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The increasing penetration of distributed photovoltaic (PV) brings challenges to
the safe and reliable operation of distribution networks, distributed PV access to
the grid changes the characteristics of the traditional distribution grid. Therefore,
the assessment of distributed PV carrying capacity is of great significance for
distribution network planning. To this end, a differentiated scenario-based
distributed PV carrying capacity assessment method based on a combination
of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) is
proposed. Firstly, the meteorological characteristics affecting PV power are
quantitatively analyzed using Pearson’s correlation coefficient, and the
influence of external factors on PV power characteristics is assessed by
integrating the measured data. Then, for the problem of high blindness of
clustering parameters and initial clustering centers in the K-means clustering
algorithm, the optimal number of clusters is determined by combining the cluster
Density Based Index (DBI) and hierarchical clustering. The improved K-means
clustering method reduces the complexity of massive scenarios to obtain
distributed PV power under differentiated scenarios. On this basis, a
distributed PV power prediction method based on the CNN-GRU model is
proposed, which employs the CNN model for feature extraction of high-
dimensional data, and then the temporal feature data are optimally trained by
the GRU model. Based on the clustering results, the solution efficiency is
effectively improved and the accurate prediction of distributed PV power is
realized. Finally, taking into account the PV access demand of the distribution
network, combined with the power flow calculation of distribution network, the
bearing capacity of distribution network considering node voltage in
differentiated scenarios is evaluated. In addition, verified by source-grid-load
measured data in IEEE 33-bus distribution system. The simulation results show
that the proposed CNN-GRU fusion deep learning model can accurately and
efficiently assess the distributed PV carrying capacity of the distribution network
and provide theoretical guidance for realizing distributed PV access on a large
scale.
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1 Introduction

In recent years, with the aggravation of fossil energy shortage
and environmental pollution issues, new energy is developing
rapidly under the promotion of national policies and
technological development. As an effective form of new energy
utilization, distributed photovoltaic (PV) has the advantages of
cleanliness, efficiency, and flexibility (Haghdadi et al., 2018).
With the development of clean energy strategies in various
countries, distributed power sources represented by wind power,
PV, etc. are developing rapidly, and their large-scale access to the
distribution network has become an unstoppable trend (Huang
et al., 2024).

Distributed PV output is closely related to the local real-time
solar irradiation intensity, with obvious intermittency and volatility
(Wang et al., 2022). Large-scale distributed PV access to the grid has
changed the characteristics of the traditional distribution network.
The distribution network is transformed from the passive network
to the active network, and the distribution network flow is
transformed from unidirectional to bidirectional. It has brought
many adverse effects on the voltage (Fernández et al., 2020), power
quality (Li et al., 2023), relay protection (Jia et al., 2018), planning
(Xiao et al., 2022), and dispatching operation (Cheng et al., 2024) of
the distribution network, which seriously threatens the safe and
stable operation of the distribution network. In addition, distributed
PVs are usually located at the end of the distribution network, with
low access voltage levels, poor observability and measurability, and
often unpredictable security risks caused by their disorderly access.
Therefore, in order to ensure the coordinated development of
source-grid-load it is necessary to predict and evaluate the
distributed PV power and carrying capacity based on the
differentiated scenarios of the distribution network, and then
provide guidance for the planning and construction of the
distribution network.

In recent years domestic and foreign scholars have conducted
extensive research work on PV generation power prediction, mainly
focusing on physical methods (Antonanzas et al., 2016), statistical
learning methods (Li et al., 2014), and combined methods (Zhang
et al., 2024). Among them, the physical method establishes an
analytical model of meteorological factors (irradiance,
temperature, humidity, etc.) affecting power based on the
principle of PV power generation, to directly calculate the PV
power prediction value through meteorological forecast data and
power model (Dolara et al., 2015). Such methods are not strongly
dependent on historical power data, but it is usually difficult to
establish an accurate analytical model because the PV conversion
process involves complex coupling of multiple links (Juan et al.,
2024). Statistical learning methods do not focus on the physical
process of photovoltaic conversion and use a data-driven approach
to directly predict distributed PV output power by modeling the
mapping between input variables and power using historical data
samples (Zhang et al., 2022). Common statistical learning methods
include time series methods (Succetti et al., 2020; Xie et al., 2024),
support vector machines (SVM) (Jang et al., 2016), and neural
network algorithms (Chen et al., 2023). Although statistical learning
methods greatly simplify the modeling process, they place high
demands on the quantity and quality of historical data
(Theocharides et al., 2020). The combination approach

complements the strengths and weaknesses of multiple prediction
models, thereby improving the performance prediction accuracy
(Ge et al., 2023). Combination methods can be divided into two
types: the first involves selecting two or more statistical prediction
methods, and combining their results through weighting to obtain
the PV power prediction results (Zhen et al., 2019), and the second is
by using sequence decomposition techniques to divide the time
series data into multiple signal sequences, and using prediction
models to predict and sum each sequence separately, thus generating
power is obtained (Wang and Lin, 2023).

Current PV power prediction research is mainly divided into
two aspects: data pre-processing and prediction models. Among
them, data processing is mainly aimed at preprocessing and
analyzing single distributed PV data parameters, and there are
relatively few researches involving data clustering and integration
of distributed PV differentiated scenarios. In terms of prediction
models, some of the fusion prediction models have achieved better
results in prediction accuracy than the traditional predictionmodels.
However, the application of power prediction models in existing
studies in practical engineering applications is relatively limited, and
there are fewer studies on the carrying capacity of distribution
networks. Considering the various operation indexes of the
distribution network, it is difficult to obtain the current situation
of historical data, and dealing with the uncertainty problem also
faces many difficulties.

