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With the increasing variation of the network topology and the high complexity of
the processing measurement data, the transient voltage stability assessment of
the new power system is facing significant challenges in low accuracy and high
time costs. To address the shortcomings of the existing method and apply it to
online assessment, this paper proposes an assessment method based on feature
learning for disturbance signal energy (DSE) from bus voltages. Firstly, the
relationship between DSE and system transient voltage stability is established,
and the calculation of DSE from bus voltage time series is detailed. Subsequently,
a transient voltage stability assessment method based on the ID3 Decision Tree
algorithm andDSE is proposed. Finally, by employing the Support VectorMachine
(SVM) to construct the optimal boundary in the feature space formed by the key
buses, the transient voltage stability margin (TVSM) for specific scenarios is
proposed. Simulation results on the IEEE 39-bus system demonstrate that the
proposed method can rapidly and accurately assess the transient voltage stability
of the system and calculate the stability margin, providing intuitive and
interpretable results with high engineering application value.
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1 Introduction

The extensive integration of renewable energy and the widespread application of power
electronic equipment in power systems, along with the increase in grid scale and complexity
(Gao et al., 2023), has resulted in significant changes to voltage regulation characteristics
and reactive power distribution in power grids. This renders the system more susceptible to
voltage instability in the event of disturbances. For instance, in January 2023, Pakistan
encountered prolonged oscillations and grid splitting as a consequence of substantial wind
power generation (Tu et al., 2023). Furthermore, in new power systems, the grid’s topology
is highly variable, with frequent maintenance procedures contributing to the complexity of
transient voltage stability assessment (Chi and Chen, 2023). Therefore, it is essential to
conduct comprehensive research and assessment of transient voltage stability in new power
systems to guarantee the safe and reliable operation of the grid.

Early studies on transient voltage stability mainly relied on physical modeling, with
time-domain simulation being widely used due to its high adaptability and reliability (La
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Scala. et al., 1998). However, this method suffers from low
computational efficiency and lacks explicit stability criteria (Barab
á si and Albert, 1999). To address these shortcomings, Bergen and
Hill (1981) introduced the structure-preserving energy function
method to the power system, and its effectiveness was validated
through numerical simulations. A group of researchers began to
apply the energy function method for transient voltage stability
assessment later. For instance, Chiang (1989), Overbye et al. (1992a),
Overbye et al. (1992b) have proposed frameworks for studying the
relationship between voltage stability and energy function. Since
then, the energy function method has become a rigorous approach
to studying power system stability. Power flow analysis is also
crucial in transient voltage stability studies. Kwatny et al. (1986)
examined its role in stability loss and voltage collapse
bifurcations, while Indulkar et al. (1989) used it to determine
voltage stability limits in AC transmission systems. Furthermore,
methods based on physical modeling, such as bifurcation theory
(Dobson and Chiang, 1989) and trajectory eigenvalue analysis
(Pan et al., 2008; Tan et al., 2012), have also been applied. In
recent years, with the increasing deployment of various power
electronic equipment, challenges have been raised in power
system modeling, leading to difficulties in ensuring the
accuracy of transient stability analysis based on physical
modeling methods (Zhang et al., 2023).

With advances in computer hardware, artificial intelligence
technologies, and the maturation of Wide Area Measurement
Systems (WAMS), data-driven methods have gradually been
applied to voltage stability analysis (Tan et al., 2023; Liu et al.,
2024). The application of neural networks in the assessment of
transient voltage stability began early (Maeda et al., 1995). Chen and
Xie (2022) took the time series of primary measurement data of
power systems as the input, and TCN network with attention
enhancement module and BiLSTM network were used to extract
timing features in parallel to judge the transient voltage stability of
the system. Jiang et al. (2014) employed SVM to predict the transient
voltage stability condition of the power system, and Niu et al. (2021)
achieved the same target by applying AdaBoost-SVM to construct a
transient security ensemble learning prediction model. Gao et al.
(2022) proposed a voltage stability assessment method in new power
systems based on the eGBDT algorithm, which achieved spatial
dimensionality reduction. A review of the application of the machine
learning methods for transient voltage stability assessment was
provided by Adhikari et al. (2020). However, they fall short of
intuitively illustrating the physical relationship between transient
voltage stability and the observed data, posing challenges for
practical engineering applications.

To enhance the interpretability of assessment results, some
academics have integrated traditional physical modeling theories
with machine learning and treated voltage time series as the object of
feature learning. Zhu et al. (2016) and Zhu et al. (2020) assessed
transient voltage stability by analyzing time series composed of
transient voltages. The relative studies primarily employ the
Shapelet method to extract key time-series features from the
whole time series. However, the Shapelet methods require
substantial computational resources and may suffer the curse of
dimensionality when applied to large-scale power grids. In practical
engineering, in addition to assessing the transient voltage stability of
specific operating scenarios, there is also a significant focus on the

stability margin of these scenarios. It is crucial in guiding power
system dispatch to ensure safe and stable operation (Wang et al.,
2024). The data-driven studies on transient voltage stability rarely
provide methods for calculating the stability margin under their
respective assessment models.

