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The low-voltage distribution network (LVDN) is the final stage in delivering
electric energy from power plants to consumers, and its operational condition
greatly impacts many power users. While medium-voltage and high-voltage
distribution networks can be managed through intelligent digital systems, load
imbalance issues in LVDNs often rely on planners’ experience, leading to
significant limitations. With advancements in electric vehicle (EV) charging
technology and vehicle-to-grid (V2G) technology, where EVs act as
distributed energy storage units, bidirectional energy exchange between
vehicles and the grid can now contribute to LVDN operation. This paper
proposes a low-voltage load distribution planning method that integrates
street information and V2G technology. A two-stage stochastic programming
mixed-integer model is developed to tackle load imbalance in LVDNs, with the
planning scheme derived from solving this model. A case study is presented to
verify the effectiveness of the method, demonstrating that incorporating V2G
technology enhances load distribution accuracy and reduces reliance on manual
planning, improving network stability and operational efficiency.
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1 Introduction

The low-voltage distribution network (LVDN) directly serves basic electricity users,
acting as a crucial link between power production and power consumption. With the
increasing integration of new energy sources and the introduction of advanced power
equipment, the LVDN is experiencing significant transformations (Guo et al., 2023). In
actual LVDN, load conditions are dynamic and subject to constant fluctuations due to
various unpredictable factors, such as customer behavior, weather conditions, and public
events. These variations make load imbalance an inherent challenge in such networks
(Yan and Saha, 2012). As urban development accelerates, the phenomenon of “village in
the city” becomes more prevalent, leading to concentrated and disorderly power loads,
with pronounced regional load differences. Effective distribution network planning can
mitigate load imbalance issues. LVDN planning primarily involves designing distribution
transformers and low-voltage lines to form a radial network with the lowest total cost
(Díaz-Dorado et al., 2001). Scheidler et al. (2018) highlights that while a large amount of
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data is available for analysis in LVDNs, planning typically relies on
the expertise of experienced planners. Utilizing intelligent
planning methods can enhance the robustness of planning
schemes, but the quality of the database information poses a
significant challenge. Wang et al. (2015) employs the traditional
manual planning method, gathering LVDN information for
analysis to develop a distribution network planning scheme.
This approach considers both the investment in grid
transformation and the reduction of grid loss rates. Mateo et al.
(2018) focuses on planning low-voltage feeder-level integrated
distribution networks by collecting data from 79 large European
distribution system operators (DSOs). However, these feeder-level
distribution networks only encompass three-phase balanced urban
and semi-urban low-voltage distribution networks. In Díaz-
Dorado et al. (2001), a minimum Euclidean distance tree is
employed to plan low-voltage radial distribution networks while
considering voltage drop constraints and line losses. However, this
method does not address the issue of load imbalance in the
distribution network. Carpinelli et al. (2017) employs an
intelligent planning method, utilizing multi-objective
optimization to address load imbalance in LVDNs, thereby
enhancing power quality and energy efficiency. In LVDNs,
cables are typically laid along streets (Moon and Kim, 2017).
Díaz-Dorado et al. (2003) focuses on planning rural power
grids with fewer nodes, considering the connection between
transformers and power grids but not the street layout.
Verheggen et al. (2016) proposes a low-voltage distribution
network planning method that accounts for both the laying of
cables along streets and the inclusion of distributed generation.
Similarly, Navarro and Rudnick (2009) considers the user street
layout and uses a heuristic algorithm to divide the planning area
into smaller sections for local analysis and optimization, ultimately
optimizing the entire area. Also considers the user street layout and
uses a heuristic algorithm to divide the planning area into small
areas for local analysis and optimization, and finally optimizes the
whole area. The aforementioned three papers focus exclusively on
typical power system loads.