Under the current trend of power system transformation to clean
energy, large-scale grid integration of distributed PV brings new
challenges to the safe and stable operation of distribution networks.
Given the practical issues of volatility and time variation in distributed
PV output power, assessing the carrying capacity of distribution
networks with uncertainty factors is of great significance. Based on
this, the paper proposes a distributed PV carrying capacity prediction
and assessment method for differentiated scenes based on CNN-GRU
deep learning. Firstly, the influence of external environmental factors on
distributed PV output characteristics is systematically analyzed in the
context of grid connection. Then, the accuracy of PV power prediction
is improved by clustering integration andmulti-model fusion to provide
theoretical support and data reference for the assessment of distribution
network carrying capacity after grid-connection of distributed PV.
Finally, the proposed hybrid deep learning model is applied in the
IEEE 33-bus distribution system to study the carrying capacity of the
distribution network under different PV access states, which verifies the
effectiveness of the proposed method for the carrying capacity
assessment of the distribution network, and provides a certain
reference value for the planning and operation of the distribution
network. Compared with the traditional method, the proposed
method in the paper contributes as follows:

1. By systematically analyzing the external environmental factors
of distributed PV, the PV power prediction model is simplified
based on improved K-means and hierarchical clustering
scenario generation methods, which further improves the
efficiency of carrying capacity calculation.

2. The proposed PV power prediction model, based on clustering
integration analysis and deep hybrid learning algorithm, can
effectively mitigate the adverse effects of distributed energy on
distribution networks and can adapt to the actual operation
scenarios of distribution networks.
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3. Evaluating the PV carrying capacity under differentiated
scenarios provides effective method support for distributed
PV grid-connected management.

The remainder of the paper is organized as follows. Section 2
analyzes the influencing factors of distributed PV output power and
investigates the coordinated characteristics of source load. Section 3
proposes an improved K-means clustering method to classify the
scenarios of distributed PV output scenarios. Based on the
previously established clustering method, Section 4 introduces a
distributed PV power prediction method based on the CNN-GRU
model. Section 5 conducts simulation verification of the proposed
clustering method and the prediction model. Finally, Section 6
presents the conclusions.

2 Distributed PV power influencing
factors and characterization

2.1 Correlation analysis of factors affecting
PV power characteristics

The output power of PV power generation is related to various
factors, whether it is the geographical location of the PV power
station, environmental factors, and the selection of the power
generation components, etc., which all have a certain impact on
PV power (Ganti et al., 2022). The structure of the PV power
generation is shown in Figure 1.

PV power is significantly affected by fluctuations in
meteorological factors such as wind speed, irradiance, barometric
pressure, and temperature, and fluctuations in these parameters
directly lead to fluctuations in output power. The expressions for
output power and output current for PV power generation are
shown in Equation 1.

PPV � npVpv Iph − Isat exp
q

nkT

Vpv

ns
( ) − 1( )( )

Iph � Icr + Kc

1000
T − Tc( )( )Sc

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

where PPV and VPV respectively represent the output power and
output voltage of PV; ns and np respectively represent the number of

series and parallel PV arrays; Isat is the dark saturation current; q
denotes electronic charge and its value is 1.6 × 10−19 J/k; IPV
represents the output current of PV; k denotes the Boltzmann
constant and its value is 1.38 × 10−23 J/k; k is ideality factor; T
and Tc respectively represent absolute temperature and reference
temperature; Icr represents the short-circuit current under the
reference temperature and solar irradiance per unit area; kr is the
temperature coefficient of the short-circuit current; Sc is the solar
radiation intensity. It can be seen from the equation that PV output
power is affected by solar irradiance and temperature.

However, including all meteorological factors that affect PV
power generation in the prediction model would increase the
complexity of the model. Therefore, The paper uses the Pearson
correlation coefficient to analyze the correlation between the
parameters and selects the meteorological factors that have a
stronger correlation with output power.

The Pearson correlation coefficient is used to describe the linear
relationship between two variables in mathematical statistics and is a
linear correlation coefficient as shown in Equation 2, Jebli
et al. (2021).

r �
∑n
i�1

xi − �x( ) yi − �y( )∑n
i�1

xi − �x( )2∑n
i�1

yi − �y( )2√ (2)

where x represents environmental meteorological factors, such as
solar radiation intensity, temperature, relative humidity, wind speed,
and rainfall, and n represents the number of data points for
calculating each meteorological factor; y represents PV output

FIGURE 1
PV system topology.

TABLE 1 The specific correlation degree of the coefficient.

Correlation coefficient value Degree of relatedness

|r| = 0 Uncorrelation

0<|r|<0.3 Weak correlation

0.3<|r|<0.5 Low correlation

0.5<|r|<0.8 Significant correlation

0.8<|r|<1 High correlation
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power; �x and �y represent the average values of each variable; r is the
correlation coefficient, and the larger its absolute value, the stronger
the correlation between variables. The correlation degree of the
coefficient is shown in Table 1.

The data from a PV power station in Xinjiang Province, China,
over 1 month were selected, and the Pearson correlation coefficient
was used to obtain the correlation coefficients between various
meteorological characteristics and power generation. The
calculation results are shown in Figure 2.

