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A non-intrusive fine-grained load
identification method based on
three-dimensional
voltage–current trajectories

Haihong Bian* and Zhiyuan Zhang*

School of Power Engineering, Nanjing Institute of Technology, Nanjing, China

Addressing issues such as high hardware costs, low recognition accuracy,
and the inability to achieve fine-grained equipment classification, a non-
invasive load fine-grained recognition system based on FPGA was developed
and tested on a Linux system for online training. A three-dimensional (3D)
image construction method based on color coding of voltage–current (V-I)
trajectories is proposed to preprocess the collected voltage and current data,
allowing for the distinction of features of various electrical equipment inmultiple
dimensions. First, high-frequency sampling data is preprocessed to extract the
V-I trajectory and higher harmonic characteristics of the load. Then, the V-I
trajectory is processed using RGB color coding and fused with higher-order
harmonic features to construct a 3D image. This results in a 3D color V-I
trajectory image that incorporates both color and harmonic features. Finally, the
improved ResNet50 network is employed to identify the load characteristics,
and the method is validated using the PLAID dataset and measured data. The
load identification method achieves an accuracy rate of over 98%, enhancing
the information conveyed by the V-I trajectory and improving the uniqueness
of load characteristics, thereby enabling fine-grained equipment identification.
This advancement holds significant implications for energy conservation and
emission reduction in household electricity consumption, as well as for
eliminating potential safety hazards associated with electrical equipment.

KEYWORDS

non-invasive load fine-grained identification, three-dimensional image, color coding,
improved ResNet50 neural network, FPGA

1 Introduction

Non-Intrusive Load Monitoring (NILM) has been a prominent research focus in
the fields of smart grids and smart homes since its introduction by Hart (1992) and
others in the 1980s. NILM technology analyzes the total electrical energy usage data
of a building to infer the energy consumption patterns and operating statuses of
individual appliances without the need for specialized measuring equipment on each
device. This monitoring technology is significant for energy conservation, power system
management, and user behavior analysis (Chen S. et al., 2023; Ghosh et al., 2021). With
the intensification of the global energy crisis and the growing awareness of environmental
protection, improving energy efficiency has become a universal societal goal. In this
context, NILM has emerged as a powerful tool for fine-grained energy monitoring
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due to its advantages of easy installation, low cost, and minimal
intrusion. Real-time monitoring and intelligent analysis of the total
energy signal in residential or industrial environments can help
users understand andmanage their energy consumption. Moreover,
it provides data support for load forecasting and demand-side
management for power companies (Jia et al., 2021).

However, despite the concept of NILM technology being
proposed many years ago, its practical application still faces
numerous challenges. The diversity of household appliances
and the complexity of usage patterns create difficulties in load
disaggregation. Additionally, subtle differences in the electrical
characteristics of different brands and models of appliances
increase the identification difficulty. The parallel use of multiple
appliances further complicates signal separation. Thus, accurately
identifying the operating state of each appliance from the complex
total load signal has become the core issue in NILM research
(Yang et al., 2020; Yang et al., 2021). In recent years, advancements
inmachine learning and big data analysis technologies have brought
new opportunities to the NILM field. Deep learning methods,
particularly convolutional neural networks (CNN) and recurrent
neural networks (RNN), have demonstrated excellent performance
in handling nonlinear and non-stationary signals (Yin et al., 2021;
De et al., 2019; Liu et al., 2019; Zhang et al., 2018). Their strengths
in feature extraction and pattern recognition offer new solutions for
appliance identification and load separation in NILM.

At present, Non-Intrusive Load Monitoring technology
primarily relies on identifying the unique characteristics of power
loads. By leveraging these characteristics alongside advanced
classification technologies such as deep learning and neural
networks, NILM can effectively classify different power loads. The
V-I trajectory method, first proposed in the literature (Cheng et al.,
2016), diverges from traditional load characteristic methods that
are limited to voltage-current waveforms, offering a novel approach
for load characteristic extraction. In literature (Baets et al., 2017),
the contour of the V-I trajectory is analyzed, and contour features
are extracted. Literature (Lam et al., 2007) represents the physical
properties of V-I trajectories by analyzing their shape features
and classifies these extracted features using hierarchical clustering
methods. In literature (Du et al., 2016), loads are divided into seven
main types, such as resistive and impedance loads. By comparing
the differences in V-I trajectories among these categories, a rapid
method for measuring load harmonics is developed, utilizing
Self-Organizing Maps (SOM) to classify different loads based on
features extracted from V-I trajectories. In literature (Shi et al.,
2023), three pixel matrices representing current, voltage, and phase
were constructed, and their numerical features were integrated
into a grayscale V-I trajectory to create a composite color V-
I trajectory image. Using the AlexNet network for deep feature
learning of these color images significantly improves load detection
accuracy. However, this method involves high-resolution pixelation
of V-I trajectories, making it difficult to capture higher-order
harmonic characteristics of the current waveform. Based on Fryze
theory, literature (Liu et al., 2019) developed voltage and reactive
current trajectories, integrating other load attributes through
color coding. However, this method does not incorporate power
information, limiting the trajectory’s ability to reflect the device’s
power characteristics. The fusion of power features in literature
(Chen et al., 2020; Wang et al., 2020a) is achieved through Gram

matrix transformation, which increases the diversity of load features
and enhances convolutional neural networks. By combining the
Convolutional Block Attention Module (CBAM) with CNN, a
non-intrusive load recognition model is developed, improving load
recognition capabilities. Despite advancements in load recognition
technology based on V-I trajectories, several challenges remain.
Two-dimensional V-I trajectory images primarily convey shape
information and fail to adequately represent details such as power
and harmonic characteristics of the equipment. Additionally, due to
the large variety of appliances and similarworking principles, theV-I
trajectory characteristics between different loadsmay overlap, which
cannot meet the needs of fine-grained classification of equipment.