To address these issues, this paper proposes a transient voltage
stability assessment method based on disturbance signal energy
(DSE) and the Decision Tree algorithm. The innovations are
as follows.

(1) The concept of DSE is introduced. Based on the DSE, the
intensity of voltage fluctuations can be more directly reflected
compared to the energy function method.

(2) The ID3 Decision Tree algorithm is applied to construct the
transient voltage stability assessment model based on DSE.
Compared to the Shapelet-based method, the assessment
model proposed in this paper shows the advantages of
lower time costs and higher interpretability, while
maintaining the same level of accuracy.

(3) The optimal decision boundary of the dichotomous samples is
obtained using SVM, upon which the stability margin
calculation is built. The resulting stability margin provides
a definitive assessment of the transient voltage stability and
effective guidance for practical dispatching.

The rest of the paper is organized as follows: the concept of
transient voltage stability and the definition of DSE are introduced
in Section 2. The proposed stability assessment model based on DSE
and the Decision Tree algorithm is detailed in Section 3, as well as
the margin calculation scheme based on the SVM. A summary of the
overall construction process of the model described in Section 3 is
provided in Section 4. Results of the tests of the proposed algorithm
in this paper on the IEEE 39-bus system are shown in Section 5. The
conclusion with a summary of the work presented in the paper is
provided in Section 6.

2 Stability problem and energy variation
patterns of transient voltage

2.1 Description of transient voltage
stability problem

Transient voltage stability refers to the ability of a power system
to maintain its voltage level without collapsing and to return to a
steady state within a short period after experiencing severe faults or
disturbances. Analysis of transient voltage stability typically involves
the voltage response and recovery process of the system within a few
seconds after the fault occurs (Tang et al., 2002). For a given power
system, it can be described by Equation 1:

_x � f x( )
0 � g y( ){ (1)

Where: x refers to the state variables in the system, such as
angular velocity and power angle, _x represents the derivative of
the variable x with respect to time. The function f(x) describes
the dynamic behavior of the system. The variable y is the
algebraic variables in the system, such as bus voltages and
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currents. The function g(y) describes the network equations of
the system.

For the dynamic process of the system described by f(x), assume
the system operates at a stable equilibrium point xs, and the
corresponding stable region for the system under a certain
operation scenario is S(x), with the stable region boundary
denoted as ∂S(x). Traditional transient voltage stability analysis
methods assess if the system’s operating point, after a severe
disturbance, remains within the stable region boundary ∂S(x) to
determine whether the system voltage will become unstable
(Praprost and Loparo, 1994). Based on the stable region, the
energy function method can be used to approximate the dynamic
process of power systems after a fault (Hou et al., 2004). The energy
function method can quickly assess system stability by comparing
whether the accumulated energy from the occurrence of the fault to
a period after its clearance exceeds the critical energy value
corresponding to the stable region boundary. Thus, the problem
of determining whether the power system operates within the stable
region transforms into the problem of calculating the critical energy
of the power system and comparing whether the accumulated
energy exceeds the critical energy (Wang et al., 2011).

2.2 Disturbance signal energy method

It is mentioned in Section 2.1 that the energy function method
assesses system stability by analyzing the energy accumulation
during the transient process. The introduction discusses using
artificial intelligence for data-driven analysis to understand power
system instability mechanisms. These methods can be combined,
employing a simpler yet physically meaningful method of voltage
signal energy feature learning to assess the transient voltage stability
of a post-fault system.

For the transient voltage stability problem in power systems,
analyzing the accumulation of voltage signal energy after
disturbances can help judge the likelihood of system instability
(Marceau et al., 1996). The calculation method for voltage signal
energy is given in Equation 2:

E � ∫t1

t0

u t( )| |2dt (2)

Where: t0 and t1 are different time points with t0<t1, and u(t) is
the curve of voltage over time.

Unlike the traditional energy function method, which calculates
system energy primarily based on its actual operating state and
topology, the signal energy method directly computes energy
through the trend of changes in a specific physical quantity at
one bus. While the information contained is relatively less
compared to the energy function method, it highlights specific
features of interest. For example, in the transient voltage stability
of a power system, analyzing the system’s voltage signal energy
allows for stability assessment without the need for extensive
computations of the system’s overall energy.

Based on Equation 2, the accumulated deviation of the voltage
magnitude at a bus from its steady-state value within a short
period after a disturbance is defined as the disturbance signal
energy (DSE). Considering that in practical calculations, the
obtained voltage magnitude data is not an analytical function

but a discrete data set, the expression for the voltage DSE is given
as Equation 3:

E � ∫t1

t0

u t( ) − u 0( )[ ]2dt � ∑NT

i�1
u ti( ) − u 0( )[ ]Δt (3)

Where: u (0) is the steady-state voltage value, NT is the number
of measurement points within the considered period of the time
series, Δt is the time interval between two consecutive measurements
(i.e., the step size), and u (ti) is the voltage magnitude corresponding
to the ith measurement point.