As shown in Figure 2, solar radiation intensity has the highest
correlation with PV power generation, with a Pearson correlation
coefficient of 0.9479, indicating a high correlation with PV power
generation, which is close to complete correlation. Solar irradiance is
the most important influencing factor for PV power generation. The
Pearson correlation coefficients for temperature and relative
humidity are 0.697 and 0.5185, respectively, indicating significant
correlation with PV generation power. The Pearson correlation
coefficient of wind speed meteorological characteristics
is −0.3198, which is a low correlation with PV generation power.
Therefore, this paper selects the three features of solar radiation
intensity, temperature, and humidity, which are highly correlated
with PV power generation, as meteorological input features and
combines them with previous PV power generation as the input
features of the model. The impact of major meteorological features
on PV power generation is analyzed by intercepting PV-specific
operating periods.

2.2 Meteorological influences on PV
output power

The core of the PV power generation system is the PV cell, which
converts solar energy into electricity through the PV effect of
semiconductor materials. Therefore, solar irradiance and power
generation have a close relationship, and irradiance has a direct
influence on determining the output power of a PV power

generation system. Solar irradiance and PV power generation are
positively correlated (Bucciarelli, 1986). Their physical relationship
is shown in Equation 3.

p � αMS 1 − 0.005 t0 − 25( )[ ] (3)
where α is conversion efficiency; M represents the area of the PV
panel; S is the irradiation intensity; t0 represents ambient
temperature.

From Equation 3, it can be concluded that there is a positively
correlated linear relationship between irradiance and PV power. In
order to verify this correlation, 5 days of measured data in spring
were selected for analysis. Figure 3A shows the joint curve of
irradiance and PV power. From the trend graph, it can be seen
that as the irradiance increases, the PV output power increases
accordingly, and the trend of the two curves is basically the same.
Typically, the value of irradiance directly reflects the advantages and
disadvantages of meteorological conditions. Therefore, in the
prediction of PV power generation, the changes in irradiance
must be fully considered.

A rise in environmental temperature leads to an increase in
irradiance and an increase in the operating temperature of the PV
cells, which affects the power generation of the PVs. The effect of
temperature on PV power is not a simple linear relationship. For
example, under extreme weather conditions such as cold winters or
hot summers, the performance of solar panels can change
significantly, which in turn affects PV output power. Therefore,
in the process of PV power prediction, environmental and weather
data need to be fully collected to provide accurate data support for
high-precision power prediction. To visualize the effect of
temperature on PV power, Figure 3B shows the trend of
environmental temperature and PV generation power. It can be
seen from the figure that the actual output power is approximately
positively correlated with the ambient temperature within a certain
range. However, the temperature profile is highly volatile, and
output efficiency decreases when the solar panel temperature
increases to a certain level.

The greater the humidity of the air, the greater the light
attenuation phenomenon in the atmosphere, resulting in a
corresponding reduction in irradiance. In addition, the higher
the relative humidity, the worse the conduction heat dissipation
ability of the PV module, leading to a decrease in the system
temperature rise efficiency, which indirectly affects the stability
and reliability of the PV output power. Based on the data analysis,
it is found that when the humidity increases by 1%, the power
generation of the power plant may decrease by 0.5%–2%.
Figure 3C shows the joint curve of PV output power and
humidity. As illustrated in the figure, there is a negative
correlation between humidity and photovoltaic power. The
minimum value of humidity corresponds to the peak of PV
power, and the maximum value of humidity corresponds to
the trough of PV power. Since temperature is inversely
proportional to humidity, and PV output is positively
correlated with temperature, the conversion leads to a certain
negative correlation between PV output and relative humidity.
When constructing the PV power prediction model, humidity
needs to be taken into account as a factor because too high a
humidity level may lead to a decrease in irradiance, making PV
power generation less efficient.

FIGURE 2
Pearson’s correlation coefficient of PV power generation with
each meteorological feature.

Frontiers in Energy Research frontiersin.org04

Zhang et al. 10.3389/fenrg.2024.1481867

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1481867


3 PV differentiated scene clustering
method based on improved K-means

The meteorological environment has a significant impact on the
power of distributed generation. In order to obtain relatively

accurate output power values, a clustering algorithm is used to
differentiate between different weather conditions. To reduce the
complexity of distributed PV output data processing and analysis,
this paper proposes a clustering algorithm to simplify large amounts
of PV output data into typical differentiated output scenarios.

FIGURE 3
Combined curve diagram of PV power andmeteorological factors. (A) Combined PV power and solar irradiance graph. (B)Combined PV power and
ambient temperature graph. (C) Combined PV power and relative humidity graph.
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3.1 Basic principles of the K-means
clustering algorithm

The K-means clustering algorithm classifies data into clusters
according to their similarity and uses the distance between samples
as a measure of similarity (Kanungo et al., 2002). The basic K-means
clustering algorithm process is shown in Figure 4.

As shown in the figure, the basic K-means algorithm flow is:
First, initialize the dataset and determine the number of clusters,
which is the value of k representing the number of typical scenarios
to be generated.

3.2 Improved K-means clustering algorithm

The basic K-means clustering algorithm requires the number of
clusters to be specified manually, and the cluster centers are randomly
generated, both of which can lead to changes in the clustering results.
On the one hand, the artificially specified number of clusters cannot
reflect typical and extreme PV output conditions; on the other hand, the
selection of random cluster centers may fall into a local optimum. Based
on the above problems, and to ensure that the differentiated scenarios
after clustering are typical, this paper introduces the Density Based
Index (DBI) to determine the optimal number of clusters and improves

the K-means clustering algorithm by combining it with the hierarchical
clustering algorithm.