To address the aforementioned problems, this paper proposes a
non-invasive fine-grained load identification method based on 3D
V-I trajectory imaging. For the first time, a 3D image construction
method is employed to preprocess the collected voltage and current
data, thereby enhancing the uniqueness of load characteristics.
This method improves the red (R), green (G), and blue (B) three-
channel pixel matrix of V-I color images and integrates higher-
order harmonic features into the third dimension of the image. This
integration aims to minimize the overlap of V-I trajectories among
different loads, meeting the requirements for fine-grained load
classification. The preprocessed data is then input into a ResNet50
network enhanced with a Convolutional Block Attention Module to
complete load identification. This approach leverages the powerful
advantages of CBAM in image classification, significantly improving
load recognition accuracy. Furthermore, a non-invasive load
recognition hardware system based on FPGA is designed to collect
and preprocess power data, demonstrating the practical feasibility
of the load recognition method. This innovative method not only
achieves an enhanced accuracy in load recognition but also supports
the fine-grained classification of electrical equipment, which is
crucial for energy saving, emission reduction, and the elimination
of potential safety hazards in household electrical systems.

2 Data preprocessing and 3D image
construction

2.1 Data acquisition and preprocessing

In household electricity monitoring, total current and voltage
data can be obtained through smart meters and other high-
frequency sampling equipment. According to the literature (Song
and Zhang, 2023a; Lu et al., 2023), to collect data from various
electrical devices, this study assumes that only one state change of
an electrical load (i.e., a switching event) occurs at any given time.

Based on the analysis in the literature (Wang and Sun, 2023),
this paper first collects current and voltage waveform data before
and after the switching event to cover several complete cycles. To
improve the accuracy of data acquisition, the data are interpolated.
Since the voltage waveform typically approximates a standard
sine wave, linear interpolation is applied to the voltage data to
simplify the calculation process. In contrast, the current waveform
often deviates from the sinusoidal shape due to sudden changes
during the operation of the electrical load, leading to some
distortion. To preserve this critical distortion information, the
Hermite interpolation method is used for the current data.
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In most cases, the voltage of the equipment is relatively
stable, typically maintained near the power frequency voltage
standard with minimal fluctuations. These fluctuations are usually
associated with the equipment’s characteristics. In contrast, the
electrical characteristics of the device are primarily reflected by the
performance of the current, which plays a key role in the analysis
of the V-I trajectory. However, due to the similarity of current
waveforms among some devices, the traditional V-I trajectory
analysis method faces significant challenges in distinguishing
between these devices. To address this issue, this paper adopts Fryze
power theory to preprocess the source current waveform of the
device. This approach enhances the differentiation and uniqueness
of the V-I trajectory, thereby improving the accuracy of device
recognition.

According to Fryze power theory, the formula for calculating
reactive current is as follows:

i(t) = ia(t) + i f(t) (1)

ia(t) =
P

V2
rms

v(t) (2)

i f(t) = i(t) − ia(t) = i(t) −
P

√
M

∑
m=1

v2m
M

v(t) (3)

In the formula, i(t) Is the total current of the load, ia(t) is the
active current of the load, i f(t) is the reactive current of the load, P
is the active power of the load in one steady-state period, v(t) is the
measured value of voltage, Vrms is the effective value of voltage,m is
the m-th point in the steady-state period, andM is the total number
of sampling points in one steady-state period.

Through the above Formulas 1–3, the active power P can be
calculated as follows:

P = 1
M

M

∑
m=1

vmim (4)

In the formula, im is reactive current.

2.2 Color coding based on V-I trajectory
features

In the non-invasive load identification algorithm, the V-I
trajectory is a key feature often used to distinguish the loads of
different types of electrical equipment. However, extracting the
shape parameters of these trajectories is often a complex process,
and the type and number of selected parameters significantly impact
the generalization ability of model training. The V-I trajectory
construction method obtained in this paper is as follows:

1) After the operation of the electrical equipment reaches a stable
state, all voltage and active current data within a complete
cycle are collected. These data are then normalized to ensure
consistency during analysis and processing:

im(t) =
i(t) − imin

imax − imin
(5)

vm(t) =
v(t) − vmin

vmax − vmin
(6)

In the formula, imax is the maximum current value, imin is the
minimum current value, vmax is the maximum voltage value, and
vmin is the minimum voltage value.

2) Set the image resolution:

imn = floor(imn) (7)

vmn = floor(vmn) (8)

In the formula, floor is the down-integer function. If the
resolution is set to n×n, the current data imn is less than or
equal to n, and vmn is the voltage data less than or equal to
the value n.

3) Construct an n×n zero matrix and assign values step by step
from the first row to the last row in a periodic manner.
In this procedure, the current imn and voltage vmn for each
row determine the row m and column n in the zero matrix,
respectively, setting the value at the corresponding position
to 1. This process is repeated until the end of the cycle,
resulting in a matrix that represents the V-I trajectory of
the load.

Although V-I trajectories demonstrate high efficiency in
resolving multiple electrical loads, neural networks still encounter
challenges in recognizing the trajectories of certain loads.
Literature (Chen D. et al., 2023) conducted an in-depth analysis of
the physical properties of V-I trajectories and identified eight main
features: the size of the closed region, the direction of circulation,
asymmetry, the slope of themiddle line, the number of intersections,
the slope of the middle section, the area difference between the left
and right sections, and the peak value of the middle section. These
features reflect various physical aspects, such as the symmetry of the
load current, the phase difference between voltage and current,
the magnitude of the angle, and the harmonic content of the
current waveform.

However, relying solely on these characteristics does not
sufficiently distinguish all types of loads. To enhance the
performance of V-I trajectory in load recognition, it is necessary to
introduce additional feature quantities. This may involve employing
more advanced geometric measures, conducting statistical analyses,
or utilizing sophisticated machine learning algorithms to explore
deeper recognition features.

To fully capture the characteristic parameters of the load, this
paper maps these data to the red, green, and blue channels of the
RGB color space. This is achieved by combining the ratio of the
change rate of reactive power, voltage v(t), and active current ia(t),
along with the average change ratio of pixels in the V-I trajectory
diagram prior to the load reaching a stable operation period. Each
channel forms an n×n matrix with the same number of pixels
as the V-I trajectory diagram. The specific color coding process
is as follows:

1) Build R channel:
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Use reactive power Q for the red channel R:

Q = 1
M

M

∑
m=1

(

(

vmi(t) −
P

√
M

∑
m=1

v2m
M

v(t))

)

(9)

R(ig,vg) =
Q
S
g =

1
M

M

∑
m=1

vmim

VrmsIrms
(10)

In the formula, Q is the reactive power of the load, R(ig,vg) is
the R value of the vg column in row ig of the matrix, S is the apparent
power, g is the number of 1∼n, Vrms and Irms are the effective values
of voltage and current, respectively.

