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A multi-task learning based line
parameter identification method
for medium-voltage distribution
network

Xuebao Jiang, Chenbin Zhou*, Qi Pan, Liang Wang,
Bowen Wu, Yang Xu, Kang Chen and Liudi Fu

Suzhou Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Suzhou, China

Accurate line parameters are critical for and dispatch in distribution systems.
External operating condition variations affect line parameters, reducing the
accuracy of state estimation and power flow calculations. While many methods
have been proposed and obtained results rather acceptable, there is room
for improvement as they don’t fully consider line connections in known
topologies. Furthermore, inaccuracies in measurement devices and data
acquisition systems can introduce noise and outliers, impacting the reliability
of parameter identification. To address these challenges, we propose a line
parameter identification method based on Graph Attention Networks and
Multi-gate Mixture-of-Experts. The topological structure of the power grid
and the capabilities of modern data acquisition equipment are utilized to
capture. We also introduce a multi-task learning framework to enable joint
training of parameter identification across different branches, thereby enhancing
computational efficiency and accuracy. Experiments show that the GAT-MMoE
model outperforms traditional methods, with notable improvements in both
accuracy and robustness.

KEYWORDS

line-parameter identification, multi-task learning, mixture of experts, medium-voltage
distribution system, graph attention network

1 Introduction

The rapid development of new power systems has increased the complexity of power
grid operations.The integration of distributed power sources and energy storage introduces
randomness and volatility, presenting new challenges for the control and operation of
distribution networks. Nowadays, power grids are mutating into Smart EEPS with highly
integrated cyber systems, physical systems, and social systems. Among ML, RL has strong
adaptability; thus, it is applied in many aspects of Smart EEPS, such as stability control,
AGC (Automatic Generation Control), VQC (Voltage Quadergy Control), OPFC (Optimal
Power Flow Control) and other scenarios (Cheng and Yu., 2019). Accurate line parameters
are crucial for state estimation (SE), event detection, fault analysis, and various calculations
within the distribution network (Zhang et al., 2020; Shi et al., 2020).

Unlike the transmission network, where line parameters can be derived from physical
or empirical formulas based on line length, resistivity, and geometric positioning,
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the distribution network requires different approaches due to
its radial topology and numerous feeder nodes (Wang et al.,
2016; Asprou and Kyriakides, 2018; Li et al., 2018). Blueprints
and planning documents can provide design parameters, but
real parameters often differ due to system upgrades. As a
result, traditional transmission line parameter identification (TLPI)
methods struggle when applied to distribution networks. The key
challenge is linking collected data to the line model. Existing
parameter estimation methods can be grouped into two categories:
model-driven and data-driven.

In medium voltage distribution networks, the complexity of
operations and time-varying loads make it hard to build accurate
mathematical models. To obtain more accurate line parameters,
real-time line parameter identification can be carried out based
on measurement data obtained by on-site measuring devices
(Singh et al., 2018; Yu et al., 2018; Yu et al., 2019). Currently,
the data used in parameter estimation mainly comes from two
types of sensors: Supervisory Control and Data Acquisition
(SCADA) systems and PhasorMeasurement Units (PMUs). SCADA
devices have been widely installed in medium voltage distribution
networks, capable of collecting the amplitude of the electrical
quantities but unable to obtain the phase data. PMUs can
provide synchronized electrical quantities, but their high cost
has limited large-scale deployment in distribution networks,
failing to meet observability requirements under most conditions.
Therefore, domestic and foreign scholars have conducted research
on distribution network line parameter identification methods
using phase-free data (Xiao et al., 2021). When PMUs are not
available (Shi et al., 2024), applied a linear regression to estimate line
parameters, topology, and phase labels, with nodal angles recovered
via non-linear regression.

Since measurement devices characteristics can lead to outliers, it
is essential to consider the DLPI problem with outliers and propose
a new robust method to improve the accuracy of line parameter
identification, especially under conditions involving PMU outliers
and discrepancies in the accuracy of the coefficient matrix and
observation data matrix. Research methods mainly focus on the
least, squares method, residual sensitivity analysis, and regression
methods (Zhu and Abur, 2010; Lin and Abur, 2018). A new iterative
weighted least squares (WLS)method for dealing with line parameter
deviations from systematic errors is also proposed, using estimates
to calculate the gain matrix and prior knowledge to calculate the
covariance matrix Pegoraro and his team focused on the estimation
of measurement uncertainty and correction factors of D-PMUs,
conducting a series of studies (Pegoraro et al., 2017; Puddu et al.,
2018; Pegoraro et al., 2019a; Pegoraro et al., 2019b; Pegoraro et al.,
2022). However, these methods assume widespread deployment of
micro-PMUs, which limits their application. Thus, the performance
of the linear regression method is limited by the incomplete
configuration of measuring equipment in distribution networks.
Meanwhile, as noted in Yu et al. (2019), imperfect synchronism
and time interval deviations in smart meters may not ensure instant
measurements for distributed generations (DGs), flexible loads, and
electric vehicles with relatively dynamic behaviors.