3.2.1 Determine the optimal number of clusters
based on DBI

The DBI index comprehensively considers the dispersion of
different clusters and the compactness of the same cluster. The result
is mainly expressed by the ratio of the distance between the elements
in the cluster and the distance between different clusters. The
smaller the value, the greater the difference between the various
types, the closer the elements within the same type, and the better
the final result. The concept of DBI can be defined as follows (Pan
et al., 2022; Li et al., 2019):

First, the intra-cluster dispersion Si indicator is defined, which
represents the average distance from all the scenarios of a certain
category to the centroid of the cluster and reflects the dispersion of the
time series in the same cluster. The smaller the value, the better the
classification effect. The calculation formula is shown in Equation 4:

Si � 1
Ni

∑Ni

j�1
∑24
k�1

Xij,k − Ai,k

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠1/2

(4)

where Ni represents the number of scenes in cluster i; Xij,k denotes
the PV output power at the kth sampling time in the jth scenario of
cluster i; Ai,k represents the PV output power of the kth sampling
point in the cluster center scenario of cluster i.

The inter-cluster separation Mij is defined as the Euclidean
distance between the cluster center of cluster i and the cluster
center of cluster j, which reflects the degree of separation
between the various types. The greater the value, the better the
classification effect. The calculation formula is shown in Equation 5:

Mij � Ai − Aj

���� ����p � ∑24
k�1

Ai,k − Aj,k

∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠1/2

(5)

whereAi andAj represent the cluster center scenarios of cluster i and
cluster j, respectively; Ai,k and Aj,k represent the output data of the
kth sampling point.

The similarity Rij indicates the ratio of the intra-cluster
dispersion to the inter-cluster separation and reflects the degree
of similarity between the various types. The smaller the value, the
better the classification effect, as shown in Equation 6.

Rij � Si + Sj
Mij

(6)

The maximum similarity of cluster i is calculated and denoted as
Ri. The formula is shown in Equation 7.

Ri � max j≠i Ri1, Ri2, . . .Rij, . . .RiK( ) (7)

Theworst result between cluster i and the other clusters is taken out,
and the mean value is calculated to obtain the DBI index, which is
expressed as Equation 8:

DBI � �R � 1
K
∑K
i�1
Ri (8)

where K represents the number of classifications. Different numbers
of categories will produce different DBI values. The smaller the

FIGURE 4
Flowchart of basic K-means clustering algorithm.
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value, the less dispersed the categories, the greater the dispersion
between categories, and the better the classification effect.

Finally, set a range of cluster numbers and perform multiple
clustering on the same sample, respectively calculating the DBI
index. The cluster number corresponding to the minimum value is
the optimal value.

3.2.2 Select cluster centers in combination with
hierarchical clustering

The basic idea of hierarchical clustering is to group data by
calculating the similarity between data points (Fu et al., 2019).
Hierarchical clustering starts with a single data point and combines
the two most similar data points each time, repeating until the entire
data set is combined into a cluster. To improve the K-means clustering
algorithm, hierarchical clustering is combined as follows: First, the
distance between the scenes is calculated according to the ward variance
minimization method to determine the similarity of each scene. Then,
all initial cluster centers are determined in order of decreasing overall
similarity. The Ward variance minimization method minimizes the
increase in the sum of the squares of the distances of the data points in
the cluster to their respective means by adjusting the cluster division.
The distances of the merged sub-clusters calculated using this method
are shown in Equation 9:

d xi, xj( ) � 
ninj

ni + nj

√
μi − μj
����� �����2 (9)

where ni and nj are the number of data points in each subcluster,
respectively; μi and μj represent the average value of each sub-cluster
feature vector; ||·||2 denotes the Euclidean distance.

3.3 Differentiated scene generation based
on improved K-means clustering algorithm

In summary, the process of generating differentiated scenarios
for distributed PV power generation based on the improved
K-means clustering algorithm is shown in Figure 5.

As shown in the figure, the typical scenario generation steps for
distributed PV differentiation are as follows.

1. Obtain the original PV scenario time series data.
2. Normalize the original PV scenario data, which is expressed as

Equation 10:

Di � Di

max D1, D2,/, Dn( ) − min D1, D2,/, Dn( ) (10)

where Di represents the ith original data of PV; n denotes the
number of original scenes; max (S1, S2, . . . Sn) and min (S1, S2, . . . Sn)
represent the maximum and minimum values in the PV raw data
within the scene range, respectively.

3. According to the hierarchical clustering approach, select the initial
cluster centers and initially determine k typical scenarios.

4. Determine the optimal number of clusters K based on the DBI
index. The k corresponding to the minimum DBI value is the
optimal number of typical scenarios K.

5. Calculate the distance from all scenarios D in the original
scenario to each initial cluster center A. This is expressed as
Equation 11:

O m, q( ) � 
Dm,1 − Aq,1( )2 + Dm,2 − Aq,2( )2 +/ + Dm,n − Aq,n( )2√

(11)
where O (m,q) represents the Euclidean distance from themth scene
in the original scene set D to the qt initial clustering center. Dm,n

represents the output data of the nth sampling point in the mth
scenario; Aq,n represents the output data of the nth sampling point
corresponding to the qt cluster center.