2) Build G channel:

Because the voltage and current change rates of different
electrical equipment during the stable period exhibit certain
differences, this paper uses these rates as the green channel G value
in the RGB coding.:

Gg = arctan(
ig+1 − ig
imax
,
vg+1 − vg
vmax
) (11)

In the formula, imax and vmax are themaximumvalues of absolute
current and absolute voltage respectively.

3) Build B channel:

Because the load undergoes an unstable initial stage after
starting, followed by a period of stable operation, the characteristics
of the V-I trajectory during the unstable stage differ significantly
from those during the stable stage. Moreover, these differences
vary among different loads, providing an important dimension
for distinguishing between them. To effectively incorporate the
unsteady operation characteristics into load identification, this
paper uses the average value of the V-I trajectory during the unstable
stage to construct the blue channel B of the RGB color space.
This approach reflects the characteristics of this stage in the load
identification process:

B = 1
Z

Z

∑
z=1

Wz (12)

In the formula, z represents the z-th unstable stage, Z is
the number of periods of unstable operation, and Wz is the
value of pixels.

According to the above Formulas 1–12, V-I trajectories
were constructed and color-coded for 11 electrical devices
corresponding to the PLAID public dataset, as shown in Figure 1.
The corresponding device types are as follows: (1) Air Conditioner,
(2) Compact Fluorescent Lamp, (3) Fan, (4) Fridge, (5) Hairdryer,
(6) Heater, (7) Incandescent Light Bulb, (8) Laptop, (9) Microwave,
(10) Vacuum, and (11) Washing Machine. As illustrated in the
figure, there are noticeable differences in the shape, color change,
and distribution of color in the V-I trajectories among different
categories of appliances. These differences enhance the degree of
differentiation between various equipment categories, making the
identification of different types of electrical equipment clearer and
more effective.

2.3 3D image construction

Although the V-I trajectory color coding method can effectively
integrate features such as reactive power and the unstable phase into
the curve, it is less accurate in distinguishing electrical devices with
similar working principles and small differences in power feature
values compared to the traditional method that relies solely on a
single V-I trajectory identification. As shown in Figure 2, the 109th
and 135th CSV files from the PLAID dataset were processed using
the V-I trajectory color coding method described in this paper.
The generated images are color-coded V-I trajectory images of a
Hairdryer and a Heater, respectively.

The similarity between the two electrical devices in V-I
trajectory and color distribution makes it challenging for neural
network training and recognition, rendering it difficult to accurately
distinguish between the two devices.

To better distinguish between the hairdryer and the heater, the
frequency domain characteristics of these devices can be added to
the load label to enhance the uniqueness of the load. Fast Fourier
Transform (FFT) was used to calculate and analyze the fundamental
wave and higher harmonics of their current signals. Since the
amplitude of the fundamental wave is relatively large compared to
the amplitude of each harmonic, the second to the 15th current
harmonics were selected for comparison. The calculated values
clearly show that the odd-order harmonic amplitudes of these two
appliances are quite different. Based on this observation, the first
15 odd harmonic amplitudes of these two devices were selected for
mapping, as shown in Figure 3 below.

From Figure 3, the differences in odd-order current harmonics
between the two types of electrical equipment can be clearly
observed as follows: starting from the seventh harmonic, the
current harmonic amplitude of the hairdryer is significantly higher
than that of the heater. The heater contains fewer odd current
harmonics from the 7th to the 15th. According to literature (Song
and Zhang, 2023b), the main reason for this difference is that the
hairdryer contains a brushless DC motor, which produces higher-
order harmonic components during operation, whereas the heater
does not, resulting in fewer higher-order current harmonics.

Therefore, in this paper, the harmonic amplitude of higher-order
current is selected as an additional feature and combined with V-I
trajectory color coding to create a mixed feature. This mixed feature
is used to construct a 3D color V-I trajectory image that includes
both color and harmonic characteristics. This approach addresses
the issue of differentiating similar trajectories in color coding and
improves the accuracy of load identification. The construction
method is as follows:

1) The FFT algorithm is used to convert the current waveform
signal into a frequency domain signal for one cycle after
reaching steady-state operation:

X(k) =
L−1

∑
n=0

i(n)e−j
2τkn
L (13)

Ai(k) = |Xi(k)| (14)

In the formula, X(k) is the frequency domain component of
the KTH harmonic, i(n) is the NTH current sampling point, L
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FIGURE 1
Each appliance in PLAID data set corresponds to a color V-I trajectory. (A) Air Conditioner (B) Compact Fluorescent Lamp (C) Fan (D) Fridge (E)
Hairdryer (F) Heater (G) Incandescent Light Bulb (H) Laptop (I) Microwave (J) Vacuum (K) Washing Machine.

FIGURE 2
Color V-I trajectory image of hair dryer and heater. (A) Hairdryer (B) Heater.
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FIGURE 3
Comparison of current harmonic amplitudes of hair dryer and heater.

is the number of sampling points, and Ai(k) is the amplitude
of the KTH current harmonic. Through the above Formulas 13
and 14, the harmonic value of each electrical equipment can
be calculated.

2) The X-axis coordinates in the V-I trajectory image, after the
above color coding, are divided into seven segments. The
height of the pixel coordinates in each segment (i.e., the Z-axis
value) corresponds to the current amplitude of the 3rd to 15th
odd harmonics. The color-coded V-I trajectory is taken as the
X-Y plane of the 3D image, and the 3D image is constructed
by combining the Z-axis value of each pixel, as shown
in Figure 4.