Thanks to the development of machine learning and deep
learning technologies, data-driven methods are gradually being

widely applied to analyze and extract deep insights from data
based on partial real-time data. In Li et al. (2022), a differential
evolution algorithm is employed to identify line parameters, even
when many original parameters are missing. Chen and his team
find out that the integration of heuristic swarm intelligence search
algorithms and AI technologies offers a significant approach to
addressing the behavioral decision-making challenges (Cheng,
2020; Cheng et al., 2021; Cheng et al., 2022). Another study (Wang
and Yu, 2022) develops a physics-informed graphical learning
algorithm, using stochastic gradient descent to update the three-
phase series resistance and reactance (Yang et al., 2022) proposed
an RBFNN-MRO method combining a radial basis function neural
network with multi-run optimization, which does not require
synchronized phasor measure data as it uses a constant feeder
parameter model over a specified short period. Other study
Li et al. (2024); Yang et al. (2023) introduced a deep-shallow
neural network to approximate power flow equations, employing
reinforcement learning to optimizewhile ensuringmaximal physical
consistency. To reduce the influence of noise and deviation,
different robust methods are used to improve accuracy. Sun et al.
(2019) use convolutional neural networks (CNNs) to classify
line impedance values and the results deviate from the original
within 10%. Also, recent research in parameter identification
focuses on overcoming limitations related to data structure, noise,
and accuracy. Graph-based models (MNGAN, MFAGCN) are
proposed using attention mechanism to enhance identification
with non-Euclidean structures (Xia et al., 2022; Zou et al., 2024;
Wang et al., 2022).

Above all, future works in DLPI should integrate physics
information with deep learning methodologies. This paper
introduces a multi-branch method for identifying line parameters
using data from both ends of distribution lines. Addressing
current limitations in identifying parameters of branched medium
voltage distribution networks with topological constraints,
the paper proposes a GAT-MMoE based DLPI method. This
approach employs a multi-task neural network incorporating graph
convolutional networks to tackle the line parameter identification
problem. The graph attention network (GAT) uses an attention
mechanism to learn the importance of neighboring nodes in a
graph. Unlike traditional methods, where the contribution of
neighbors is fixed, GAT dynamically adjusts the influence of
each neighboring node based on its relevance to the target node.
This leads to more accurate and nuanced feature representation.
The MMoE model extracts topology features of the distribution
network, with node features derived from graph attention networks
and a multi-task learning model employing homoscedastic
uncertainty loss.

The rest of this paper is structured as follows: Section 2
describes the modeling of the task of multi-branch line parameter
identification in the distribution network, including problem
formulation and the construction of the graph attention and
multi-task modules. Section 3 covers the overall framework and
workflow of the suggested method. Section 4 presents results
and discussion, along with dataset description and comparison
to alternative machine learning methods. Finally, this paper is
summarized in Section 5.
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2 Problem formulation

2.1 Parameter identification task and
system construct

Current line parameter identification technologies face several
challenges: 1) The low investment and high construction costs of
smart devices impede the deployment of PMUs at each bus node,
making real-time monitoring of voltage phase angle information
difficult. 2) The integration of distributed photovoltaic systems on
the user side causes reverse power flow and significant voltage
fluctuations, making it difficult tomaintain accuracy and robustness
in the task of distribution line parameter identification.

The objective of DLPI is to find the mapping between node
characteristics and line parameters and to identify the line resistance
and reactance of each branch. Given the features of power grid
branch, it is achieved using the active power, reactive power, and
voltage amplitude provided by measuring equipment in medium-
voltage distribution networks. The powerful learning ability of
neural networks can be utilized to build a power flow model, mine
constraints, and learn historical data to train the model. The power
flow calculation using polar form of the nodal power Equation 1 is:

{{{{{{{{{{{
{{{{{{{{{{{
{

Pi = PGi − PLi =
n

∑
j=1

ViVj(Gij cos θij +Bij sin θij)

Qi = QGi −QLi =
n

∑
j=1

ViVj(Gij sin θij −Bij cos θij)