The voltage DSE can reflect the severity of voltage oscillations
during the transient process when a fault or a disturbance occurs. As
shown in Figure 1, typical cases of transient voltage stability, critical
stability, and instability in the same system after a line fault are
presented. The local magnification provides an intuitive reflection of
the voltage DSE accumulation at the same bus in these three typical
scenarios. The results demonstrate that in the transient process, as
the stability decreases, the generated DSE increases. The DSE
generated in the stable cases is significantly less than that in the
unstable cases. Therefore, DSE can effectively indicate the transient
voltage stability of the system.

3 Transient voltage stability assessment
and margin calculation based on
feature learning of disturbance
signal energy

3.1 Generation of disturbance signal energy
data set

The transient voltage time series data set of a d-dimensional
power system is denoted as S � S1, S2, . . . , Sd{ }, where S ∈ Rn×d×NT ,
n is the number of cases, and NT is the length of the time-series data,
i.e., the number of measurement points. To illustrate the generation
of the DSE set, take the dimension i (1 ≤ i ≤ d) of the dataset S as an
example. The dataset Si in dimension i is composed of n time series
all of length NT, as shown in Equation 4.

Si � Ui,1, Ui,2, . . . , Ui,n{ }, i � 1, 2, . . . d (4)

Where: Ui,j � ui,j(t1), ui,j(t2), . . . , ui,j(tNT){ }, j = 1, 2 . . . , n,
and ui,j(t1) represents the value of the voltage at bus i for the sample
j at the first measurement point.

Each time series can be transformed into the DSE generated over
a certain period according to Equation 3. After n time series have
been transformed, we can obtain the DSE set for a single bus i, as
shown in Equation 5:

Ei � Ei,1, Ei,2, . . . , Ei,n{ } (5)

Each element Ei,j in Equation 5 is a scalar that denotes the DSE
generated by the voltage at bus i in sample j over the given time
series. For sample j, taking Ei,j as the feature attribute of bus i, the
DSE set Ei for bus i is sorted in ascending order to obtain
Esort
i � Ei,1′ , Ei,2′ , . . . , Ei,n′{ }. Then the average values between each

pair of adjacent elements in Esort
i are calculated to obtain the

candidate set of split thresholds for the DSE at bus i, denoted as
Emean sort
i � Emean

i,1 , Emean
i,2 , . . . , Emean

i,n−1{ }. The operation of sorting and
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taking the average value of Ei is speedily to select featured system
buses with distinct information for stability judgment.

Similarly, by applying the same process to all dimensions (i.e., all
the buses in the power system) in S, we can obtain the candidate set
of split thresholds for the DSE of multiple buses under a given
number of samples, which is used to partition the data set into
different subsets, denoted as Emean sort, as shown in Equation 6:

Emean sort �
Emean sort
1,1 Emean sort

2,1 / Emean sort
d,1

Emean sort
1,2 Emean sort

2,2 / Emean sort
d,2

..

. ..
.

1 ..
.

Emean sort
1,n−1 Emean sort

2,n−1 / Emean sort
d,n−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

3.2 Construction of the transient stability
assessment model based on decision tree

The core idea of the decision tree machine learning method
is to partition the data set into different subsets through a series
of decision rules (Karabadji et al., 2023). This process is
relatively simple and efficient, and the classification model
and assessment results are presented in a tree structure,
which retains the clear physical significance of the DSE. In
this study, different buses in the system under study are defined
as different attributes of the corresponding decision tree model.
Since the number of buses in each data sample is the same,
meaning the number of attributes is consistent across samples,
there is no preference for attributes with more or fewer possible
values (Li et al., 2020). Therefore, the ID3 Decision Tree
algorithm is here applied to construct the transient voltage
stability assessment model, using information gain as the
criterion for selecting DSE split thresholds at each node
during the learning process.

To facilitate the subsequent explanation of information gain, the
definition of information entropy is provided first (Omuya et al.,
2021). Information entropy refers to the level of disorder in a data
set. The more homogeneous the categories within the dataset, the
lower the information entropy is. Since this study deals with a binary
classification problem for stability assessment, where the samples
(described in Equation 5) in E are either stable or unstable, denoted
as C1 and C2 , respectively, with their proportions in E being p1 and
p2, the degree of disorder in E can be expressed as Equation 7:

Ent E( ) � −∑2
k�1

pk log2 pk( )[ ] (7)

Where: Ent(E) is the information entropy of E.
For each bus of the d-dimensional power system, a candidate

energy split threshold Edivide
i is randomly selected from Emean sort

i to
partition E into two subsets, denoted as Eless and Egreater (where each
element in Ei � Ei,1, Ei,2, . . . , Ei,n{ } of Eless in the dimension is less
than Edivide

i , and each element in Ei � Ei,1, Ei,2, . . . , Ei,n{ } of Egreater

in the dimension i is greater than Edivide
i ).

To calculate the information entropy of the subsets Eless and
Egreater, the number of stable and unstable samples in Eless and
Egreater are counted, respectively. Then, according to Equation 8, the
expression for the conditional information entropy after
classification is obtained as follows:

EntEdivide
i

E( ) � pEless
× Ent Eless( ) + pEgreater × Ent Egreater( ) (8)

Where: pEless and pEgreater are the proportions of the sample
numbers of Eless and Egreater in E, respectively.