6. Evaluate the distance between the mth original scene and each
cluster center, and assign it to the cluster with the shortest
distance to form the clusterX � X1, X2, . . . , Xk{ }. The number
of scenes in each cluster is calculated and denoted
as T1, T2, . . . , Tk.

FIGURE 5
Flowchart of the differentiated scene generation process based on the improved K-means clustering algorithm.
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7. Recalculate the clustering center in each cluster, where the
center in the tth cluster is expressed as Equation 12:

At � X1
t +X2

t +/ +XTt
t

Tt
(12)

whereAt represents the tth new cluster center;X1
t represents the first

group of PV power data in the t cluster; Tt represents the number of
scenes in the tth cluster.

8. Determine whether the distance between the cluster centers
before and after the update is less than the threshold. If it is
greater than the set threshold, return to step 5 and continue the
iteration. If it is less than the set threshold, the iteration stops.
The final clustering result describes the typical difference in the
distributed PV scenario.

4 PV power prediction model based on
CNN-GRU deep learning

4.1 CNN algorithm principle

The CNN algorithm belongs to the feedforward neural network,
which is usually composed of a convolution layer, pooling layer, and
fully connected layer. It can extract the high-level features of the
input data layer by layer and finally output the classification or
regression results of the data. The commonly used internal structure
of CNN is shown in Figure 6.

As shown in the figure, the CNN structure is:

1. Input layer: The input layer is mainly used to pre-process the
data or images input into the model to reduce the impact of
data volume differences on the model analysis results, making
the model more efficient.

2. Hidden layer: The hidden layer can be divided into three layers:
pooling layer, convolutional layer, and fully connected layer,
which are responsible for extracting features and completing
related learning tasks.
a) Convolutional layer: The convolutional kernel in the

convolutional layer is the most critical part, responsible
for processing the image or data. When training the model,

the step size and the number and size of the convolutional
kernels can be adjusted based on actual needs.

b) Pooling layer: The pooling layer is mainly responsible for
reducing the dimensionality of the sampled data, that is,
reducing the dimensionality of the data as much as possible
without affecting the characteristics of the data or image.
The pooling function can be used to replace a point in the
feature map with the global features of the adjacent output.

c) Fully connected layer: The fully connected layer effectively
connects the weights of neurons and passes the
corresponding information to the next layer of the
network. This means the weighted sum of the feature
vectors is calculated and processed using matrix
multiplication, and then the output of the layer is
obtained using an activation function, as shown in
Equations 13, 14.

xl � f ul( ) (13)
ul � Wlxl−1 + bl (14)

where xl-1 represents the input, and by calculating theweighted bias of xl-
1, the activation function of the fully connected layer can be obtained.
The weight coefficients wl and bl are biased, and then the output of the
fully connected layer can be obtained based on the activation function f.

3. Output layer: In this layer, the output values obtained from the
fully connected layer are input to obtain the nonlinear
transformation result of the nonlinear mapping of the
neural network.

4.2 GRU algorithm principle

GRU is a variant of Long Short-Term Memory (LSTM). GRU is
more efficient in terms of computational time, uses fewer
parameters, and has lower complexity, which speeds up network
training and convergence (Xie et al., 2022). GRU completes
recursive processing through the introduction of time series
direction; each node is chain-connected, and it has a memory
function in the network. It is currently widely used in many
fields such as prediction, classification, and recognition. Its
internal structure is shown in Figure 7.

FIGURE 6
Structure diagram of CNN.
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GRU has a self-recurrent gated structure similar to LSTM,
which is effective in solving the problem of gradient
disappearance. GRU uses an update gate and a reset gate to
control the update of the state vector ht. The update and reset
gates of GRU are the key to the training process. The feature
quantity involved in training the model includes the state vector
ht-1 of the previous moment; the current input xt; the current time
state vector ht; the update gate state vector rt; the current moment
candidate state vector ht

’; and the reset gate state vector zt. The
detailed training process is as follows:

1. First, obtain zt and rt. After inputting xt in the model, it is
concatenated with ht-1 to complete the matrix splicing, and
then calculated with the parameter matrices wr and wz

respectively to obtain zt and rt. The detailed algorithm flow
is shown in Equations 15, 16.

zt � σ wz ht−1, xt[ ]( ) (15)
rt � σ wr ht−1, xt[ ]( ) (16)

where σ represents the sigmoid function, which can map the input
data to a value in the (0, 1) interval, then treat the value as a
gated signal.

2. Obtain the current moment candidate state vector ht
’, as shown

in Equation 17.

h′
t � tanh wh · rt × ht−1, xt[ ]( ) (17)

where wh represents the parameter matrix to be learned; tanh is a
hyperbolic tangent function, which can convert the input data into
values in the (−1, 1) interval.

3. Update the formula and complete the two functions of
“memory” and “forgetting,” as shown in Equation 18.

ht � 1 − zt( ) × ht−1 + zt × h′t (18)

4. Output phase: Learn various parameters and train the model
with the aforementioned content, then output the result yt, as
shown in Equation 19.

yt � σ wt · ht( ) (19)

4.3 The structure of the PV carrying capacity
assessment model based on CNN-GRU

The GRU algorithm has high accuracy and efficiency in power
prediction, but it requires human determination of feature
relationships and cannot uncover the correlation of
discontinuous features in high-dimensional space. CNN has
advantages in the field of data mining, therefore a PV power
prediction method based on CNN-GRU is constructed.

