBj � 1
k
∑k
t�1

~O
t

Bj

�
												
1 − 1 − μ2Bj( ) 1

k

√
, vBj

1
k{ ,

																								
1 − μ2Bj( ) 1

k − 1 − μ2Bj − π2
Bj( ) 1

k

√ }.
(18)

~OjW � 1
k
∑k
t�1

~O
t

jW

�
												
1 − 1 − μ2jW( ) 1

k

√
, vjW

1
k{ ,

																									
1 − μ2jW( ) 1

k − 1 − μ2jW − π2
jW( ) 1

k

√ }.
(19)

d. Determination of indicator weights.

Calculate the clear values of matrix ~OB and matrix ~OW

as follows:

R ~OB( ) � R ~OB1( ), R ~OB2( ), ..., R ~OBn( )( ), (20)
R ~OW( ) � R ~O1W( ), R ~O2W( ), ..., R ~OnW( )( ), (21)

where ~wB is the weight of the best indicator AB, ~wW is the weight of
the worst indicator AW, and ~wj is the weight of the indicator Ai. R(·)
is obtained from Equation 11 ~wj is satisfied:

min
~wB

~wj
− R ~OBj( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣. (22)

min
~wj

~wW
− R ~OjW( )∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣. (23)

It implies that the optimal weights of the indicators are
consistent between the optimal indicators compared to the other
indicators and between the other indicators compared to the worst
indicators as follows:

~wB

~wj
� R ~OBj( ). (24)

~wj

~wW
� R ~OjW( ). (25)

Let the objective value be ~ξ and construct an optimization model
to determine the best weights of the indicators. It is as follows:

min~ξ

s.t.

wB/wj − R ~OBj( )∣∣∣∣∣ ∣∣∣∣∣≤ ~ξ

wj/wW − R ~OjW( )∣∣∣∣∣ ∣∣∣∣∣≤ ξ̃.∑k
t�1

~wj � 1

0≤ ~wj ≤ 1
j � 1, 2, ..., n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

Solve the model by Lingo software to determine the indicator
weight set ( ~w1, ..., ~wj, ..., ~wn).

e. Consistency test.

The consistency ratio (CR) is a key indicator to test the
consistency of pairwise comparisons, and the consistency indices
(CIs) under different semantic evaluations have been given, as
shown in Table 2. The consistency ratio CR is determined from
the CIs and the target value ξ*. The formula is given below:

CR � ξ*
CI,

(27)

where CR is closer to 0, indicating higher consistency, and CR is
closer to 1, indicating lower consistency, where CR ∈ [0, 1].

4.2 Evaluation of carbon emission reduction
contribution based on SFS-MARCOS

Based on multi-dimensional indicator weights, the multi-
attribute decision-making method is extended into the spherical
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fuzzy environment to calculate the carbon emission reduction
contribution of RDNs. Considering that the decision-making
process needs to deal with a large and highly uncertain amount
of information, this research applies the MARCOS method. It is
compared with common multi-attribute decision-making methods
such as the multi-attributive border approximation area comparison
(MABAC), the fuzzy comprehensive evaluation (FCE), the complex
proportional assessment (COPRAS), and the preference ranking
organization method for enrichment evaluations (PROMETHEE)-Ι
and PROMETHEE-Ⅱ (Jia et al., 2019; Zhang et al., 2024; Rani et al.,
2020; Seikh and Mandal, 2023; Yu et al., 2023).

MARCOS considers the inverse ideal solution and the ideal
solution in the formation of the initial matrix, and at the same time,
covers many indicators and decision scenarios and maintains
stability (Thangaraj et al., 2023). Therefore, this article extends
MARCOS into an SFS environment to determine the
contribution of RDNs to carbon emission reduction. The specific
steps are as follows:

a. Constructing a group decision matrix [~xij]m×n.

~xij[ ]
m×n

�
A1

A2

..

.

Am

C1 C2 / Cn

~x11 ~x12 / ~x1n

~x21 ~x22 / ~x2n

..