Thus, the information gain (IG) obtained by partitioning the
data set using Edivide

i is as Equation 9:

IG E, Edivide
i( ) � Ent E( ) − EntEdivide

i
E( ) (9)

Using Equations 7–9, the candidate energy split threshold with
the maximum IG from the n-1 candidate energy split thresholds
contained in Emean sort

i is selected as the optimal energy split
threshold for bus i, set as Emean sort

i,max . Similarly, the optimal
energy split thresholds for all buses in the system are obtained.
By comparing the information gains corresponding to the optimal
energy split thresholds of multiple buses, select the bus with the
maximum information gain and its energy split threshold as a
decision tree node. The Eless or Egreater corresponding to
Emean sort
i,max is further used to find the next decision tree node by

updating Equations 6–9. The following outlines the specific process
for generating the decision tree model based on DSE.

As shown in Figure 2, the decision tree model classifies through
multiple layers of if-then rules. After inputting the candidate set of energy
split thresholds, Emean sort, into the decision tree, the decision tree model
starts from the root node and compares the data of each dimension in the
input DSE set. Based on the predetermined rules, the information gain is
calculated and the attribute (i.e., the DSE of bus voltage) and the
corresponding split threshold with the best classification performance
are selected as the root or internal node. This ensures that the binary
branches generated from this node maximize the number of similar
samples in the corresponding sample subsets while minimizing the
number of dissimilar samples, thereby reducing the entropy of the
sample subsets as much as possible. This process of recursively
optimal partitioning of the data set continues until each sample subset
contains only similar samples or the number of samples in a subset
reaches a preset threshold, at which point the tree stops growing. Finally,
the corresponding label of similar samples or the majority label of
dominant samples is stored in the terminal leaf nodes as the
classification label. Ultimately, all branches, internal nodes, and leaf
nodes from the root node are integrated into a complete decision
tree structure.

When significant changes occur in the topology of power
systems, the DSE set can be rapidly generated, as the generation
process of the DSE set involves direct function transformation
without a search process as the Shapelet-based method, allowing
new thresholds to be quickly learned from the new DSE set. Due to
these advantages, the method proposed in this paper demonstrates
higher adaptability and practicality in real power grids.

After assessing transient voltage stability using a binary
classification decision tree model based on DSE feature learning, the
resulting stable or unstable labels prove insufficient for effectively
guiding the scheduling, operation, and maintenance processes of the
power system. To more intuitively demonstrate the system’s stability
under a certain scenario, the attributes contained in the nodes of the
decision treemodel, which correspond to the system buses in this paper,
are considered the key buses that have the greatest impact on transient
voltage stability in the studied system. These key buses are then used to
construct a transient voltage stability margin calculation model.
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3.3 SVM-based transient voltage stability
margin calculation

As mentioned above, the fluctuation of bus voltage magnitude after
the system is disturbed can be reflected through DSE. In a specific
scenario, the disturbance severity of each bus in the system is positively
correlated with each other (Hou et al., 2015), then the DSE generated by
the voltage of each bus in the system will show the phenomenon of
“increasing and decreasing simultaneously”, and the larger the DSE
generated by the system after a fault, the more likely that the system
voltage will undergo transient instability (Odun-Ayo and Crow, 2012).
Therefore, in the feature space E composed of the DSE generated by the
voltage of the key buses, the sample points corresponding to different
scenarios will show an approximate linear distribution, and then SVM
can be used to obtain the approximate linear boundary between the stable
samples and unstable samples to construct the stabilitymargin calculation
model (Tan et al., 2024).

The essence of SVM is to find the hyperplane in the feature space
that maximizes the interval between the dichotomous samples. The
sample set E is divided into stable sample set, E.g., and unstable sample
set Eb by the classification of the decision tree model, and the two types
of samples are assigned the stable labels y = 1 and y = −1. The
hyperplane divided by the linear SVM can be expressed as Equation 10:

ws + b � 0 (10)

Where: w denotes the coefficients of the hyperplane, s denotes
the variables in the feature space, and b is the bias term.

In practice, normal samples are often contaminated by a small
number of abnormal samples, leading to errors. To solve it, slack
variables are introduced, and the optimal values of w and b can be
obtained by solving the optimization problem in Equation 11:

min
1
2
w‖ ‖2 + C∑l

i�1
ξ i

s.t.
yi wsi + b( )≥ 1 − ξi

ξ i > 0

⎧⎨⎩ , i � 1, 2,/, l

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(11)

Where: yi denotes the stability label of the training sample; ξi is
the slack variable; C is the penalty factor, used to control the degree
of punishment for misclassification, l is the number of variables in
the feature space.

After the boundary equation with the maximum distance
between two types of samples is obtained using SVM, the
transient voltage stability margin (TVSM) of a specific scenario
corresponding to the sample can be calculated based on the distance
from the sample’s DSE to the boundary in the space E.