Zij = Rij + jXij =
Gij

G2
ij +B

2
ij
− j

Bij

G2
ij +B

2
ij

(1)

where Pi andQi are the active and reactive power injected into node
i, respectively. PGi andQGi are the active and reactive power from the
power source at node i; PLi andQLi are the active and reactive power
consumed by the load at node i; Gij and Bij are the conductance
parameters consisting of g and b between nodes i and j, respectively.
Vi and Vj are the voltage amplitudes of nodes i and j, respectively;
θij is the difference in the phase angle of the voltage between nodes i
and j. In the modeling stage, we use power flow equations expressed
in polar coordinates to accurately represent the system’s behavior.
However, during the experimental phase, the results are provided in
terms of impedance parameters (resistance R and reactance X) as
the original IEEE test case data is given in these terms. To facilitate
direct comparisonwith the IEEE standard data, the node admittance
matrix is converted into corresponding impedance values.

Meanwhile, parameter identification can be considered as a
multi-task regression problem. Considering that the phase angle
difference between the two ends of each branch of the distribution
network is tiny, we assume that the phase angle difference of adjacent
nodes i and node j is 0 for easy analysis.Thus, the linear voltage drop
equation for line k is:

Vi −Vj = Rk
Pij
Vi
+Xk

Qij

Vi
(2)

where Rk and Xk are the line resistance and reactance. Equation 2
represents the node connection relationship and line parameters,
describing the relationship between node voltage and power.
When constructing the system, lines are numbered according to
the order of the end nodes of the line. For line k, the input

characteristics of the distribution network can be expressed as Xk =
(Pki ,P

k
j ,Q

k
i ,P

k
j ,V

k
i ,V

k
i ) ∈ ℝ

6
k, allowing the mapping of R and X to be

determined from the input Xk.
In traditional line parameter identification, the problem can

be generalized as a linear regression problem or a quadratic
programming problem. However, due to the fitting properties
of linear regression, outliers can have significant effects on the
regression, resulting in poor robustness. As the distribution network
often encounters noise interference, datamissing, or other situations
due to the complicated operational conditions and numerous
measurement devices, the performance of the linear regression
model will deteriorate. Therefore, we select the deep learning
method to extract the features of nodes on the premise of obtaining
reconstituted measurement data samples. Deep learning techniques
offer robust feature extraction capabilities, making them well-suited
to handle the complexities and noise inherent in medium-voltage
distribution networks.

2.2 System graph construction

Using network topology as a graph to analyze features allows
for a more comprehensive utilization of structural information
compared to solely relying on measurement data. Graph data
G(V ,L), consisting of a vertex set V and an edge set L, being
non-Euclidean structured, results in better classification accuracy.

In constructing the general distribution network diagram
model, the bus is typically regarded as the node and the connecting
line as the edge. However, graph learning focuses on node
features. Therefore, for parameter identification tasks, we consider
parameters as nodes of the graph and common buses between lines
as edges to represent the connection relationships between lines.The
feature extraction process is illustrated in the following Figure 1.

For undirected graph G(V ,L,A), V is the set of n vertices, Vi ∈
V,L is the set of edges in the graph, and Eij ∈ E. A ∈ ℝn×n is the
adjacency matrix, representing the topology among the nodes. Take
X as the input,U is the eigenvector matrix of the normalized Laplace
Matrix of the graph, gθ is the response function of the eigenvalue.
Original standard of GCN is defined as:

X∗ gθ = UgθU
TX (3)

Use Chebyshev polynomials gθ(Λ) = ∑
K
k=0θkTk(Λ) to

approximate and substitute it into Equation 3 to obtain Equation 4,
in which L̃ = 2

λmax
L− IN:

X∗ gθ =
K

∑
k=0

θkTk(L̃)X (4)

Then the convolution process is approximately
defined as Equation 5 by using first-order Chebyshev polynomial to
generate the local convolution kernel:

X∗ gθ = θ(IN +D
−1/2AD−1/2)X = θ(D̃−1/2ÃD̃−1/2)X (5)

In this formula, Ã = A+ IN, Dii = ∑jÃij. The spectral theory is
applied and the output of each layer can be written as Equation 6:

Xk
(l+1) = f(Xk

(l),A) = σ(D̂−1/2AD̂−1/2X(l)k W(l)k ) (6)
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FIGURE 1
Graph extraction process.

where X(l+1)k is the mapping of each layer, l ∈ {0,…,L− 1}, X(0)k is
the input feature Xk. X(l)k represents the feature matrix of the lth
layer of the model. σ(∙) is the activation function, W represents
the weight matrix in neural network. Since the model’s input is
the graph structure data X, including the adjacency matrix and
corresponding attributes, the graph construction process must be
completed before model training to represent the data itself and
uncover the association relationships between the data.