Figure 4 demonstrates that the constructed 3D image can
clearly distinguish between two types of electrical equipment
with similar color V-I trajectory. By incorporating high-order
harmonic features into the 3D color V-I trajectory image, the
accuracy of equipment recognition is significantly improved
compared to recognition based solely on color coding.This approach
effectively addresses the issue of low accuracy in distinguishing
electrical equipment when using only color-coded V-I
trajectories.

3 Improved RESNET50 network

3.1 Data set balancing based on deep
convolutional adversarial networks

As PLAID is a typical unbalanced dataset, there are more
samples of Air Conditioners, Compact Fluorescent Lamps, and

Fans, while there are fewer samples of Heaters, Vacuums, and
Washing Machines. The maximum difference in the number of
samples reaches 171, making it necessary to balance the 11 electrical
equipment samples in the dataset to achieve better results in model
training. In literature (Zai et al., 2022), the SMOTE method was
used for oversampling to increase the number of minority class
samples. However, this algorithm cannot independently control
the number of synthetic samples, resulting in a high degree
of randomness in the generated samples. Literature (Qiu et al.,
2021) employed the SVMSMOTE algorithm to enhance data
oversampling. This algorithm interpolates within the minority
class samples and provides a better enhancement effect than
the traditional SMOTE algorithm. Literature (Cui et al., 2022)
utilized the ADASYN algorithm to increase the number of samples
in each class to match the class with the largest number of
samples. Although this algorithm can better cover the entire
decision boundary by considering the number of neighboring
samples for each minority class instance, for sparsely distributed
minority instances, each neighborhood may contain only one
minority instance. To better balance the image data in the
dataset, this paper uses the DCGAN model to enhance the
image data of minority classes, thereby balancing the number of
samples across different categories and avoiding overfitting during
network training.

The output resolution of the classical DCGAN neural network
is 64×64. Due to this low resolution, the details of the generated
images are often blurred, necessitating an adjustment in resolution.
To ensure the model can still learn the features of real images, the
classical DCGAN neural network uses a Kernel Size of 5×5 and
a Stride size of 2. In this paper, we modify the main generator
and discriminator networks by adding one convolutional layer and
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FIGURE 4
Color coded 3D image based on V-I trajectory. (A) Hairdryer (B) Heater.

FIGURE 5
Improved generator network structure.

adjusting the convolution kernel and stride size to improve the
resolution of the generated images. When selecting the convolution
kernel size and stride size, it is essential to ensure that the output
size at each step is an integer to prevent problems caused by size
mismatches. Therefore, three types of transposition structures were
used in the generator network: convolutional kernel 4×4 with stride
size 2, convolutional kernel 4×4 with stride size 2, and convolutional
kernel 6×6 with stride size 2. These adjustments enable the
generation and parsing of 128×128 images. Correspondingly, the
discriminator network structure was also adjusted to fit the
modified generator.The structure of the adjusted generator network
is shown in Figure 5.

3.2 ResNet50 residual network

DeepResidualNetworks (DRN) arewidely used in the process of
feature extraction.Theirmain advantage lies in their ability to clearly
distinguish data features and significantly enhance the depth feature
extraction capability of the network structure.

Compared with other network models, DRN is a more easily
optimized scheme that effectively avoids degradation, gradient
vanishing, or gradient explosion caused by network deepening. A
key characteristic of residual networks is that different network
layers correspond to different levels of features, with deeper layers
extracting more detailed features. However, increasing the number
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FIGURE 6
ResNet50 Network structure.

of layers indefinitely will also lead to a significant increase in
training time.

In the field of deep learning, ResNet50 is a widely used
convolutional neural network architecture, particularly suited for
complex image recognition tasks. This model features a residual
network structure containing 50 convolutional layers, with the
residual units allowing the network to maintain high recognition
accuracy even at significant depths. The structure of ResNet50
consists of an initial convolution layer, four core residual modules,
and a fully connected layer at the end. Specifically, each of the
four core residual modules contains 3, 4, 6, and 3 submodules,
respectively, with each submodule comprising three convolutional
layers. The detailed network structure of the ResNet50 model is
illustrated in Figure 6.

The BTNK1 structure consists of four adjustable parameters:
number of channels (C), width (W), number of convolutional layer
channels (C1), and step size (S). Additionally, BTNK1 includes an
extra convolution layer on the right side compared to BTNK2,
represented by the function G(x). This structure is suitable for

scenarios where the number of input channels (x) and output
channels (F(x)) differ. With the inclusion of the convolutional layer
G(x), the input x is converted to G(x) to adjust the difference in
the number of channels between the input and output, ensuring
that G(x) matches the number of channels of F(x), thereby enabling
the summation operation. In contrast, BTNK2 involves only two
variable parameters: C and W, which represent the number and
width of channels in the input shape (C, W, W). In this structure,
input data x with shape (C, W,W) is processed by the function F(x),
a three-layer convolution to the left of BTNK2, and then added to the
original input. After being processed by a ReLU activation function,
the final output of BTNK2 is obtained.

In this study, the ResNet50 residual network is used as the
main framework, with the residual module from ResNet50 serving
as the basic module. Its structure is optimized to adapt to the
three-dimensional image recognition required in this paper. The
classic ResNet50 network has 1,000 neurons in the fully connected
layer, resulting in classification outputs for 1,000 image categories.
However, this exceeds the 11 types of electrical equipment identified
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FIGURE 7
Development board physical drawing.

in this study. Therefore, the number of neurons in the final fully
connected layer is modified to 11 to match the electrical load
classification of the PLAID dataset. To better integrate 3D image
features into each image for training and recognition, this paper
combines the x-y plane, x-z plane, y-z plane, and z plane of the 3D
image obtained during data preprocessing into a single image for
input. This approach facilitates effective 3D load image recognition.

3.3 Model improvement based on CBAM

The attention mechanism is a deep learning technique modeled
after human cognitive attention, which optimizes the allocation of
computational resources in a model to focus on key features. This
mechanism can enhance the learning efficiency of the model by
avoiding the wastage of resources on unimportant features, thereby
making the network more attentive to important local information.
The Convolutional Block Attention Module structure consists of
two submodules: the channel attention module and the spatial
attention module.