. ..
.

1 ..
.

~xm1 ~xm2 / ~xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

whereAm denotes them.th type of indicator and Cn denotes the n.th
alternative. In addition, ~xij � (μij, vij, πij), ~xij is calculated
as follows:

~xij � 1
k
∑k
t�1

~xt
ij. (29)

b. Construct the extended population decision matrix �X(m+2)×n.

The ideal solution AI and anti-ideal solution AAI are
introduced into the group decision matrix [~xij]m×n to obtain the
extended group decision matrix:

�X m+2( )×n �

AAI
A1

A2

..

.

Am

AI

C1 C2 / Cn

~xaa1

~x11

~xaa2

~x12
/

~xaan

~x1n
~x21 ~x22 / ~x2n

..

. ..
.

1 ..
.

~xm1

~xa1

~xm2

~xa2
/

~xmn

~xan

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(30)

where AI represents the ideal solution of indicator Aj, and AAI
represents the anti-ideal solution of indicator Aj. ~xaj and ~xaaj are
calculated as follows:

~xaj � μaj, vaj, πaj( )
� min μij, max vij, min πij( ), if j ∈ C ,

max μij, min vij, min πij( ), if j ∈ D

⎧⎨⎩ (31)

~xaaj � μaaj, vaaj, πaaj( )
� max μij, min vij, min πij( ), if j ∈ C

min μij, max vij, min πij( ), if j ∈ D

⎧⎨⎩ , (32)

where D and C denote the benefit and cost indicators, respectively.

c. Calculate the weighting matrix ~Sj.

~Sj � w1x1j + ... + wixij + ... + wmxmj j � 1, 2, ..., n( ). (33)

In the formula, ~Sj is in the form of (μi, vi, πi). wixij is calculated
by Equation 10 as follows:

wixij �
													
1 − 1 − μ2 ~xij( )wi

√
,{ vwi

~xij
,

																										
1 − μ2~xij( )wi − 1 − μ2~xij − π2

~xij( )wi
√ }.

(34)

d. The sum ~SAAI, ~SAI of ideal and non-ideal solutions is
calculated:

~SAAI � w1xAAI1 + ... + wixAAIi + ... + wmxAAIm � ∑m
i�1
wi~xAAIi. (35)

~SAI � w1xAI1 + ... + wixAIi + ... + wmxAIm � ∑m
i�1
wi~xAIi. (36)

e. The utility degree of the solution is calculated:

K+
i � R ~Si( )

R ~Saai( ). (37)

K−
i � R ~Si( )

R ~Sai( ). (38)

In the formula, K+
i and K−

i represent the utility degree of
indicator Ai associated with ideal solution AI and anti-ideal
solution AAI, respectively, R(~Si) represents the clear value of ~Si.

f. Determine the utility function value f(Ki).

f Ki( ) � K+
i + K−

i

1 + 1−f K+
i( )

f K+
i( ) + 1−f K−

i( ).
f K−

i( )
(39)

where f(K+
i ) and f(K−

i ) denote the utility functions of the ideal
solution AI and the anti-ideal solution AAI, respectively. It is
shown below:

f K+
i( ) � K+

i

K+
i + K−

i

. (40)

f K−
i( ) � K−

i

K+
i + K−.

i

(41)

Finally, based on Equations 12–41, the utility function values of
the calculated solutions, f(Ki) are used to rank the perceived carbon
emission reduction contributions of the RDNs.

5 Case study

5.1 Case overview and model
implementation

Shanghai has promoted renewable energy and a circular
economy in Chongming Island, where distributed power supply,
new energy generation, and intelligent operation and maintenance
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have achieved certain successes, driving the city’s economy
toward low-carbon development. However, the significant
contribution of regional carbon emission reduction is not
currently perceived in depth, and the role of corresponding
mitigation initiatives to support the green transformation of cities
is not clearly defined. Therefore, this article selects 11 RDNs in
Shanghai for analysis.