3 GAT-MMoE model design for line
parameter identification

3.1 Graph attention module design

Graph Attention Network (GAT) combines a graph neural
network (GNN) with an attention mechanism, specifically tailored
for processing graph-structured data by assigning different
attention to neighboring nodes on a graph (Velickovic et al.,
2017). It can reduce the computational cost and make it more
scalable than methods that consider all neighbors equally, such as
traditional Graph Convolutional Networks (GCNs). This flexibility
is particularly important for large, sparse graphs. In this paper, GAT
module is applied to transform the feature of each node into an
inter-node attention coefficient through the graph attention layer,
producing a new feature that allows for monitoring changes in
neighboring nodes. Thus, information about each branch line and
the distribution of impedance values between adjacent branches can
be learned, improving the accuracy of parameter identification. We
inputX(0)k and the adjacencymatrix into the graph convolution layer
to learn the node features and structure.

First, the voltage amplitude of nodes under a single time section
is input into the graph attention network to calculate the similarity
between each node and its neighbors in the distribution network.
For each node i, calculate the corresponding coefficient between
node j and itself:

ekij = a([W
khiWkhj]), j ∈Ni (7)

where [⋅⋅] is the concatenation operation.Wk is the learnable weight
matrix for kth layer of the attentionmechanism, finally a(∙) is used to
map the concatenated high-dimensional features to a real number.
Ni indicates the set of nodes adjacent to node i, hi and hj represent
the feature value for node i and j respectively.

After obtaining the correlation coefficient for all the
neighboring nodes of node i, the attention coefficient is normalized
using softmax:

αkij = so ftmax(eij)
exp(LeakyReLU(ekij))

∑
j∈Ni

exp(LeakyReLU(ekij))
(8)

LeakyReLU(x) =
{
{
{

x,x > 0

βx,x ≤ 0
(9)

Where αkij is the attention coefficient between the k head
attention mechanism node i and the adjacent node j. According
to Equations 7, 8, new node features are formed by aggregating
information using the attention coefficient matrix a.

After the attention weights of all nodes are normalized, the
information of nodes is extracted through the graph attention layer.
For different features, different attentionweights need to be assigned.
If only single-layer attention is used, the same attention weights
are applied to all attributes of the neighbourhood node, which will
weaken the learning ability of the model.The specific calculations in
each layer are shown in Equations 9–11.

In each attention layer, we use this to weigh the messages of a
node’s neighbours, which are the neighbour’s features multiplied by
the same learnable weight matrix W. We do this for each attention
head and concatenate the result of the heads together:

h′i =
K
‖
k=1

σ(∑
j∈Ni

αkijW
khj) (10)

σ(x) = 1
1+ e−x

(11)

K is the attention head number and we choose Sigmoid as the
activation function. The feature hi

', calculated by the multi-head
attention mechanism, incorporates the contribution of the features
of neighboring node j to node i, therefore having a stronger ability to
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express features.The feature information is then input into themulti-
task module after being learned by the GAT module to identify
branch line parameters. Identification tasks for different branch
parameters are input into separate expert networks, with each
expert responsible for a specific subspace. Moreover, GAT possesses
topological extrapolation capabilities. If the topology of the station
area changes due tomaintenance or other reasons, adaptive anomaly
identification can be performed by inputting the new adjacency
matrix after training the original adjacency matrix into GAT.

3.2 Multi-task module design

In the parameter identification work of distribution networks,
multiple branches typically require parameter identification, with
each branch having multiple target parameters to identify. The
magnitudes of branch resistance and reactance are generally quite
different, but their characteristics depend on the same factors.
Moreover, branch data are strongly interrelated, and variations in
the electrical variables of one transmission branch often affect
the measurement data of the entire distribution network. Multi-
task learning leverages the correlations between multiple tasks to
optimize the performance of multi-parameter identification. In
this paper, a multi-task strategy is employed to identify multiple
targets simultaneously, thereby reducing computational effort.
According to previous works, different branches are identified as
independent tasks.