The core function of the channel attention submodule is to
adjust the contribution weight of each channel of the input 3D
tensor.The dimensions of the input tensor include height (H), width
(W), and number of channels (C). The submodule calculates the
weight of each channel by evaluating the importance of features
across different channels. This is usually achieved through global
average pooling and global maximum pooling, which separately
capture different statistical features. These features are then used to
generate weights for each channel through a shared network, such as
a multi-layer perceptron. These weights are applied to the channels
of the original input, thereby highlighting features that are more

important to the current task and improving the overall performance
of the model.

The flow of the whole channel attention submodule is as follows:

1) Pooling operation: Two one-dimensional tensors (1×1×C) are
obtained by performing maximum and average pooling on the
input three-dimensional tensors (H×W×C).

2) Multilayer perceptron processing: The above two tensors are
fed into a multilayer perceptron, and the weight coefficient for
each channel is calculated through the network.

3) Weight application:The calculated weight coefficients are then
used to weight the channels of the original input tensor,
producing the weighted three-dimensional tensor.

The above procedure is expressed as follows:

Mc(F) = τMLP[avgPool(F)] +MLP[max Pool(F)]

= τW1[W0(F
c
avg)] +W1[F

c
max]

(15)

In the formula, Mc(F) is the output of the channel attention
mechanism, F is the three-dimensional tensor of the input, avgPool
and max Pool are the average and maximum pooling respectively,
MLP is the multi-layer perceptron, W0 and W1 are the weight
coefficients, and Fcavg and Fcmax are the average and maximum
pooling outputs.

The spatial attention submodule moderates its contribution by
evaluating the importance of each position in the input tensor.
First, the input feature maps are subjected to maximum and
average pooling, generating twoH×W×1 featuremaps that represent
the maximum and average values of the original feature map,
respectively. These two feature maps are then merged into a single
H×W×2 feature map. This feature map is convolved with a 7×7
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FIGURE 8
The quantity of each load after balance.

convolution kernel to produce a 1×1×1 feature map whose values
reflect the weight of each position. Finally, this feature map is
processed by a Sigmoid function to obtain the spatial weight
coefficients, thereby realizing the spatial attention adjustment of the
input tensor.

The above procedure is expressed as follows:

Ms(F) = τ( f7×7{[avgPool(F);max Pool(F)]})

= τ{ f7×7[Fsavg;Fsmax]} (16)

In the formula, FSavg and FSmax are the outputs of average pooling
and maximum pooling, and f is the convolution kernel.

Formulas 15 and 16 above can be used to improve the residual
network in this paper. Because CBAM is a lightweight attention
mechanism, when applied to the ResNet50 network, it can improve
the accuracy of 3D color V-I trajectory image recognition while
retaining image information, without significantly increasing the
number of parameters in the network. By implementing CBAM
processing on the previously processed image features, a more
refined feature representation can be generated.

4 Experimental testing and analysis

4.1 Experimental environment

In this paper, the improved ResNet50 neural network is trained
on the Python platform and validated using the PLAID public
dataset and laboratory-measured data. The hardware platform used
includes an Intel(R) Core (TM) I9-12900 CPU at 2.50 GHz and
16 GB of RAM. The PLAID dataset consists of 1793 voltage and

current records for 11 household appliance types collected at 65
different locations, sampled at a high frequency of 30 kHz. To verify
the accuracy and effectiveness of the identification algorithm, data
for four types of electrical equipment—hot kettle, welding torch,
printer, and hair dryer—were collected in a laboratory environment.
These four types of equipment were combined in pairs to create
six types of mixed equipment, resulting in a total of 960 groups of
voltage and current data, with a sampling frequency of 25 kHz.

4.2 Hardware system implementation

In this paper, the ZYNQ7020 development board developed by
Xilinx is used as the hardware platform for the non-invasive load
monitoring system, incorporating the XC7Z020CLG400-2 chipwith
mid-range performance. This chip features 85K logic cells, 4.9 Mb
of Block RAM, 220 DSP slicing resources, up to 200 I/O pins, and a
dual-core Cortex-A9 processor system. Compared to traditional PC
orARM-based embedded platforms, FPGAs offermore convenience
in terms of size and installation, featuring a high-speed CHMOS
process, flexible logic units, parallel computing capabilities, and
pipeline optimization design. These characteristics enable more
effective installation and implementation of NILM algorithms.

Additionally, the core board is configured with two 2 Gb DDR3
SDRAM modules, and it includes necessary peripherals such as
a download interface, PL end crystal oscillator, PS end crystal
oscillator, LED lamp, Ethernet chip, FLASH chip, and eMMC
chip, to fully meet the system requirements. The ZYNQ7020
development backboard not only provides an expansion interface
to the core board but also includes the SD card interface and
various other peripheral modules required for this study. This
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FIGURE 9
Training process of ResNet50 network.

hardware configuration offers significant advantages in terms of
parallel processing and computing speed. The detailed design
of the hardware module is shown in the appendix schematic
diagram, and the physical diagram of the development board
is shown in Figure 7 below.

4.3 Evaluation index

In this paper, three evaluation metrics—confusion matrix,
F1 score, and accuracy rate—are used to assess the load
identification results.

TheF1 score is used to evaluate the recognition accuracy for each
type of electrical equipment. Its calculation formula is as follows:

P =
Tp

Tp + Fp
(17)

R =
Tp

Tp + Fn
(18)

F1 =
2× P×R
P+R

(19)

In the formula, Tp is true positive and refers to the number
of samples in which the load is correctly predicted as a positive
example; Fp is false positive, which refers to the number of samples
whose load is actually negative but is incorrectly predicted to be
positive. Fn represents the false negatives, indicating the number of
samples whose load is actually positive but predicted to be negative.

P is the proportion of correctly predicted positive examples in
all predicted positive examples; R is the recall rate, representing
the proportion of correctly predicted positive samples in all actual
positive samples; F1 is the harmonic average of accuracy and recall,
which is a measure of the overall performance of the model,
especially in cases of class imbalance. Through these indexes, the
performance of load monitoring and forecasting model can be
evaluated comprehensively.