With the rapid development of clean energy, the number of
electric vehicles (EVs) is also increasing rapidly. Studies have
shown that EV charging behavior significantly impacts the
power grid, causing issues such as current and voltage
imbalance, line loss, and feeder overload (Boribun, 2019). For
some distribution facilities, peak load may only be reached for a
few hours a year. However, uncontrolled electric vehicle charging
behavior often exacerbates these load peaks and negatively impacts
transformer lifespan (Wu and Sioshansi, 2017). By implementing
orderly charging, which involves controlling the timing and
amount of EV charging load, the operation of the distribution
network can be improved, and peak demand on the network can be
reduced (Benetti et al., 2014). Sangob and Sirisumrannukul (2021)
proposes an LVDN planning method based on sequential particle
swarm optimization (PSO). This method aims to mitigate the
impacts of large-scale EV usage by implementing ordered charging
of EVs. Tan et al. (2016) employs a two-level planning method to
minimize grid load differences by adjusting the EV charging load.
Ordered charging of EVs can enhance system operation by shifting
the load to off-peak hours. Moreover, if EVs can function as energy
storage and participate in the adjustment of distribution network

operations, peak load can be further reduced (Mets et al., 2011). EV
batteries are increasingly popular as small to medium-sized energy
storage solutions due to their relatively high energy density, lack of
geographical restrictions, and low maintenance requirements
(Pimm et al., 2018). When a large number of EV batteries are
combined to act as energy storage and can send power back to the
grid during peak hours, this is referred to as Vehicle-to-Grid (V2G)
technology (Crozier et al., 2020). V2G technology has
demonstrated significant potential in balancing electricity
supply and demand (Han et al., 2012). For instance, Soares
et al. (2011) proposes a particle swarm optimization (PSO)
algorithm to address the optimal scheduling of energy
resources, including V2G resources.

Stochastic programming is a significant branch of
mathematical programming, used for modeling optimization
problems that involve uncertain parameters (Shapiro and
Philpott, 2007). The two-stage stochastic programming with
recourse cost is the most common type, where decisions and
related variables are divided into two stages (Mavromatidis
et al., 2018). The first stage is typically referred to as the tactical
level, involving long-term decisions that influence development
over an extended period. The second stage, known as the
operational level, involves more specific, shorter-term decisions.
The first-stage decision must be made before the uncertain
parameters are realized. Once these parameters are determined,
they often differ from the expected values considered during the
first stage. Consequently, the second stage incurs a recourse cost
due to these differences, and the goal is to minimize this cost
through second-stage decisions. Tan et al. (2014) adopts a two-
stage stochastic programming method to plan the distribution
network, taking into account distributed resources. Wu and
Sioshansi (2017) uses a two-stage stochastic programming
method to flexibly schedule EV charging times, leveraging
distributed resources to mitigate the impact of load peaks on
transformers.

In summary, LVDN planning is often closely linked to street
information. However, due to data limitations and challenges in
integrating and utilizing information, planners typically rely on
limited data and design based on experience or use heuristic
algorithms for support. The increasing adoption of EVs has
added complexity, as their charging patterns significantly
affect distribution network operations. The deployment of
smart detection devices has improved data acquisition and
utilization in LVDN. Nonetheless, current research falls short
in integrating diverse information from these networks and using
intelligent optimization methods to align long-term planning
with operational scheduling while optimizing load distribution.
Therefore, the paper proposes a low voltage load balancing
distribution method considering street information and V2G
technology applications. The proposed method employs a two-
stage stochastic programming approach, the corresponding
theory is illustrated in Figure 1. In the first stage, a load
distribution optimization model that incorporates street
information and electrical topology is established, focusing
primarily on long-term load distribution planning and related
constraints. In the second stage, a scheduling model utilizing
V2G technology is created further to enhance the operational
status of the distribution network.

Frontiers in Energy Research frontiersin.org02

Lu et al. 10.3389/fenrg.2024.1479216

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1479216


The main contributions of this paper are as follows.

1) This study contributes to the planning of low-voltage distribution
networks by integrating the original load distribution with optimal
load combination strategies. We propose a method to reallocate
load combinations to new access nodes through analytical
modeling, taking into account street orientation to determine
the most efficient and cost-effective load planning pathways.

2) The approach integrates two-stage adjustments for both long-
term planning and dispatch. Utilizing the pseudo load curve
acquisition method, it collaboratively addresses issues such as
large load fluctuations, heavy overloads in the distribution
network, and load imbalance, from both planning and
dispatching perspectives.