When predicting by this method, the predictionmodel first clusters
and integrates the PV power data and then inputs it to the input layer.
Next, the convolutional layer and max pooling layer in the CNN are
used to extract features from the time series data and construct a feature
vector for the time series data. Among them, CNN consists of multiple
convolutional layers that perform multiple convolution operations to
capture meaningful information. Finally, the expanded time-series
feature vector is used as the input to the GRU to complete the
modeling and processing of the sequence data. This method can
improve the depth and breadth of the features extracted by the
neural network, making the prediction results more accurate.

A large number of distributed PVs connected to the grid will have a
great impact on the safe operation of the distribution network, and the
unreasonable access of PVs will lead to problems such as overloading of
the lines and voltage overruns at some nodes. Therefore, a distribution
network carrying capacity assessment method based on the PV power
prediction model is constructed. Distribution network PV carrying
capacity generally refers to the maximum capacity of PV that can be
accessed under the conditions of ensuring the safety, reliability and
voltage quality of the distribution network (Wang, 2020). The access of
distributed PV has a lifting effect on the voltage of each node, and the
more PVs are accessed, the higher the voltage is lifted, and a voltage
deviation limit value needs to be set to ensure the safe and stable
operation of the power grid. If the value is set low, it will limit the access
of distributed PV. If the value is set too high, it will threaten the safe
operation of the power system. The corresponding nodal voltage
constraint equation is shown in Equation 20:

UN 1 − ε1( ) ≤ Ui ≤ UN 1 + ε2( ) (20)
whereUN represents the rated voltage of the distribution network;Ui

represents the voltage magnitude at node i; ε1 and ε2 are the
allowable voltage deviation rates specified in the national standard.

Based on the distributed PV power prediction model constructed
above, the PV predicted power is used as an input parameter. Using the
distribution network trend calculation method, the distribution network
node voltage is calculated after the distributed PV is connected to the
grid, to realize the assessment of the distributed PV carrying capacity.
The structure diagram of distributed PV carrying capacity prediction
and evaluation based on CNN-GRU is shown in Figure 8.

5 Case analysis

5.1 Differentiated analysis of typical scenario
characteristics

To verify the effectiveness of the proposed clustering algorithm,
the PV power generation data and meteorological data of a region in

FIGURE 7
Structure diagram of GRU.
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Xinjiang Province, China, in 2023 were selected as the dataset. The
rated capacity was 70 kW, and the data were recorded every 15 min.
The DBI index for the clustering numbers between 2 and 10 is
shown in Figure 9.

It can be seen from Figure 11 that the curve has obvious extreme
points, which can guide the selection of the number of clusters in the
PV scenario. As the number of clusters increases, the DBI index first
increases significantly and then slowly decreases. When the number
of clusters is 5, the DBI index of the clustering result is the smallest,
so the optimal number of clusters for generating differentiated
scenarios of PV system power data is determined to be 5.

As shown in Figure 10A, the dataset includes a total of 365 PV
output power curves, which correspond to the daily PV output
power curves over a year. By using the raw data, the output patterns
of distributed PV can be analyzed and classified, to better
understand the characteristics of PV in different scenarios. The
aforementioned output scenarios are grouped according to the
typical scenario generation steps proposed in Section 2.2 of the

FIGURE 8
Structure diagram of distributed PV carrying capacity assessment based on CNN-GRU.

FIGURE 9
DBI indicators corresponding to different cluster numbers.
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paper. After the original data are normalized, the typical daily
normalized output curves are presented in Figures 10B–F.

As shown in Figure 10A, the distributed PV output is intermittent,
random, and clearly periodic. The power curve generally takes on a half-
envelope shape, and its output is positively correlatedwith sunlight. Due
to the influence of solar radiation and temperature, the PV output
power curve varies significantly from day to day and has seasonal
characteristics. According to the scenario generation process in Figure 5,
the 1-year time series output scenario is clustered with the optimal
number of clusters.

As shown in Figure 10, after clustering the typical scenarios, the
overall difference in the PV output power curve is more obvious,
while still retaining the original characteristics. The corresponding
output period is 8:00–20:00, with a maximum value between 13:

00–15:00, and zero output during the night. This clustering result
can be compared to the different scenarios in daily life, such as
sunny, cloudy, and rainy days. While maintaining the original
diversity of scenarios, it ensures the accuracy of the load
calculation to a certain extent and improves the calculation
efficiency. Among them, the power curves of scenarios 1 and
2 are relatively stable and have a strong regularity. During these
times, there is less cloud cover, and the light and temperature are
stable. However, the power changes in scenarios 3, 4, and 5 are more
drastic; the curves have more glitches, there is no obvious regularity,
and the output power is more random. This clustering result shows
that the output power of PV systems varies under different climate
types, and the impact of climate on power generation should be fully
considered.

FIGURE 10
Typical daily output scenario diagram for differentiation. (A) PV annual time series output scenario diagram. (B) Typical scenario 1. (C) Typical
scenario 2. (D) Typical scenario 3. (E) Typical scenario 4. (F) Typical scenario 5.
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5.2 PV power prediction model analysis

To assess the efficacy of the CNN-GRU deep learning prediction
model, the PV data for 2023 from a region of Xinjiang Province,
China, were employed for verification purposes. Based on the
analysis of meteorological influencing factors presented in Section
2.2, solar radiation, ambient temperature, and humidity were
identified as the climatic characteristics of primary interest.