3.2.1 Model choosing and sharing policy
TheMixture of Experts (MoE) approach was initially developed

and explored within the field of artificial neural networks, where
experts are typically neural network models used to predict
numerical values in regression or class labels in classification.
To capture differences among multiple branch line parameter
identification tasks, a gating network is added for each task,
forming the Multi-gate Mixture of Experts (MMoE) model on the
basis of MoE (Shazeer et al., 2017; Ma et al., 2018). The MMoE
enhances performance by allowing multiple tasks to share a set
of expert networks, while also assigning different combinations
of those experts to each task. The architecture setup which
contains a set of expert networks and gating networks enables
better task-specific learning and reduces the risk of overfitting,
especially when different tasks are related but still require some
specialization. For medium-voltage distribution systems, which
face constantly changing conditions like load variations and fault
scenarios, traditional methods like FCNs often struggle to adapt
in real-time across multiple tasks without significant re-calibration.
MMoE excels in these environments by providing a more efficient
and adaptive solution, improving both accuracy and reliability in
parameter identification across different branches.

Multi-task learning can be divided into two mechanisms: hard
parameter sharing, where different tasks share the bottom hidden
layer, and soft parameter sharing. Both mechanisms have their
advantages and disadvantages. In the hard sharing mechanism,
parameter sharing is used for feature extraction andoutput, reducing
the risk of overfitting. However, if task differences are large, the
model results become less credible (Jacobs et al., 1991; Eigen et al.,
2013). The MMoE module represents a soft parameter sharing

model, using expert networks as shared substructures for parameter
sharing. Each task employs a gating network to learn different
combination patterns of the expert networks. Compared to the hard
parameter sharing model, MMoE handles task differences more
effectively and has demonstrated better performance in practice.The
principle is shown in Figure 2.

The MMoE model primarily consists of two core components:
Gate Net and Experts. The role of Gate Net is to establish a
connection between the data and the expert model, determining
which expert model should process the input sample. Experts form
a relatively independent set of models, each responsible for handling
a specific input subspace. First, multiple branch identification tasks
are decomposed into several sub-tasks, each corresponding to a
network, with an expert model trained in each subnet. We use
Equations 12–14 to represent the model construction.

Let x represent the model input, for task k, the MMoE model is
formulated as

yk = h
k( f(x)) (12)

fk(x) =
n

∑
i=1

g(x)i fi(x) (13)

where n represents the number of tasks, hk represents the specific
tower network where features are fed up and analyzed. Gate
networks G assign different weights to each expert, with gk being
the output of the gate network corresponding to expert network i
for each subtask k. The gating network interprets the predictions
made by each expert and aids in deciding which expert to trust
for a given input. It takes the input pattern provided to the expert
models and outputs the contribution that each expert should have
in predicting the input:

gk(x) = softmax(Wgkx) (14)

Wgk is a trainablematrix,W ∈ ℝn×d . Graphs constructed in Section 2
are sparse graphs, thus fit properly as embeddings for sparse features.

For the multi-branch parameter identification task, only highly
correlated experts are selected to provide accurate answers. The
expert model in this paper is implemented using Multilayer
Perceptrons (MLPs). Output results are obtained using pooling
methods to achieve a weighted sum prediction based on expert
weights. The gated model then receives data elements as input,
assigns them to different expert models for inference, and outputs
weights representing each expert’s contribution to processing the
data. The pooling system calculates a weighted sum of the classifier
outputs for each class and selects the class with the highest
weighted sum. To control overall sparsity, the design and parameter
adjustment of the gated network are primarily relied upon when
there are many learning tasks. The involvement of more expert
models increases the complexity of the calculation. If the gated
network activates more expert models in a single selection, model
performance improves and sparsity is reduced.

3.2.2 Loss function design
In MTL, label loss is the loss in the calculation of real data

labels and network prediction labels for each task. Usually, the
label loss is determined by the nature of the learning task and is
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FIGURE 2
Soft-sharing mechanism.

realized through Equation 15 by weighted summation of the loss of
different tasks:

Ltotal =∑iωi(t) ∗ Li (15)

However, simply using linear weighting of multiple task
losses has some significant disadvantages. Therefore, according
to Cipolla et al. (2018) and Fernandez-Delgado et al. (2019),
considering the distinctive contributions of different tasks to helping
the final results, we use homoscedastic uncertainty as a basis for
weighting losses to adjust the influence of tasks in the final loss
function for optimizing the whole framework. Take two tasks, for
example, the log likelihood for this output can then be written as
Equations 16, 17:

log p(y = c| fW(x),σ) = 1
σ2

fWc (x) − log∑c
′exp( 1

σ2
fWc′ (x)) (16)

p(y| fW(x),σ) = So ftmax( 1
σ2

fW(x)) (17)

fW(x) is the output of a neural network with weightsW on input x.
σ is a positive scalar, which is learnt in the training process.Then we
can attain joint loss of different tasks through Equation 18