The accuracy rate refers to the ratio of correctly identified
samples to the total number of samples in the test set. It is used to
evaluate the overall recognition performance of the test samples.The
calculation formula is as follows:

Aaccurary =
a
A

(20)

In the formula, A is the total number of samples and a the
number of correctly classified samples. Formulas 17–20 above are
indicators used to evaluate the performance of the model.

4.4 Public data set test results

Thedataset balancingmethod based on the Deep Convolutional
Adversarial Network, described in Section 2.1, was used to balance
the number of samples for various loads in the PLAID dataset,
as shown in Figure 8.

To match the input dimensions of the ResNet50 network, which
are 227×227×3, the size of the constructed mixed color image was
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FIGURE 10
Confusion matrix plotted by PLAID data set test results.

adjusted accordingly. For the transfer learning of the ResNet50
network, the number of neurons in the new fully connected layer
was set to 11, the initial learning rate was set to 0.0001, the number
of training epochs was set to 60, and the batch size was set to
8. The network was trained using the divided training set. The
training process of the ResNet50 network is illustrated in Figure 9.
The horizontal axis represents the number of training iterations,
while the vertical axis, labeled “value,” reflects the model’s training
accuracy and loss function, represented by the orange and blue
curves, respectively. It is evident from Figure 9 that as the number
of iterations increases, the loss function value gradually decreases
and the training accuracy increases. When the number of iterations

reaches 25, both the loss function value and the training accuracy
trend stabilize.

In this paper, 3D color V-I trajectory images separated by 10
cycles from the training set data are selected as the test set. This
approach ensures that there is no data leakage from the training set
while also testing the robustness of the trainedmodel.The confusion
matrix, F1 score, and accuracy rate, as described in Section 3.3, were
used to evaluate the recognition results of the test set.

The confusionmatrix plotted from the PLAIDdataset test results
is shown in Figure 10. The advantage of the confusion matrix is that
it clearly shows where errors occurred, with each row of the matrix
representing the predicted category of the device and each column
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FIGURE 11
F1 scores corresponding to each load in the PLAID dataset.

TABLE 1 The proposed algorithm is compared with other algorithms.

Reference Load characteristic Classification model Accuracy %

References (Zheng et al., 2018) Harmonic current amplitude MLP 73.0

References (Wang et al., 2020b) V-I trajectory + power characteristics BP+LeNet-5 90.9

References (Xie et al., 2022) V-I trace color coding AlexNet 94.0

Textual algorithm 3D color V-I trajectory image Improved ResNet50 98.1

representing the actual category. The predicted category matches
the actual category on the diagonal, indicating correct classification.
Non-diagonal entries represent instances where the device was
misclassified. From the confusion matrix, it is evident that air
conditioners, refrigerators, and laptops are commonly misclassified
as other types of electrical appliances. In contrast, heaters and
vacuum cleaners were not misclassified and were easily identified
by other types of electrical appliances.

The F1 score of each type of electrical appliance is calculated
by the confusion matrix to evaluate the recognition ability of
the model for each type of electrical appliance. The F1 scores
of the 11 electrical appliances corresponding to the test results
are shown in Figure 11. The F-macro marked by red line in the
figure represents the average F1 scores of 11 appliances, of which
the F1 scores of Air Conditioner and Fan are much lower than
the average. The reason for confusion between Air Conditioner
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TABLE 2 In this paper, the measured data of hardware system are tested
and compared by two methods.

Load type Recognition accuracy %

Color V-I tracks 3D color V-I-H
image

Hairdryer 82 100

Hot Water Kettle 100 100

Welding gun 100 100

printer 98 100

Hair dryer + welding
torch

95 100

Hair dryer + hot kettle 100 100

Hair dryer + printer 88 100

Hot kettle + welding
torch

100 100

Hot kettle + printer 92 100

Welding torch + printer 100 100

average 95.5 100

and other types of equipment is that this type of appliance
has multiple operating states, and the characteristics of similar
appliances in different states are very different. There are motors
in fans, and their working principles are similar to those of air
conditioners, hairdryers, washing machines, and other equipment
under specific working conditions, making them difficult to
distinguish.

To further verify the effectiveness of the proposed method, the
load characteristics and classification models described in literature
(Zheng et al., 2018; Wang et al., 2020b; Xie et al., 2022) are
introduced as comparison benchmarks. The specific comparison
results are shown in Table 1. In the PLAID dataset, compared
to the other three algorithms, the recognition accuracy of this
method is improved by 25.1%, 7.2%, and 4.1%, respectively. This
is particularly evident in reducing the false recognition rate of
multi-state equipment such as refrigerators, washing machines, and
air conditioners. The algorithm proposed in this paper combines
higher-order harmonic features with the color V-I trajectory image
to form a 3D color V-I trajectory image. This approach not only
includes all the feature information used in the algorithms from
literature (Zheng et al., 2018; Wang et al., 2020b; Xie et al.,
2022), but also adds more detailed features. In terms of the
classification model, the selected ResNet50 network outperforms
conventional CNN models in image recognition performance. By
improving and incorporating the CBAM model to extract more
effective information from the load imprint, the load recognition
effect is further enhanced. In summary, the proposed method
significantly outperforms the other three algorithms in load
recognition.

4.5 Test results of field data set

According to the load characteristics analysis in Section 2.3,
when the operating principles of the devices are similar and the
power characteristics (including active and reactive power) are
similar, it is difficult to distinguish them using traditional color V-I
trajectory images. To improve the accuracy of load identification in
these cases, a 3D color V-I trajectory image with harmonic features
is introduced in this paper. Section 4.4 verifies the effectiveness of
the new method by comparing it with color V-I trajectory images
without fused harmonic features. The experimental data included
single operation data for a kettle, welding torch, printer, and hair
dryer, as well as current and voltage data when any pair of these
devices operated simultaneously. Among these devices, excluding
the printer, the others are heating equipment. In themixed operation
of these devices, due to their similar power characteristics, single
color V-I trajectory image recognition may lead to misjudgment.
This study tested the data for both separate and mixed operations of
the devices to assess the effectiveness of the recognition algorithm
in distinguishing between the two scenarios.