The ideal situation where the voltage magnitude curve at each bus
can immediately and vertically return to a steady state after fault
clearance is taken as the baseline for normalizing the stability
margin. In this case, the DSE generated at each bus is 0. Thus, the
TVSM of the system under a certain scenario is defined as Equation 12:

TVSM Ej( ) �
Dst Ej( )
DRef

, Ej ∈ Eg

−Dst Ej( )
DRef

, Ej ∈ Eb

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dst Ej( ) � Ej•e( ) + b
∣∣∣∣∣ ∣∣∣∣∣

e‖ ‖

DRef � max max
Ej∈Eg

Dst Ej( ), Dst 0( ){ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Where: Ej refers to the sample j in the stable sample set, E.g., Dst

(Ej) refers to the perpendicular distance from sample j to the optimal

FIGURE 1
Voltage magnitude time series and its DSE accumulation at different transient stability levels: (A) Stable, (B) Critical Stable, (C) Unstable.

FIGURE 2
Schematic diagram of the decision tree model.
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boundary, e is the normal vector of the optimal boundary in the
feature space, b is the constant term of the hyperplane equation,DRef

is the reference distance value, max
Ej∈Eg

Dst(Ej) represents the

maximum value among the perpendicular distances from all
samples Ej in the sample set, E.g., to the optimal boundary, and
Dst (0) refers to the perpendicular distance from the origin to the
optimal boundary. DRef is chosen as the maximum value of Dst (E.g.,)
and Dst (0) to ensure that the calculated TVSM will not exceed 1.

After the stability margins corresponding to the scenarios of all
samples in the sample set are calculated, the transient voltage
stability level of the system after fault clearance is categorized
into three types: stable, critically stable, and unstable, as shown
in Table 1. Unlike the commonly used definition that considers
samples that reach the limit of stability as critical samples, which is
not instructive, in this paper, the stable samples with their TVSM
ranked within the bottom 5% are considered as the critical samples
(Li et al., 2019), and the maximum TVSM value among these critical
samples is defined as the division η. 5% is an empirical value, the
value of η can be adjusted according to actual operating
requirements. When TVSM = 1, the system is in an ideal stable
state, where the voltage curve can immediately return to steady-state
after fault clearance, without any overshoot or oscillation. When
TVSM = 0, according to Equation 12, the sample point lies on the
optimal boundary, and the system is exactly at the critical point
between stability and instability. Considering that engineering
design and operation usually adopt a conservative strategy, this
paper classifies the samples with TVSM = 0 as unstable.

4 Implementation of the
overall scheme

Based on the decision tree model learned from perturbation
signal energy characteristics and the transient voltage stability
margin calculated by the perpendicular distance between the
SVM optimal boundary and sample points, the overall scheme
for assessing transient voltage system stability and calculating the
margin is shown in Figure 3.

The overall scheme is implemented in four stages.

(1) Initial Data Acquisition and Processing: For a given system,
considering its various possible operating conditions and fault
types, a large number of simulation cases are generated
through transient numerical simulations. The voltage time
series is transformed into the DSE generated during the given
period using Equation 3. The transformation completes the
conversion from the time series dataset to the DSE dataset,
preparing for subsequent learning.

(2) Construction of Decision Tree Classification Model: Based on
the DSE dataset generated in the previous stage, the
ID3 Decision Tree algorithm is applied to learn from these
data and generate a decision tree classification model for
transient voltage stability assessment. Each node in the tree
corresponds to the DSE and its splitting threshold for the
respective bus, which is considered the key bus of the power
system. These key buses form the foundation for subsequent
calculations of the TVSM based on SVM.

(3) Construction of the Margin Calculation Model: Based on the
key buses obtained in step (2), a d-dimensional disturbance
signal energy feature space E is constructed. After
classification by the decision tree model, the sample points
are labeled as stable and unstable. Using SVM, an
approximate optimal linear boundary between the stable
and unstable samples is obtained. The distance from each
sample point to the optimal boundary is then used to calculate
the TVSM of the corresponding scenario.

(4) Online Monitoring, Stability Assessment, and Margin
Calculation: When the system undergoes a severe
disturbance, the post-fault voltage time series data from
the PMU is converted into a DSE dataset. This dataset is
used for top-down path searching in a decision tree model.
Upon reaching a leaf node, the node’s class label provides the
assessment result. If the system is judged to be unstable, an
alarm signal will be immediately issued to alert the operating
personnel to take control measures. If the result shows to be
stable, the TVSM under the given fault will be calculated,
thereby providing better guidance for personnel in
the dispatch.

5 Case study

To verify the validity and superiority of the proposed method,
the New England 10-machine 39-bus system (IEEE 39-bus system)
with wind power access is built in DIgSILENT software, as shown in
Figure 4. The locations of wind farms integrated into the system and
the specific configurations of the wind turbine generators can be
found in the Appendix.

Both the training and test set in the case study are obtained by
transient simulation through DIgSILENT software. To enrich the
diversity of the scenarios, the load size and synchronous machine
output are adjusted based on the standard operation scenario of the
system, and the Monte Carlo method is applied to simulate the
stochastic nature of wind power output. The implementation plan is
detailed in the Appendix. Meanwhile, considering the N-1 and N-2
principles, 1 or 2 important lines will be randomly disconnected in
the case study before setting the faults according to the
above schemes.