Subsequently, the training set and test set were divided into a 7:
3 ratio according to the five differentiated scene types, following the
clustering of the scenes. Power prediction was conducted by the
methodology delineated in Section 3.3. The convolutional layer with
two steps was used in this process. The 1 × 5 convolutional filter was
employed to traverse the two-dimensional PV power generation
meteorological characteristics, extracting the relationship between
each meteorological characteristic and PV power generation, and
then sending the convolutional layer output to the two-layer pooling
layer to reduce the dimension and complete feature extraction. A
two-layer GRU was constructed, with the number of neurons set to
64 and 128, respectively. The initial power prediction model
employed the tanh activation function, and the GRU layer was
followed by a fully connected layer that utilized the linear activation
function. During the training of the prediction model, the Adaptive
Moment Estimation (Adam) optimization algorithm (with a
learning rate of 0.001) was used to optimize the model network
weight coefficients. The Adam algorithm iteratively updates the
weights of the neural network based on the training data, thereby
ensuring that the output value of the loss function is optimized (Yi
et al., 2020).

As shown in Figure 10, the typical scenarios with a probability of
clustering greater than 15% are Scenario 1, Scenario 3, and Scenario
5, which account for 73.5% of the total scenarios. The performance
of the three above differentiated scenarios was predicted separately.
The typical differentiated scenarios were divided into training and
test sets, and the performance was predicted using each deep
learning model, as shown in Figure 11.

As illustrated in Figure 11, among the models, the CNN-GRU
model exhibits the highest degree of fit between the PV power
prediction curve and the actual PV curve. In scenario 1, the original
data set has less fluctuation, the data are clearly regular, and the
predicted value is very close to the actual value. In scenarios 3 and 5,
the power fluctuation is more obvious, and the prediction curves of
the single CNN and GRU models show a certain deviation from the
actual values, while the CNN-GRU hybrid model demonstrates a
higher degree of fit. Comparing the three differentiated scenarios
after clustering in Figure 11, it can be seen that the prediction results
of the CNN-GRU model in the differentiated scenarios are more
consistent with the actual power changes, and the prediction values
are less different from the actual values, better predicting the
changes in PV power, thus proving the superiority of the
proposed clustering deep learning model.

To further verify the effectiveness of the proposed hybrid deep
learning model for PV power prediction, the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) were used to evaluate the prediction
results. The calculation formulas are as Equations 21–23 (Fan
et al., 2020):

MAE � 1
N

∑N
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (21)

RMSE �


1
N

∑N
i�1

yi − ŷi( )2√√
(22)

MAPE � 100
N

∑N
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (23)

FIGURE 11
PV prediction results for different scenarios. (A) Typical scenario
1. (B) Typical scenario 3. (C) Typical scenario 5.
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where ŷi represents the predicted value; yi represents the actual
value; N is the number of samples.

After data simulation analysis, the evaluation index values of
each algorithm are shown in Table 2.

Further comparisons show that the CNN-GRU model achieves
the lowest evaluation metric values across different models and
different scenarios, achieving good results in evaluation metric
values. Compared to a single model, the prediction accuracy has
been significantly improved. Among them, in Scenario 4, the MAE,
RMSE, andMAPE of the proposed method were reduced by 29.95%,
28.95, and 24.92%, respectively, compared with the single CNN
model, and by 26.1%, 21.9%, and 22.5%, respectively, compared with
the single GRU model. Despite the changing weather conditions of
Scenario 4 and Scenario 5, the prediction curve of the proposed
prediction model still fits the actual value well, and the model is
highly practical.

5.3 Analysis of carrying capacity of
distribution network with distributed PV

Distributed PV capacity refers to themaximum capacity that can
be connected to the grid while ensuring that the power system can
operate stably and provide users with a high-quality power supply
when the external environment fluctuates. Therefore, the stability of
the power system is one of the key factors affecting the load-bearing
capacity. The stable operation of the power system depends on a
variety of factors, based on the description in Section 4.3, the nodal
voltage is identified as an influential factor in the assessment of
distributed PV carrying capacity. This paper uses the node voltage of
the distribution network as the basis and employs the principle that
the node voltage does not exceed the limit to predict and evaluate the
load-bearing capacity of distributed PV.

Based on the distributed PV power predictionmodel constructed in
Section 4, firstly, the improved K-means clustering algorithm is utilized
to generate PV-differentiated scenarios. Then, the distributed PV power
prediction model is constructed using historical data and a CNN-GRU
deep learning algorithm to predict the PV power output in the future
period. Finally, the predicted PV power is used as the input parameter,
and the distribution network power flow calculation method is used to
calculate the change in the node voltage of the distribution network after
the distributed PV is connected to the grid. By comparing the
calculation results with the voltage quality requirements of the
distribution network, the distributed PV capacity that can be
accessed under the premise of ensuring the safe and reliable
operation of the distribution network is determined.

To verify the application performance of the proposed PV power
prediction method, the IEEE 33-bus distribution system with
distributed PV and load access was selected as the simulation
object. After the distributed PV power was predicted, the node
voltage after the distributed PV was connected to the grid was
obtained. Node 1 was set as the balancing node, and the other nodes
were designated as PQ nodes. Figure 12 shows the IEEE 33-bus
distribution system.