2 Distribution network modeling

In the LVDN, most distribution lines are low-voltage overhead
lines, and the road network is highly coupled with the power grid.
Therefore, this paper integrates electrical lines in the LVDNwith street
information, forming what is termed the Road-Grid Coupling
Network (RGCN). The primary method for optimizing load
distribution in the LVDN involves removing the load from the
original line, laying low-voltage overhead lines along the street, and
reconnecting the removed load to the new line. Key issues in this
process include selecting the most appropriate load combination (LC)
for adjustment and choosing the adjustment path with the lowest cost.

2.1 Road-grid coupling modeling

First, the street and electrical topology information related to the
LVDN will be collected through the distribution operator systems
(DSOs), as shown in Table 1. This table summarizes the key
information required for modeling the RGCN. After collecting
street direction information, the start and end nodes of the
streets and the intersections of each street are anchored, and the
streets are connected to establish a highway network connection
model; for electrical topology information, the main focus is on the
distribution and direction of electrical lines, and the line node
locations are determined according to actual conditions, while
the access locations of each user in the line are determined; for
users, if smart meters are installed, the load data in the smart meters
is read; if smart meters are not installed, the total electricity
consumption information is collected for pseudo-load curve
acquisition.

The cost of laying overhead lines is assessed for each street by the
DSOs. This is represented by a cost coefficient ci, which is used to
determine the most cost-effective planning route.

Finally, a weighted directed topological graph of the LVDN is
created. The method for assigning weights to each edge in the
directed graph is described in Equation 1.

wi � ci · li (1)

Where wi is the weight of the i-th street, ci is the cost coefficient
of the i-th street, and li is the length of the i-th street.

2.2 Pseudo load profile determination

The LVDN includes numerous users, making it impractical and
costly to install intelligent electric meters for every user.
Consequently, obtaining pseudo load profiles for low-voltage
users depends on data from a limited number of users equipped
with intelligent electric meters. In this paper, for users without
intelligent electric meters, pseudo load profiles are utilized to

FIGURE 1
Theoretical schematic diagram of the proposed method.

TABLE 1 Road-grid coupling network concern information table.

Parameter Description

Street Orientation The directional layout of streets

Electrical Topology The configuration and connections of electrical lines

Customer Access node in the grid and historical load data

Frontiers in Energy Research frontiersin.org03

Lu et al. 10.3389/fenrg.2024.1479216

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1479216


approximate their actual power consumption curves (Gahrooei
et al., 2017).

First, all loads are categorized based on the electricity
consumption characteristics of the users. Collect electricity usage
data from all users with intelligent electric meters. After cleaning the
data and filling in any gaps, cluster the typical load patterns for
various load types in different scenarios according to their load types
and contexts. Additionally, mark the probability of each pattern’s
occurrence. For loads without intelligent electric meters, assign a
typical load pattern to each load based on its type and context. For
example, if there are 100 A-type loads, and the clustering results for
A-type loads in scenario-I show three load patterns (a, b, c) with
occurrence probabilities of 50%, 30%, and 20%, respectively, then
approximately 50, 30, and 20 of the 100 loads will be assigned to load
patterns a, b, and c, respectively, in scenario-I. The flow chart
illustrating the pseudo load profile acquisition method is shown
in Figure 2.

3 Two-stage stochastic
programming modeling

In the method proposed in this paper, the process is divided into
two stages. The first stage is the planning stage, which spans a longer
period and focuses primarily on replanning the existing load in the
LVDN to mitigate issues of heavy overload and load imbalance
through a limited number of load distribution adjustments. The
second stage is the dispatching stage, which has a shorter period and
mainly involves using V2G technology to manage EVs within the
distribution network, further alleviating the problems of heavy
overload and load imbalance.

This chapter addresses modeling in two distinct stages: long-
term operation and short-term scheduling. After developing the
models, a solver is utilized to derive collaborative planning and
scheduling solutions. Ultimately, this approach aims to alleviate
operational issues in the LVDN by integrating both long-term
planning and short-term scheduling strategies.