The evaluation system contains 12 indicators. A1, A4–A11 are
revenue-based indicators, and A2, A3, and A12 are cost-based

indicators. The decision-making expert group consists of the
director of the finance department of the Chongming area, the
deputy dean of the School of Economics and Management of
Shanghai University of Electric Power, the head of the low-
carbon evaluation team of the Economic Research Institute, and
the personnel of the operation and maintenance center of Shibei
Area, who provide pairwise comparative information on the
indicators and information on the evaluation of the alternatives,
as shown in Figures 5, 6., respectively. After their discussion, it was

FIGURE 4
Area of RDNs in Shanghai.

FIGURE 5
Semantic evaluation information from experts for Shanghai RDN indicators.
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determined that the best indicator was A6 and the worst indicator
was A11. The case study adopts the SFS-BWM and SFS-MARCOS
modeling proposed in this article to quantify the carbon emission
reduction contribution of RDNs and analyze the results, and
Figure 4 shows the area of each RDN.

a. Conversion of pairwise comparison preference information
and alternative evaluation information into spherical
fuzzy numbers.

The pairwise comparison preference information and
alternative evaluation information provided by the experts, as

shown in Figures 5, 6, respectively, are converted into spherical
fuzzy numbers, as shown in Tables 3–5. ~O

1
7W is denoted as (0.9.0.1,

0.1), and ~x1
11 is denoted as (0.6, 0.4, 0.4).

b. Integration of pairwise comparative preference information
and alternative indicator performance evaluation information
provided by experts.

The pairwise comparative preferences and indicator performance
evaluations provided by the four experts are integrated to generate the
group preference information of the best indicators relative to other
indicators ~OBi, the group spherical fuzzy preference information of
other indicators for the worst indicators ~OiW, and the group evaluation
information of the RDN ~xij.

c. Indicator weight calculation.

The clear values of R( ~OBi) and R( ~OiW) for the vectors ~OBi and
~OiW, are generated, and the weights of the indicators ~wj are
determined by Lingo calculation, as shown in Figure 7.

d. Consistency test.

The target value ~ξ is obtained as 0.18 by using Equation 26, and the
consistency ratioCR is calculated as 0.038 by using Equation 27, which is
much smaller than 1 and close to 0. This low value indicates that BWM
shows strong consistency in determining the weights of indicators.

e. Determination of ideal solutionAI and anti-ideal solutionAAI.

Considering the influence of the indicators on the contribution
of areas to carbon emission reduction, the ideal solution AI and the
anti-ideal solution AAI of the indicator system are determined.

f. Calculate the ideal solution S(AI) and anti-ideal
solution S(AAI).

The indicator weights obtained in step c are brought into the
operation of a spherical fuzzy number to obtain the ideal solution
S(AI) and the anti-ideal solution S(AAI) of each indicator. The
clear values of the ideal solution S(AI) and the anti-ideal solution
S(AAI) are obtained through Equation 6.

g. Calculate and rank the utility function value f(Ki).

Equations 37, 38 are used to obtain the utility degree K+
i of

alternative Ai with the ideal solution AI and the utility degree K−
i of

alternative Ai with the anti-ideal solution AAI. In addition,
Equations 40 and 41 are used to obtain the utility function
f(K+

i ) is 1.03 and f(K−
i ) is −0.03. Based on this, Equation 39 is

used to obtain the utility function value f(Ki) of the carbon
emission reduction contribution of the RDNs, as shown in Table 6.

5.2 Result analysis

The indicator weight parameters of RDNs in terms of their
perceived carbon emission reduction contributions are shown in

TABLE 3 Preferences of the best indicator over other indicators.

A1 A2 . . . A12

D1 (0.9, 0.1, 0.1) (0.7, 0.3, 0.3) . . . (0.7, 0.3, 0.3)

D2 (0.8, 0.2, 0.2) (0.8, 0.2, 0.2) . . . (0.6, 0.4, 0.4)

D3 (0.9, 0.1, 0.1) (0.8, 0.2, 0.2) . . . (0.7, 0.3, 0.3)

D4 (0.9, 0.1, 0.1) (0.9, 0.1, 0.1) . . . (0.6, 0.4, 0.4)

TABLE 4 Preferences of other indicators over the worst indicator.