To observe the changes in the voltage of the distribution network
nodes after distributed PV was connected to the distribution network,
the normalized predicted power of distributed PV in each of the typical
scenarios in Section 5.2 was used as the input, and the nodes where PV
was connected to the distribution network included nodes 5, 7, 8, 10, 13,
20, 24, 28 and 29. The power of the load nodes was taken as the power
curve of a typical weekday for residential loads, with a range of 40%–
130%, thereby simulating the system load power consumption from
light to heavy. According to historical measured data, the peak
photovoltaic power generally arrives around 14:00, and the power is
zero before 6:00 and after 19:30. For residential electricity, daytime
electricity consumption is high, while before dawn electricity

TABLE 2 Summary of the error values of the algorithms.

Scenario classification Algorithm MAE (kW) RMSE (kW) MAPE (%)

1 CNN 0.664 0.771 4.056

GRU 0.611 0.719 3.786

CNN-GRU 0.461 0.544 2.894

2 CNN 0.691 0.810 4.278

GRU 0.642 0.753 3.983

CNN-GRU 0.476 0.561 2.986

3 CNN 0.755 0.887 4.762

GRU 0.702 0.807 4.269

CNN-GRU 0.562 0.663 3.529

4 CNN 0.838 0.974 5.124

GRU 0.795 0.887 4.963

CNN-GRU 0.587 0.692 3.847

5 CNN 1.035 1.170 6.159

GRU 0.959 1.115 5.872

CNN-GRU 0.658 0.776 4.028
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FIGURE 12
IEEE 33-bus distribution system topology.

FIGURE 13
Voltage of time-varying nodes in distribution networks under different scenarios. (A) Residential load power curve. (B) Typical scenario 1. (C) Typical
scenario 2. (D) Typical scenario 3. (E) Typical scenario 4. (F) Typical scenario 5.
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consumption is low, with electricity consumption peaking around 12:
00 and 21:00. The time-varying voltage of each node in the distribution
network was obtained through power flow calculation. Typical power
data for residential loads are shown in Figure 13A, the time-varying
voltage of each node in the distribution network under the five
differentiated scenarios of distributed PV after clustering are shown
in Figures 13B–F.

As illustrated in Figure 13, at approximately 14:00, due to the
peak PV power output and relatively small load demand, the
voltage at the distribution network node exceeded the standard
by as much as 1.19 p. u. According to the relevant standards for
the allowable voltage range of the distribution network (Fan et al.,
2012), the voltage value at noon had already seriously exceeded
the allowable range, and the carrying capacity of the distribution
network was low. Particularly when the PV output power is high
and the load demand is low, the impact of distributed PV on the
node voltage increases. At approximately 20:00, the PV output
power was zero and the load power consumption reached a peak.
At this time, the node voltage was low, and the load capacity of
the distribution network was high. By comparing the different
scenarios, the system voltage limit in scenarios 4 and 5 was lower
than in scenarios 1 and 2. As sunlight varies, the PV output
fluctuates greatly, causing the voltage of the distribution system
to fluctuate. By predicting the PV power under differentiated
scenarios, the distributed PV time-varying node voltage and
carrying capacity of the distribution network can be effectively
evaluated, which proves the effectiveness of the proposed CNN-
GRU-based PV carrying capacity evaluation model structure.

6 Conclusion and discussions

The high penetration of distributed PV grid-connected power
generation has the potential to disrupt the safe and stable operation
of distribution networks. To address this challenge, a differentiated
scenario-based distributed PV capacity prediction and assessment
method based on CNN-GRU deep learning was proposed. The
proposed method was verified using measured data from the IEEE
33-bus distribution system. The following conclusions can be drawn
from this work:

1. The meteorological characteristics of PV power generation
were quantified using the Pearson correlation coefficient
method, and the principal meteorological factors influencing
PV power were extracted, providing a robust data foundation
for PV power generation prediction and capacity research.

2. Considering the difficulty of prediction due to the seasonality
and instability of the PV historical data, a differentiated
scenario clustering method based on improved K-means
clustering and hierarchical clustering was proposed to
further simplify the PV uncertain power prediction model
and improve the efficiency of calculating the carrying capacity
of the distribution network. The simulation results show that
the proposed method can effectively cluster the PV output
scenarios, and the clustered scenarios are significantly
representative. Using the clustered scenarios and
probabilities as the calculation scenarios for the study of the
load-bearing capacity of the distribution network greatly

reduces the amount of calculation while ensuring the
accuracy of the calculation.

3. Given the data characteristics of distributed PV and the current
PV power prediction method, which faces the problems of
insufficient feature extraction and low prediction model
accuracy when handling a large amount of data, a PV power
prediction model based on improved K-means clustering and
CNN-GRU deep learning network was proposed. Themodel fully
considers the temporal and spatial characteristics of PV data, and
the simulation results show that the proposed hybrid model
achieves higher prediction accuracy than the single model.

4. Combining the time-varying node voltage of the distribution
network after PV connection, the proposed PV power
prediction strategy under different scenarios was applied to
the distribution network, and a method for evaluating the
carrying capacity of the distribution network considering
different PV scenarios was proposed. The effectiveness of
the strategy in evaluating the carrying capacity of the
distribution network was verified, providing theoretical
guidance for the large-scale integration of distributed PV.

Taking into account the dynamic probabilistic
characteristics of multi-source load storage, future research
will further study the dynamic probabilistic characteristics of
multi-source load storage, and combine it with deep learning
methods to analyze the impact of uncertain distributed energy
access on the carrying capacity of the distribution network. By
establishing a suitable probabilistic model, the uncertainty of
multi-source load storage can be more accurately described, and
its impact on the carrying capacity of the distribution network
can be predicted, guiding the economic operation and daily
management of the power system.
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