Under these conditions, the initial data samples are generated by
transient numerical simulation, and then the voltage magnitude
time series at each bus are extracted as the needed data samples.
Taking the fault clearing time as the starting point, given the time
window T to be 0.8 s, the sampling interval Δt is set to be 0.01 s, the
same as the simulation time step. The time window is utilized to
extract the time series of the voltage magnitude per unit value at each
bus. The length of each time series is m � T/Δt.

TABLE 1 Division of transient voltage stability margin.

TVSM System transient voltage stability level

η<TVSM≤ 1 Stable

0<TVSM≤ η Critically Stable

TVSM≤ 0 Unstable
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5.1 Stability assessment model utility
verification and performance analysis

In this section, 1,200 data samples are generated through
transient numerical simulations. Of these, 800 are randomly
selected for offline training of the proposed method to
construct the stability assessment model, while the remaining
400 are used to test the model construction efficiency and
classification accuracy of the method. From the training
samples, a candidate DSE set is generated, and the
ID3 Decision Tree is used to train the candidate set for
classification, resulting in the decision tree classification model
shown in Figure 5. Taking the root node in the figure as an
example, EBus5 denotes the DSE generated by the voltage at Bus
5 within time T after fault clearance, and the attributes of the
feature variables on the rest of the nodes are similar to this one.
The class labels on the leaf nodes indicate stability judgment
results, with −1 and 1 representing instability and stability,
respectively. A 10-fold cross-validation is used to test the
accuracy of the constructed classification model, yielding a
cross-validation accuracy of 99%, indicating that the model
has excellent classification performance.

Considering the particularity of transient voltage stability
classification: the costs of misclassifying instability as stability
(false negatives) and stability as instability (false positives) are
significantly different. The former can easily lead to irreversible
voltage collapse or even power outages, resulting in substantial
economic losses, while the latter can typically be remedied in
time with corrective control measures, leading to much smaller
losses. Given the same probability of misclassification, system
operators prefer to classify samples as unstable to avoid severe,
irreversible consequences. Therefore, in subsequent comparisons of
different algorithm performances, both the false negative rate and
false positive rate are used as evaluation metrics (Zhu et al., 2016).
When applying data mining methods to transient voltage stability
analysis, considering the conservative nature of power system
operation, it is important to not only improve classification
accuracy (i.e., reduce the total number of false negatives and false
positives) but also to minimize the total number or proportion of
false negatives (Dai et al., 2015).

When using the resulting decision tree classification model to
assess transient voltage stability online, the WAMS first collects the
voltage time series of buses 5, 11, and 7 within time T after fault
clearance. Then, the DSE generated by these time series compared to

FIGURE 3
Overall scheme of transient voltage stability assessment and margin calculation.
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their steady-state values is calculated and compared with the
splitting thresholds in the model in a top-down sequence until a
leaf node is encountered, then the stability discrimination result can
be obtained. By employing this approach, the remaining
400 samples that were not used in training are tested to simulate
online monitoring and stability assessment, further validating the
model’s classification performance. The results show an overall
accuracy rate (AR) of 99%, with a false positive rate (FPR) of 1%

and a false negative rate (FNR) of 0%. It proves that the classification
model can be reliably and effectively used for online monitoring.

Under the same conditions of parameters, data samples, and
configuration environment, the proposed transient voltage stability
assessment model based on DSE feature extraction is compared with
the improved algorithm which uses piecewise linear fitting before
Shapelet search to avoid inefficient point-by-point sliding search (Ye
and Keogh, 2009), and the stability assessment algorithm based on
particle swarm optimization to accelerate Shapelet search (Zhu et al.,
2016). The aforementioned algorithms are hereafter referred to as
Algorithm I, B, and C, in sequence. The comparison results are
shown in Table 2.

Compared with algorithms B and C, Algorithm I significantly
reduces the training time to less than 300 s. This is because
Algorithm I adopts the DSE split threshold which is single-
dimensional as the comparison object, while Algorithms B and C
first search for the optimal two-dimensional time series and then

FIGURE 4
Single line diagram of IEEE 39-bus system with wind power farms.

FIGURE 5
Decision tree classification model.

TABLE 2 Comparison of training time and accuracy of four algorithms.

Algorithm Training
time (s)

Results of test

FNR
(%)

FPR
(%)

AR
(%)

B 7.743 × 104 0.5 1 98.50

C 9.563 × 103 0.5 0.75 98.75

I 2.983 × 102 0.25 0.5 99.5
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transform it into a Euclidean distance split threshold for
comparison. Algorithm I eliminates the complex optimal
subsequence search process, significantly reducing the model
training time cost and shows a high degree of flexibility for the
rapid updating of the topology and morphology of the power grid.