L(W,σ1,σ2) = − log p(y1,y2| f
W(x)) (18)

The multiple final loss is Equation 19:

Ltotal =∑iωi(t) ∗ Li =∑i
1
2σ2i

Li + log σi (19)

3.3 Overall framework of the proposed
method

The overall framework of the proposed GAT-MMoE for
distribution line parameter identification is depicted in Figure 3 As

shown in Figure 3, amulti-task learningmodel based on an attention
graph is constructed. The input of GAT-MMoE we proposed is
feature matrix X and the adjacency matrix A, which means that our
input features contain n nodes, each node containing six features.
The final output of the wholemodel can be expressed as Equation 20:

Ỹk =MTk(Xj) (20)

where MTk represents the mapping function of the k-th branch. Xj
is the j-th expert output.

To overcome the DLPI problems, the system graph is
established according to the description in Section 2, with each
node corresponding to a physical bus in the distribution network.
The input feature of the distribution system is expressed as
(Pi,Pj,Qi,Qj,Vi,Vj) ∈ X

k. The number of nodes is decided by the
scale of distribution network, which means that our input features
contain n nodes, each node contains the above six features.

The GAT module extracts the characteristics of the system and
pays attention to different branch information in different subspaces
by using multi-head attention mechanism. Then the different
subspaces are concatenated to infuse the learnt information. The
features information is then input into the multi-task module for
training. The multi-task module is an MMoE-backboned MTL
module, which contains multiple expert subnetworks. Gate control
units are used to calculate the loss for different tasks during the
training process and update the parameters related to each task
based on the loss. The model’s outputs are the estimated branch line
impedance.

4 Case studies

In this section, the IEEE 14-node distribution network (case 1)
and the IEEE 33-node distribution network (case 2) are selected

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1485369
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jiang et al. 10.3389/fenrg.2024.1485369

FIGURE 3
Overall framework of the proposed GAT-MMoE model.

FIGURE 4
IEEE-14 distribution system.

as research objects to verify the effectiveness and robustness of the
proposed method. The corresponding topological structure of the
system is represented by Figures 4, 5. Experiments are performed on
a computerwith Intel Core i7-8700K@3.70 GHzCPU, andNVIDIA
GeForce RTX 3060 Ti GPU. It utilizes Python3.10, Pytorch2.0.1 and
pandapower2.13.1.

4.1 Dataset description

The power flow formula of power system is as follows:

{{{{{
{{{{{
{

Pi = Vi

n

∑
j=1

Vj(Gij cos θij +Bij sin θij)

Qi = Vi

n

∑
j=1

Vj(Gij sin θij‐Bij cos θij)
(21)

According to Equation 21, Node voltage, active power
and reactive power data are simulated by pandapower toolkit
(Thurner et al., 2018). The active power injected by nodes in the
load data is sampled by the Latin hypercube sampling method at
[0.8Ps,1.2Ps], where Ps represents the standard active power of the
distribution network. Reactive power data set is generated by active
power data set and power factor. The power factor cosφ satisfies the
uniform distribution of parameters (0.85,0.95). Reactive power is
calculated by power factor through Equation 22. The formula for
calculating reactive power injected by nodes is as follows:

Qi(t) =
Pi(t)

tan(arccos φ(t))
(22)

where φ(t) ∈ [0.85,0.95], Pi(t) and Qi(t) are the active power and
the reactive power injected into node i at time t. φ(t) represents the
power factor of the system at time t.

In this paper, 20 types of radiative network topologies are
selected, then we add Gaussian noise with σ of 0.01, 0.03, 0.5, 1, 2
to each load level, and sample each noise 6 times. A total of 69,120
sets of samples are obtained and divided, including 70% data as
training set, 20% data as test set, 10% data as verification set. The
hyperparameters of the model, such as the attention coefficient α,
and learning rates are determined by 10% of the data set.

4.2 Evaluation index and baseline model
setup

Asuite ofmetrics is employed tomanifest the performance of the
model proposed in this work. Specific calculation formula as shown
in Equations 23, 24:
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FIGURE 5
IEEE-33 distribution system.

FIGURE 6
Training loss over epochs.

Root mean square error (RMSE):

ERMSE = √
1
K

K

∑
i=1
(yi − ̂yi)

2

(23)

Mean absolute percentage error (MAPE):

EMAPE =
1
K

K

∑
i=1
|
yi − ̂yi
yi
| × 100% (24)

Where yi and ̂yi respectively represent the true value and the
predicted value, K represents the sampling number.