A1 A2 . . . A12

D1 (0.8, 0.2, 0.2) (0.8, 0.2, 0.2) . . . (0.9, 0.1, 0.1)

D2 (0.8, 0.2, 0.2) (0.8, 0.2, 0.2) . . . (0.8, 0.2, 0.2)

D3 (0.7, 0.3, 0.3) (0.8, 0.2, 0.2) . . . (0.9, 0.1, 0.1)

D4 (0.7, 0.3, 0.3) (0.7, 0.3, 0.3) . . . (0.9, 0.1, 0.1)

FIGURE 6
Expert determination of pairwise comparative preference
information.
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Figure 7. The weight parameters of the indicators obtained by the
SFS-BWM indicate that A4, A6, A12, and A7 are four relatively
important indicators. After the investigation, big data and artificial
intelligence can predict energy demand more accurately, fault
handling technology effectively processes and transforms energy,
and energy storage technology can store and utilize energy to solve
the contradiction between supply and demand in the power system

so the evaluation of indicator weights is consistent with the actual
situation, and the assignment of indicators is reasonable. However,
the performance of indicators A6, A8, and A12 is unevenly
distributed among RDNs that must make targeted improvements
according to their own situation. Meanwhile, the weight of A4 is
generally low, and the application of digitization technology in areas
must still be strengthened. In the future, in order to improve their
carbon emission reduction contribution, the RDNs will still face
many challenges in low-carbon development. Therefore, they must
continue to improve their equipment investment, technological
innovation, environmental protection, and comprehensive
management.

Under the influence of multi-dimensional indicators, the SFS-
MARCOSmethod is used to calculate the carbon emission reduction
contribution of RDNs, as shown in Figure 8. The results show that
C4 has the highest performance and C10 has the lowest. Chongming
has sufficient photovoltaic power and wind power generation
sources and is now connected to the new energy installed
capacity of 35 kV above, totaling 529 MW. The second-ranked
Pudong region has created several green factories, green supply
chains, green products, and green parks. Shanghai’s first green
finance regulations have been implemented in the Pudong New
Area. Changxing County has established a regulatory forcing
mechanism to guide enterprises to increase investment in green
manufacturing. In addition, the low-carbon agricultural
development practice area of Langxia Town, Jinshan District, has
realized the reduction, low-carbonization, and resource utilization of
agricultural waste through projects such as the resource utilization of
livestock and poultry manure.

The economic development in the southern region of the city
heavily relies on high-energy-consuming and high-emission
industries, with the electricity sector being the primary
contributor to this challenge, so the total amount and intensity of
carbon emissions from the south grid are high. For areas with low
contribution to carbon emission reduction, a variety of measures
should be taken according to local conditions to improve the effect
of carbon emission reduction. Therefore, the case results are in line
with the actual situation, which verifies the reliability of the
modeling method and shows that the evaluation is effective.

5.3 Sensitivity analysis

In order to analyze the influence of indicator weights on the
rankings of carbon emission reduction contribution of areas,

TABLE 5 Information on expert evaluation of the performance of alternative indicators.

C1 C2 . . . C11

A1 (0.6, 0.4, 0.4) (0.6, 0.4, 0.4)
(0.6, 0.4, 0.4) (0.6, 0.4, 0.4)

(0.6, 0.4, 0.4) (0.6, 0.4, 0.4)
(0.7, 0.3, 0.3) (0.7, 0.3, 0.3)

. . . (0.8, 0.2, 0.2) (0.7, 0.3, 0.3) (0.8, 0.2, 0.2) (0.8, 0.2, 0.2)

A2 (0.4, 0.6, 0.4) (0.3, 0.7, 0.3)
(0.3, 0.7, 0.3) (0.3, 0.7, 0.3)

(0.4, 0.6, 0.4) (0.3, 0.7, 0.3)
(0.3, 0.7, 0.3) (0.3, 0.7, 0.3)

. . . (0.1, 0.9, 0.1) (0.2, 0.8, 0.2) (0.3, 0.7, 0.3) (0.2, 0.8, 0.2)

. . . . . . . . . . . . . . .