To reduce the influence of unbalanced datasets on experimental
results, this paper ensures that the sample number of a single
device is consistent with that of its mixed operating state during the
data acquisition stage. Additionally, to maintain consistency in the
experiment, the test environment and network model parameters
follow the settings previously used with the PLAID dataset. In the
experiment, 20 samples of each device were randomly selected for
testing, and two methods—color V-I trajectory image and 3D color
V-I trajectory image—were used for comparison and analysis. The
specific classification effects are shown in Table 2. The results show
that the 3D color V-I trajectory image is significantly better than the
traditional colorV-I trajectory image in device recognition accuracy.
Particularly, when harmonic features are not incorporated, color
V-I trajectory images often misidentify hair dryers as hot water
kettles, and misjudgments frequently occur when these devices
are mixed with welding torches. In contrast, the introduction of
harmonic features in mixed color images significantly reduces
these misjudgments, thus confirming the significant advantages
of mixed color images in solving similar device recognition
problems.

5 Conclusion

This paper proposes a non-invasive fine-grained load
recognition method based on 3D V-I trajectory analysis. By
incorporating higher-order harmonic features and constructing 3D
color V-I trajectory images from two-dimensional V-I trajectory
color coding, the characterization ability of load features is
enhanced, effectively improving the distinction between different
loads and achieving fine-grained load recognition. For model
training, a neural network based on the Convolutional Block
Attention Module is designed on the foundation of the traditional
ResNet50 residual network model to extract more effective
information from load imprints and further improve recognition
performance. Additionally, a non-invasive load recognition system
based on FPGA is developed and trained online on a Linux
system, with high-frequency data acquisition conducted on four
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types of laboratory electrical equipment. The proposed method
was experimentally validated using both the PLAID dataset
and laboratory data, and compared with other methods on the
PLAID dataset. Experimental results show that the proposed
method achieves higher recognition accuracy compared to other
methods, particularly for devices with similar V-I trajectories and
minimal power differences. The fusion of higher-order harmonic
features significantly enhances recognition performance compared
to methods that do not incorporate these features. However,
the proposed method’s recognition performance for multi-
state operating loads needs improvement. Besides incorporating
higher-order harmonic features, the generation of 3D color V-I
trajectory images can further integrate other load features with
higher discriminability in three-dimensional space, leveraging
the advantages of multi-dimensional analysis to improve model
classification accuracy.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/supplementary
material.

Author contributions

HB: Writing–review and editing, Project administration,
Methodology, Conceptualization. ZZ: Writing–review and editing,
Project administration, Methodology, Conceptualization.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. We declare
all sources of funding received for the research being submitted.
This work was supported by Jiangsu Graduate Research Innovation
Program (SJCX23_1209).

Acknowledgments

This paper employs Deep Convolutional Generative Adversarial
Networks (DCGAN), a model introduced by Alec Radford et al. in
2015. Building upon this foundational framework, we implement
optimizations and enhancements to adapt the deep learning model
to the specific requirements of this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Baets, L., Develder, C., Dhaene, T., and Deschrijver, D. (2017). “Automated
classification of appliances using elliptical fourier descriptors,” in IEEE
International Conference on Smart Grid Communications (SmartGridComm)
(Dresden, Germany: IEEE), 153–158. doi:10.1109/SmartGridComm.2017.
8340669

Chen, D., Liu, W., and Ding, S. (2023b). “Research review of non-invasive load
monitoring,” in Annual conference of China electrotechnical society. Singapore: Springer
Nature Singapore, 628–637.

Chen, S., Zhao, B., Zhong, M., Luan, W., and Yu, Y. (2023a). Nonintrusive load
monitoring based on self-supervised learning. IEEE Trans. Instrum. Meas. 72, 1–13.
doi:10.1109/tim.2023.3246504

Cheng, X., Li, L., Wu, H., and Ding, A. (2016). A survey of the research on non-
intrusive load monitoring and disaggregation. Power Syst. Technol. 40 (10), 3108–3117.
doi:10.13335/j.1000-3673.pst.2016.10.026

Chen, J., Wang, X., and Zhang, X. (2020). Non-intrusive load recognition using color
encoding in edge computing. Chin. J. Sci. Instrum. 41 (9), 12–19.

Cui, H.-Y., Cai, J., Chen, L., Jiang, C., Jiang, Y., and Zhang, X. (2022). Non-invasive
load fine-grained identification method based on color coding. Power Grid Technol. 46
(04), 1557–1567. doi:10.13335/J.1000-3673.pst.2021.0613

De, B. L., Develder, C., Dhaene, T., and Deschrijver, D. (2019).
Detection of unidentified appliances in non-intrusive load monitoring using
siamese neural networks. Int. J. Electr. Power Energy Syst. 104, 645–653.
doi:10.1016/j.ijepes.2018.07.026

Du, L., He, D.W., Harley, R. G., andHabetler, T. G. (2016). Electric load classification
by binary voltage-current trajectory mapping. IEEE Trans. Smart Grid 7 (1), 358–365.
doi:10.1109/tsg.2015.2442225

Ghosh, S., Chatterjee, A., and Chatterjee, D. (2021). An improved load feature
extraction technique for smart homes using fuzzy-based nilm. IEEE Trans. Instrum.
Meas. 70, 1–9. doi:10.1109/tim.2021.3095093

Hart, J. G. W. (1992). Nonintrusive appliance load monitoring. Proc. IEEE 80 (12),
1870–1891. doi:10.1109/5.192069

Jia, D., Li, Y., Du, Z., Xu, J., and Yin, B. (2021). Non-intrusive load identification
using reconstructed voltage–current images. IEEE Access 9, 77349–77358.
doi:10.1109/access.2021.3082432

Lam, H. Y., Fung, G. S. K., and Lee, W. K. (2007). A novel method to Construct
taxonomy electrical appliances based on loadsignaturesof. IEEE Trans. Consumer
Electron. 53 (2), 653–660. doi:10.1109/tce.2007.381742

Liu, Y., Wang, X., and You, W. (2019). Non-intrusive load monitoring by
voltage–current trajectory enabled transfer learning. IEEE Trans. Smart Grid 10,
5609–5619. doi:10.1109/tsg.2018.2888581