In order to prove the validity of our proposed model, we adopt
the following methods as baselines:

1) LR: By minimizing the sum of squares of errors, the linear
regression model is used to provide coefficients that quantify
the contribution of each feature to the target variable, but may
face the problem of overfitting.

2) SVR: Support vector regression is a machine learning method,
which adopts the idea of support vector and the Lagrange
multiplier to perform regression analysis on data when doing
data fitting.

3) FCN: Fully connected neural network is a type of linear
neural network, which inevitably faces the problem of poor
precision in dealing with nonlinear data sets and overfitting.
Fully connected prediction is accomplished by flattening the
input matrix.

In our implementation, the GATmodule utilizes three attention
heads, with a hidden representation dimensionality set to 128
and a dropout rate of 0.3. For optimization, we use a batch
size of 128 and a learning rate of 0.005. The MMoE module is
trained with the Adam optimizer and the learning rate is grid
searched from [0.0001, 0.001, 0.01]. To prevent overfitting in
both the expert and gating networks, the dropout rate is 0.2.
Different weights of each task are assigned using homoscedastic
uncertainty.

4.3 Results and discussion

According to Figure 6, We can find that the gradient of our
proposed model decreases rapidly and converges fast after around
the 20th epoch with little change in accuracy, which demonstrates
the superiority of our model in deep learning-based algorithms.

From Figure 7, it can be noticed that the proposed GAT-MMoE
model can effectively identify the branch line parameters. For case
1, the max relative errors lie in branch 7 and 1 respectively for R
and X, reaching 3.83% and 4.35%. Table 1 shows the parameter
identification errors of branch resistance and reactance, the
corresponding average errors are 3.84% and 2.67% for R and X. For
case 2, the relative max errors are 9.63% and 9.87%. From Table 2,
average errors for R and X are 6.69% and 7.24%. The GAT-MMoE
model can achieve the lowest error in most cases. The deviation
comes from the Gaussian noise we add and as the resistance and
reactance have different orders of magnitude, the errors are within
the allowable range.
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FIGURE 7
Identification results presented with true values and identification values. (A) line resistance of IEEE-14 system; (B) line reactance of IEEE-14 system; (C)
line resistance of IEEE-33 system; (D) line reactance of IEEE-33 system.

Compared with the baseline model, our proposed GAT-
MMoE model demonstrates higher accuracy and better robustness
considering measurement error. The results in Tables 1–4 indicate

that the proposed GAT-MMoE method outperforms all other
models in terms of RMSE and MAPE. Network-based methods
generally show superior performance compared to linear regression
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TABLE 1 Identification errors in IEEE-14 system.

LR SVR FCN GAT-MMoE

Average error of R 0.3732 0.0578 0.0622 0.0384

Average error of X 0.3485 0.0563 0.0588 0.0267

Max error of R 0.1022 0.0344 0.0425 0.0218

Max error of X 0.1234 0.0437 0.0438 0.0319

Min error of R 0.4043 0.0726 0.0733 0.0083

Min error of X 0.3732 0.0794 0.0799 0.0035

TABLE 2 Identification errors in IEEE-33 system.

LR SVR FCN GAT-MMoE

Average error of R 0.3763 0.0609 0.0652 0.0569

Average error of X 0.3815 0.0593 0.0618 0.0426

Max error of R 0.4173 0.0756 0.0763 0.0638

Max error of X 0.5489 0.0824 0.0929 0.0612

Min error of R 0.1552 0.0434 0.0495 0.0168

Min error of X 0.1264 0.0467 0.0568 0.0153

and traditional machine learning methods, underscoring the value
of graph attention learning in extracting high-quality features for
DLP prediction. The superior performance of GAT-MMoE can be
attributed to its effective utilization of related knowledge between
neighboring nodes in the graph. Most baseline methods do not
specifically address the issue of sparsity in their models, resulting
in suboptimal performance. Our model leverages multiple data
sources to construct the information network and employs a multi-
task learning framework to address the specific task of predicting
branch line parameters. Consequently, GAT-MMoE outperforms
the selected baselines. Additionally, the model demonstrates
good robustness when photovoltaic power supply is integrated
into the system. Once the model training is completed, it can
simultaneously predict all parameters of the power grid branch.
Despite the lengthy training process, the method’s robustness and
accuracy compensate for this drawback. Moreover, the trained
neural network model can be easily and rapidly deployed to the
required locations, making it a practical solution for real-world
applications.