A12 (0.4, 0.6, 0.4) (0.3, 0.7, 0.3)
(0.4, 0.6, 0.4) (0.3, 0.7, 0.3)

(0.4, 0.6, 0.4) (0.3, 0.7, 0.3)
(0.3, 0.7, 0.3) (0.3, 0.7, 0.3)

. . . (0.2, 0.8, 0.2) (0.1, 0.9, 0.1) (0.2, 0.8, 0.2) (0.2, 0.8, 0.2)

FIGURE 7
Indicator weight parameters.

TABLE 6 Program utility degree, utility function value, and rankings.

Ki
+ Ki

− f(Ki) Rank

C1 0.10194 0.08118 0.4433 8

C2 0.10006 0.08306 0.4536 7

C3 0.10364 0.07948 0.434 9

C4 0.0814 0.10172 0.5555 1

C5 0.08476 0.09836 0.5371 2

C6 0.10716 0.07596 0.4148 11

C7 0.09736 0.08576 0.4683 5

C8 0.08728 0.09584 0.5234 4

C9 0.09838 0.08474 0.4628 6

C10 0.10652 0.0766 0.4183 10

C11 0.08576 0.09736 0.5317 3

The meaning of "Pink" is the highest utility value; the meaning of "Blue" is the lowest utility

value.
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sensitivity analysis based on weight fluctuation was implemented.
For this analysis, all indicator weights were reduced or increased by
10% from the original, as shown in Figure 9.

Assuming that the original weight of Ai becomes wi′ � αwi, the
weights of other indicators will change accordinglyw′

o � βwo(i ≠ o).
The modified weights satisfy αwi +∑12

o�1,o ≠ iβwo � 1, where α takes
the values of 90% and 110%.

When indicator A8 is reduced by 10%, the ranking of carbon
emission reduction contribution of the original RDNs changes. C3

changes from ninth to tenth place, and C10 changes from tenth to
ninth. In addition, when indicator A3 was increased by 10%, the
carbon reduction contribution of C3 moved forward by one place
from ninth to eighth, while C1 changed from eighth to ninth,
exchanging rankings with each other. Changes in the weights of
the remaining indicators did not bring about a change in the ranking
of the carbon emission reduction contributions of RDNs.

This indicates that the environmental conditions of the region
where areas C3 and C10 are located have a significant impact on the
carbon emission reduction contribution of areas. When the regional
environmental condition deteriorates (A8 indicator decreases), the
carbon emission reduction contribution of some areas may fall in the
ranking, while other areas may benefit from it and rise. This reflects
the more prominent influence of environmental policies, regional
resource utilization efficiency, and other factors on the carbon
emission reduction contribution ability of RDNs in C3 and C10.
Indicator A3, changes in the cost of purchasing carbon allowances,
can also affect the ranking of RDNs in terms of their contribution to
carbon emission reductions. Increased costs may prompt areas to
optimize equipment operations and improve energy efficiency,
thereby increasing carbon emission reduction contributions.
Conversely, changes in costs may also affect areas’ emission
reduction efforts or willingness to invest. It is worth noting that

FIGURE 8
The evaluation results of carbon emission reduction contribution of RDNs under the MARCOS.

FIGURE 9
Ranking results of sensitivity analysis for indicator weight fluctuations.
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this change is bidirectional, that is, cost increases are positive for
some areas (e.g., C3) and negative for others (e.g., C1). This further
emphasizes the importance of cost control and operational efficiency
in the reduction of carbon emissions by RDNs.