Lu, J., Zhao, R., Liu, B., Yu, Z., Zhang, J., and Xu, Z. (2023). An overview of non-
intrusive load monitoring based on V-I trajectory signature. Energies 16 (2), 939.
doi:10.3390/en16020939

Qiu, X., Yin, S., Zhang, Z., Xie, Z., Jiang, M., and Zheng, J. (2021). Non-invasive load
identification method based on V-I locus and higher harmonic characteristics. Electr.
Power Eng. Technol. 40 (06), 34–42. doi:10.12158/j.2096-3203.2021.06.005

Shi, J., Zhi, D., and Fu, R. (2023). Research on a non-intrusive load recognition
algorithm based on high-frequency signal decomposition with improved VI trajectory
and background color coding†.Mathematics 12 (1), 30. doi:10.3390/math12010030

Song, Y., and Zhang, R. (2023a). A non-invasive load identification method based
on V-I trajectory mixing feature. J. Phys. Conf. Ser. 2520 (1), 012021. doi:10.1088/1742-
6596/2520/1/012021

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1479995
https://doi.org/10.1109/SmartGridComm.2017.8340669
https://doi.org/10.1109/SmartGridComm.2017.8340669
https://doi.org/10.1109/tim.2023.3246504
https://doi.org/10.13335/j.1000-3673.pst.2016.10.026
https://doi.org/10.13335/J.1000-3673.pst.2021.0613
https://doi.org/10.1016/j.ijepes.2018.07.026
https://doi.org/10.1109/tsg.2015.2442225
https://doi.org/10.1109/tim.2021.3095093
https://doi.org/10.1109/5.192069
https://doi.org/10.1109/access.2021.3082432
https://doi.org/10.1109/tce.2007.381742
https://doi.org/10.1109/tsg.2018.2888581
https://doi.org/10.3390/en16020939
https://doi.org/10.12158/j.2096-3203.2021.06.005
https://doi.org/10.3390/math12010030
https://doi.org/10.1088/1742-6596/2520/1/012021
https://doi.org/10.1088/1742-6596/2520/1/012021
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Bian and Zhang 10.3389/fenrg.2024.1479995

Song, Y., and Zhang, R. (2023b). A non-invasive load identification method based
on VI trajectory mixing feature. J. Phys. Conf. Ser. 2520 (1), 012021. doi:10.1088/1742-
6596/2520/1/012021

Wang, J., and Sun, Y. (2023). Non-intrusive load identificationmethod based onGAF
and RAN networks. Front. Energy Res. 11. doi:10.3389/fenrg.2023.1330690

Wang, S., Guo, L., Chen, H., and Deng, X. (2020a). Based on feature fusion and depth
learning non-invasive load identification algorithm.Power Syst. Autom. 44 (9), 103–110.
doi:10.7500/AEPS20190625010

Wang, S., Guo, L., and Chen, H. (2020b). Non-intrusive load identification algorithm
based on feature fusion and deep learning. Automation Electr. Power Syst. 44 (9),
103–110.

Xie, Y., Mei, F., Zheng, J., Gao, A., Li, X., and Sha, H. (2022). Non-invasive load
identification method based on V-I trajectory Color Coding. Automation Electr. Power
Syst. 46 (04), 93–102. doi:10.7500/AEPS20210511005

Yang, D., Gao, X., Kong, L., Pang, Y., and Zhou, B. (2020). An event-driven
convolutional neural architecture for non-intrusive load monitoring of residential
appliance. IEEE Trans. Consum. Electron. 66, 173–182. doi:10.1109/TCE.2020.2977964

Yang, W., Pang, C., Huang, J., and Zeng, X. (2021). Sequence-to-Point
learning based on temporal convolutional networks for nonintrusive load
monitoring. IEEE Trans. Instrum. Meas. 70, 1–10. doi:10.1109/TIM.2021.
3106678

Yin, B., Zhao, L., Huang, X., Zhang, Y., and Du, Z. (2021). Research on non-intrusive
unknown load identification technology based on deep learning. Int. J. Electr. Power
Energy Syst. 131, 107016. doi:10.1016/j.ijepes.2021.107016

Zai, Z., Zhao, S., Zhu, X., Zhang, Z., and Dong, F. (2022). Noninvasive load
identification method based on color coding and harmonic feature fusion. Electr.
Technol. 23 (12), 9–16. doi:10.3969/j.issn.1673-3800.2022.12.002

Zhang, C., Zhong, M., Wang, Z., Goddard, N., and Sutton, C. (2018). “Sequence-to-
point learning with neural networks for non-intrusive loadmonitoring,” in Proceedings
of the AAAI conference on artificial intelligence, New Orleans Louisiana, USA.
doi:10.1609/aaai.v32i1.11873

Zheng, Z., Chen, H. N., and Luo, X. W. (2018). A supervised event-based non-
intrusive load monitoring for non-linear appliances. Sustainability 10 (4), 1001–1028.
doi:10.3390/su10041001

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1479995
https://doi.org/10.1088/1742-6596/2520/1/012021
https://doi.org/10.1088/1742-6596/2520/1/012021
https://doi.org/10.3389/fenrg.2023.1330690
https://doi.org/10.7500/AEPS20190625010
https://doi.org/10.7500/AEPS20210511005
https://doi.org/10.1109/TCE.2020.2977964
https://doi.org/10.1109/TIM.2021.3106678
https://doi.org/10.1109/TIM.2021.3106678
https://doi.org/10.1016/j.ijepes.2021.107016
https://doi.org/10.3969/j.issn.1673-3800.2022.12.002
https://doi.org/10.1609/aaai.v32i1.11873
https://doi.org/10.3390/su10041001
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Data preprocessing and 3D image construction
	2.1 Data acquisition and preprocessing
	2.2 Color coding based on V-I trajectory features
	2.3 3D image construction

	3 Improved RESNET50 network
	3.1 Data set balancing based on deep convolutional adversarial networks
	3.2 ResNet50 residual network
	3.3 Model improvement based on CBAM

	4 Experimental testing and analysis
	4.1 Experimental environment
	4.2 Hardware system implementation
	4.3 Evaluation index
	4.4 Public data set test results
	4.5 Test results of field data set

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