In terms of accuracy, the proposed algorithm in this paper shows
a reduction in both missed detection rates and false alarm rates
compared to Algorithms B and C, resulting in an overall
improvement in accuracy. By referring to the decision tree
classification model shown in Figure 5, the reasons for this

improvement are as follows: the DSE of the bus in the stable
samples are all less than the energy splitting thresholds of the
nodes inside the decision tree, whereas the DSE of unstable
samples is all greater than the energy splitting thresholds. It
means that the samples have obvious differentiation in the model
constructed by Algorithm I. Meanwhile, different types of instability
may cause the system’s voltage curves to exhibit various patterns,
such as gradual decline, damped oscillation, sustained oscillation,
and voltage collapse, which lead to significant differences in the
voltage curves shortly after fault clearance. Algorithms A, B, and C
evaluate stability by comparing the Euclidean distance between the
voltage curve trajectories and an optimal Shapelet. As a result, they
may confuse stable and unstable curves when faced with different
instability types, leading to misjudgment. The proposed method, by
comparing disturbance signal energy levels, overcomes the
limitations of shapelet-based methods. Thus achieving higher
accuracy. This is also why the proposed algorithm outperforms
shapelet-based methods in terms of accuracy.

In practical engineering applications, power grid lines are
frequently under maintenance. Therefore, the topology and
configuration of the power grid during online monitoring often
differ from those during offline training. In such cases, stability
assessment models need to have strong robustness and
generalization capabilities.

To verify that the proposed method maintains robust stability
assessment capabilities even whenminor changes occur in the power
grid topology due to line maintenance, the following example is set
to an extreme condition. In the IEEE 39-bus system shown in
Figure 4, the system load levels, outputs of synchronous
generators and wind farms, and fault locations are randomly set

FIGURE 7
Distribution of sample points in the feature space: (A) View 1, (B) View 2, (C) View 3.

FIGURE 6
Time series curve of DSE at Bus 5

TABLE 3 Comparison of the performance of the two algorithms in the face of N-2 maintenance and insufficient samples.

Algorithm Training set Test set Training time (s) FNR (%) FPR (%) Accuracy rate (%)

C A1 A2 572 2.25 2 91.75

B1 B2 2.5 2.25 91.25

I A1 A2 55 1.25 1.5 94.25

B1 B2 0.25 0.25 96.50
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according to the previously described conditions. Without any line
maintenance, 200 data samples (denoted as the training set A1) are
obtained through transient numerical simulations for offline
training. Then, following the N-2 criterion, two lines are
randomly taken out of service, and 800 data samples (denoted as
the test set A2) are obtained through simulations for testing.
Similarly, 200 new data samples under the N-2 criterion are
obtained as a new training set (denoted as the training set B1),
and 800 data samples without any line maintenance are obtained as
a new test set (denoted as the test set B2). After 10 times of random
data extraction, the average results obtained from the test are shown
in Table 3.

From Table 3, it can be observed that the proposed method
maintains high accuracy and a low leakage rate even when faced with
changes in the power grid’s topology and structure due to line
maintenance, as well as insufficient fault samples for training new
models in practical engineering scenarios, and its accuracy and
model training efficiency are higher than that of the Shapelet-based
stability assessment algorithm represented by Algorithm C. This is
because when facing the same fault, the bus voltage time series will

FIGURE 9
Voltage magnitude response curves for different stability levels: (A) Sample 1, (B) Sample 2, (C) Sample 3, (D) Sample 4.

FIGURE 8
Three-dimensional spatial distribution of the optimal decision
boundary and test samples.
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change due to the different topology of the power grid. At the time,
the DSE-based feature learning can be well adapted to this change.

Assuming the system remains transiently stable before and after
topology changes, Algorithm I converts time series sets into energy
sets, with the core as shown in Equation 3. Each value at a sampled
time point is subtracted from the steady-state value, and the square
of this difference is multiplied by the simulation step size of 0.01 s.
This difference does not change dramatically due to minor trajectory
variations.

To further illustrate the critical role of DSE in identifying the
trend toward system instability and the effect of the selection of the
time window T on the results, 800 samples used for offline training
in the example shown in Figure 5 are selected. Bus 5, the root node of
the decision tree model, is taken as the observation object, and its
time series curve of the DSE generated in 0–1.4 s after fault clearance
is shown in Figure 6.

In Figure 6, as time progresses after fault clearance, the time
series curves of DSE for stable samples gradually flatten. At the later
stage, the voltage curve returns to the steady state and almost no
longer generates DSE. On the other hand, the DSE curve of the
unstable samples continues to climb after fault clearance because the
voltage curve cannot return to the vicinity of the steady-state value,
so the difference in the magnitude of the DSE generated by the bus
voltages between the stable samples and the unstable samples
becomes increasingly evident.

In the above process, the distinction between the two types of
samples becomes increasingly clear after 0.8 s, which means that the
longer the time window T after the fault clearance is taken, the more
DSE is generated by this time series. The enhanced differentiation
between stable and unstable samples results in fewer internal nodes
in the constructed decision tree model, which is beneficial to the
accuracy of the stability assessment and the subsequent margin
calculation. However, the longer the time window T taken for
analysis, the less time is left for automated engineering systems
to react or for human operators to take corrective actions after the

assessment model evaluates that the transient voltage stability will
become unstable and issues a warning. This is not conducive to
operators taking timely control measures to prevent the instability
incident from escalating further.