From Tables 3, 4, different we can find that our proposed GAT-
MMoE model achieves the best identification results in most cases.
The indexes of multi-task learning model are better than that of
single task learning model. By comparing the machine learning
methods, we can find that the LR method achieves very good
identification results without noise, but when the input features
contain disturbance and noise, the accuracy of branch parameter
identification is greatly reduced. Deep learning method like FCN

TABLE 3 Identification indexes compared with different baseline models
in IEEE-14 system.

R RMSE MAPE X RMSE MAPE

LR 0.8732 0.7322 LR 0.4198 0.3485

SVR 0.1924 0.0845 SVR 0.2643 0.0967

FCN 0.2494 0.1412 FCN 0.0953 0.0876

GAT-
MMoE

0.0545 0.0203 GAT-
MMoE

0.0638 0.0311

TABLE 4 Identification indexes compared with different baseline models
in IEEE-33 system.

R RMSE MAPE X RMSE MAPE

LR 0.9302 0.1222 LR 0.5598 0.5697

SVR 0.2521 0.1245 SVR 0.2743 0.1267

FCN 0.6578 0.2612 FCN 0.3453 0.2384

GAT-
MMoE

0.0689 0.0317 GAT-
MMoE

0.0688 0.0487

fail to balance accuracy between resistance and reactance, as the loss
function is only simple addition. Also, the method is more inclined
to the identification result of line resistanceR and ignores the branch
reactance X.

The influence of distributed photovoltaic access on the proposed
identificationmethod is further explored.We incorporated multiple
distributed photovoltaic (PV) systems into the distribution network,
with the power data of the PV sources derived from the Desert
Knowledge Australia Solar Centre (DKA Solar Center, 2024) We
integrated PV1 and PV2 at nodes 7 and 12 in the IEEE 14-
bus system, and at nodes 22 and 33 in the IEEE 33-bus system.
Based on the sampling frequency of every 15 min, the system
node data is obtained by power flow calculation. After collecting
system P, Q, and V data over multiple time profiles, we input
them into the model for parameter identification. Figure 8 shows
that the identification error increases when a distributed power
supply is present in the network. This increase is due to the
changes in power flow direction caused by the integration of
distributed photovoltaics. However, the identification errors remain
within the acceptable range, demonstrating the robustness of
the method.

For most existing distribution power system, the complexities
and dynamic conditions present unique challenges and
opportunities for parameter identification. Given that most
existing power grid branch parameter identification methods are
model-driven, resulting in low accuracy and poor reliability, our
proposed model leverages a large volume of multi-source power
grid operation data. It is constrained by the grid topology while
integrating both local and global information. This approach
allows for the comprehensive use of historical data to more
accurately identify branch parameters, which can be then fed
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FIGURE 8
Identification results in IEEE-33 system with PV access: (A) line resistance MAPE of IEEE-33 system; (B) line reactance MAPE of IEEE-33 system.

back to the power grid dispatch center. As a result, dispatch
operators gain a clearer understanding of the changing trends in
branch parameters, ensuring the safe and stable operation of the
power grid.

5 Conclusion

Parameter identification is crucial for distribution network
scheduling and control, making it a significant research task.
Current methods, which are primarily model-driven, are sensitive
to data loss and noise. This paper introduces a novel line
parameter identification method for medium-voltage distribution
networks, considering the topology constraints of power network
branches and being validated on IEEE14-M and IEEE33 systems.
When there are too many layers of adjacent nodes, the global
information tends to become similar, resulting in redundancy.
By introducing an attention mechanism, the proposed method
focuses on relatively important nodes and perform feature fusion
on key branches and features. The proposed method consists of
three components: graph generation, attention calculation, and
multi-task prediction. The GAT module uses adaptive attention

weights to flexibly model dependencies among different nodes.
The MMoE algorithm addresses the coupling characteristics among
multiple branches by utilizing multiple expert networks, thereby
improving accuracy.

The method’s effectiveness and robustness are validated
through simulated grid tests, demonstrating improved results
compared to traditional methods. Results show that the GAT-
MMoE method achieves lower identification deviations 3.84% and
2.67% in IEEE14-M, and 5.69% and 4.26% in IEEE33 compared
to the LR, SVR and FCN methods, achieving high prediction
accuracy, good performance, and robustness against various
types of noise.

Moreover, the GAT-MMoE method relies solely on nodal
measurements of injected active power, reactive power, and
voltage magnitude, streamlining the identification process without
compromising accuracy. As smart grid technologies continue
to evolve, data-driven deep learning approaches will play an
increasingly important role in improving parameter identification
in distribution networks. Future work will aim to extend this
approach to a wider range of line parameters while addressing
issues such as limited data availability and dynamic topology
adaptation.
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