5.4 Comparative analysis

In order to verify the feasibility and superiority of the SFS-
MARCOS method in evaluating the carbon emission reduction
contribution of RDNs, MABAC, FCE, COPRAS, PROMETHEE-Ι,
and PROMETHEE-II are used to replace theMARCOSmethod. The
application of MABAC in sorting problems is based on the distances
of the alternatives from the border approximation areas. The FCE
calculates the comprehensive evaluation value based on the set of
weights and the single-factor judgement matrix, thus obtaining the
overall evaluation of the evaluation object. The COPRAS considers
the relative importance of the options and takes into account the
actual validity of the options when dealing with the alternatives to
ensure the comprehensiveness and practicability of the assessment
results. The PROMETHEE combines the concepts of ideal and anti-
ideal solutions and evaluates the solutions by constructing
preference and aversion functions. The different results obtained
by the different methods are analyzed, and the following rankings of
utility function value of RDNs’ carbon emission reduction
contribution are obtained, as shown in Figure 10.

As can be seen in Figure 10, the carbon reduction contribution of
C4 is the highest, and this result is largely consistent across the various
decision-making methods, except for SFS-COPRAS and SFS-
PROMETHEE-Ι. C4 finishes in the second-best place in the SFS-
PROMETHEE-Ι. All the methods unanimously identify that the

carbon reduction contribution of C6 is lower than that of other
RDNs. Except for the SFS-MABAC calculations, which yielded the
second-lowest C6 ranking. In addition, it can be clearly seen that the
carbon emission reduction contribution of C5 and C11 is in the top
three of all methods, C6, C10, and C3 are in the bottom three of all
methods, and the remainingC1,C2,C7, andC8 are evenly ranked in the
middle four. The difference in the rankings of the largest and smallest
carbon reduction contribution of each RDN under all decision-making
methods does not differ by more than two places. The only exception is
the COPRASmethod in C10, which ranks seventh and is due to the fact
that COPRAS focuses more on a combined assessment of guideline
scores and weights, with each area having a score under each guideline,
which contributes to the differences in ranking results. The slight
difference in the comparison results is within the acceptable range
due to the variability of the method characteristics. All in all, the
robustness and effectiveness of the ranking results by the suggested
framework are verified.

Under the premise of ensuring the completeness of the decision-
making evaluation information, it is compared with the SFS-MABAC,
SFS-FCE, SFS-COPRAS, SFS-PROMETHEE-Ι, and SFS-
PROMETHEE-Ⅱ methods to make the evaluation result objective
and authentic and to verify that the SFS-MARCOS method is
feasible, effective, and meets the needs of decision-making in practice.

6 Conclusion

In this article, a novel multi-attribute decision-making BWM-
MARCOS method based on SFS is proposed for the realm of carbon
emission reduction contribution determination, whose
characteristics are as follows:

FIGURE 10
The rankings of the evaluation results of different decision-making methods in SFS environments.
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a. This article constructs the indicator system from four
dimensions of economy, technology, environment, and
management to provide an all-round determination of the
carbon emission reduction contribution of RDNs.

b. The SFS-BWMmethod is adopted to calculate the importance
degree of the indicators, circumvent the cumbersome and
complicated arithmetic procedures, and avoid the loss of
information in the evaluation.

c. The SFS-MARCOS method is used to deal with a large amount
of uncertain data, is robust to data changes, solves the problem
of data changes in the presence of a certain amount of noise,
and ensures the stability of the evaluation results.

Eleven areas in Shanghai are analyzed as examples to verify the
effectiveness and feasibility of the proposedmethod. The next step of
the study will incorporate quantitative information on the basis of
qualitative research and redesign the indicator system to support the
low-carbon development of other industries. In the future, research
can leverage big data and machine learning techniques to automate
data collection and analysis, reducing subjectivity and enhancing
accuracy. Multi-regional case studies can be conducted to test the
generalizability and applicability of the proposed model.

To this end, we offer the following recommendations for carbon
reduction in RDNs:

a. Strengthen the application of digital and intelligent
technologies.

b. Optimize the energy structure and increase the penetration of
new energy sources.

c. Implement scientific investment management and
cost control.

d. Enhance environmental regulation and third-party carbon
verification.
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