5.2 Calculation and analysis of transient
voltage stability margin

Based on the decision tree classification model obtained in
Section 5.1, the decision nodes corresponding to the system
buses are identified. In this case, three buses are included, and a
three-dimensional feature space is constructed based on the DSE
corresponding to these buses.

As mentioned in Section 3.3, the overall DSE of all buses in
the system shows a “simultaneously increase or decrease” trend
after the system suffers a disturbance. This means that in the
feature space, the sample points are roughly concentrated along a
line. To verify this conclusion, the distribution of the DSE of the
sample points in the feature space is shown below. As illustrated
in Figures 7A–C, the sample points are approximately distributed
along a straight line on the three cross-sections of the three-
dimensional space, with linear fitting degrees of 0.9583, 0.9870,
and 0.9613, respectively. This indicates that the sample points are
approximately linearly distributed in the three-dimensional
space. At this point, SVM can quickly find the optimal
classification boundary to perform subsequent stability margin
calculations.

Based on Section 3.3, the calculation of the TSVM is performed
by the constructed decision boundary. The accuracy of the
calculation is heavily dependent on the precision of the decision
tree classification model. To verify that the transient voltage stability
of the system is well differentiated in the above feature space
constructed by the decision tree model, 800 training samples
from the first case study in Section 5.1 are used to train the SVM
model. The additional 400 samples are utilized for testing. The
optimal decision boundary equation for classifying stable and
unstable samples is provided in Equation 13. The SVM model
achieves a classification accuracy of 99.25% on the 400 test
samples, demonstrating a high level of reliability and accuracy in
practical applications. Figure 8 presents the distribution of 400 test
samples and the optimal decision boundary in the feature space of
key buses. In this figure, the cyan plane represents the optimal
decision boundary, blue points indicate stable samples and red
points denote unstable samples.

−8.412EBus5 − 8.36EBus11 − 7.864EBus7 + 1.092 � 0 (13)
Based on Equations 12, 13, the TSVM for 400 data samples is

calculated. Using the results presented in Table 1, a subset of
samples categorized as transiently stable, critically stable, and
unstable are chosen for comparative analysis. According to the
definition in Equation 12, the critical TSVM value η

corresponding to these 400 samples is 0.1652. Based on the
resulting η,the response curves of the voltage magnitudes at
each bus within 5 s following a fault for samples of varying
stability levels are illustrated in Figure 9.

Based on Figure 9, as the transient voltage stability margin of the
system gradually decreases, the amplitude of the voltage magnitude

FIGURE 10
The relationship between the system’s TVSM and CCT.
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trajectories at various buses increases after the line fault clearance.
Initially, the voltage magnitudes exhibit slight oscillations around
their steady-state values and quickly become stable. As the stability
margin continues to decrease, the oscillations become more
pronounced around the steady-state values. Ultimately, when the
system becomes unstable, the voltage magnitudes oscillate violently
and then diverge.

Sixty sample parameter settings were randomly selected from
Figure 8. The corresponding critical clearing times were obtained
through iterative testing in DIgSILENT to validate the accuracy
of the calculated stability margins. The results are shown in
Figure 10. As seen in Figure 10, when the TSVM values of the
samples increase, their critical clearing times generally increase
as well. The linear fit between the two has a correlation coefficient
of 0.8522.

Based on the results in Figures 8, 10, it is validated that the
transient stability margin calculated by the method proposed in this
paper effectively reflects the transient voltage stability in practical
operating scenarios. The method demonstrates sufficient usability
within an acceptable range of error and has the potential for
application in engineering practice.

6 Conclusion

This paper focuses on the transient voltage stability assessment
of modern power systems, integrating machine learning with the
transient voltage trajectory of buses. A transient voltage stability
assessment model based on Decision Tree and disturbance signal
energy (DSE) is proposed, as well as a stability margin calculation
scheme based on SVM. The main contributions and results of this
paper are as follows.

(1) The concept of DSE is introduced. Based on the DSE, the
intensity of voltage fluctuations can be more directly reflected
compared to the energy function method. The ID3 Decision
Tree algorithm is applied to construct the transient voltage
stability assessment model based on DSE. Compared to the
Shapelet-based method, the assessment model proposed in
this paper shows the advantages of lower time costs and
higher interpretability, while maintaining the same level
of accuracy.

(2) The optimal decision boundary of the dichotomous samples is
obtained using SVM, upon which the stability margin
calculation is built. The resulting stability margin provides
a definitive assessment of the transient voltage stability and
effective guidance for practical dispatching.

(3) The effectiveness of the proposed transient voltage stability
assessment and margin calculation methods is verified
through the tests on the IEEE 39-bus system. The case
study results show that the proposed method has the
advantages of low time cost, high accuracy, and strong
robustness, demonstrating significant potential for online

monitoring and assessment of transient voltage stability in
new power systems.
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