3.1 Planning stage modeling

Through analysis of real-world projects, it is observed that the
LVDN typically only redistributes load combinations (LCs) at the
feeder endpoints. In the planning process, we begin with the load at
the feeder’s end, then select themost appropriate LCs along the feeder.
This LC is subsequently reconnected to the most suitable node within
the distribution network, which is not always the terminal node.

In Figures 3A, B show the LCs that allow replanning and that do
not allow replanning, respectively. For example, in Figure 3A, black
nodes 2, 3, and five represent nodes located at the end of the feeder,
and the loads they connect to are the ones subject to replanning.
Taking node-2 as an example, during the planning process, we can
select loads LD1-LD3 (as shown in the red frame-1 in Figure 3A).
Alternatively, we can select up to k loads as an LC for planning (as
shown in the red frame-2 in Figure 3A).

However, we cannot plan the load in the middle of the feeder (as
shown in the red frame-1 in Figure 3B), nor can we select loads LD1-
LD3 and then add LDk as an LC (as shown in the red frame-2
in Figure 3B).

In the planning stage, the key decision is to determine the node
of each load connected to the distribution network. For each load
within the distribution network, using the j-th load Pload

j as an
example, we define a decision vector shown as Equation 2:

x⊤j � ρj1, ρj2, · · ·, ρjn[ ] (2)

where the elements ρjn are all binary variables, and n is the number
of nodes in the distribution network.

When making planning decisions, our goal is to minimize the
total cost of the plan. The cost is calculated using the method shown
as Equation 3. The cost matrix C is derived from the weighted
directed topology graph developed in Chapter 2. To calculate the
cost of each potential planning path for the loads, the Dijkstra
shortest path algorithm is employed.

f1 � ∑
m

j�1
∑
n

i�1
ρji · Cji (3)

Where, Cji represents the cost of replanning the j-th load from
the original node (assumption to be the k-th node) to the new i-th
node. If k = i, then Cji = 0, indicating that the j-th load has not been
replanned, and the cost is 0.

In LVDN, to avoid the formation of a closed power supply loop
that could compromise safety in unexpected situations, the power
supply network is typically designed to be radial. Consequently,
users obtain power from only one node in the distribution network.
This constraint is expressed as shown in Equation 4:

∑
n

i�1
ρji � 1, ∀j ∈ ΩLD (4)

FIGURE 2
Flowchart of pseudo load profile acquisition method.
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where ΩLD is the set of all loads, and n is the total number of
distribution network nodes. When ρji = 1, it means that the j-th load
access node is the i-th node in the distribution network.

Since all loads are already connected to the distribution network,
readjusting the distribution of all loads is not feasible. During the
planning stage, typically only a portion of the loads at the end of the
distribution network can be redistributed. The constraint that needs
to be met is shown in Equation 5, indicating that there is an upper
limit on the number of loads that can be replanned:

∑
m

j�1
1 − x⊤j · xj( )≤ n adj

max (5)

where n adj
max means the upper limit number, and m means the

number of loads. If the access node of the j-th load in the
distribution network is redistributed, then constraint (Equation
6) needs to be satisfied:

x⊤j · xj � 0 (6)

Otherwise, constraint (Equation 7) must be met:

x⊤j · xj � 1 (7)

According to the above research results, the load connected to
non-terminal nodes must adhere to the following constraint
(Equation 8):

x⊤j · xj � 1, j ∉ ΩE.N. (8)

where ΩE.N. is the set of all end nodes.
For an end node (assuming it is node-i), two auxiliary decision

variables are defined, as shown in Equations 9, 10:

A⊤
i � ai1, ai2, · · ·, ain[ ] (9)

B⊤
i � bi1, bi2, · · ·, bik[ ] (10)

where ain and bik are both binary variables, k is the total number of
users connected to the end node-i; A⊤

i is used to assist in the
decision-making process for planning the users connected to end
node-i, and B⊤

i helps determine the LC selection for planning end

node-i. These variables must satisfy the constraints shown in
Equations 11, 12:

∑
n

i�1
ahi � 1, ∀h ∈ ΩE.N. (11)

∑
k

z�1
bhz ≤ 1, ∀h ∈ ΩE.N. (12)

where, if ahi = 1, it indicates that the LC from the end node-h is
replanned to the node-i; if bhz = 1, it signifies that the z loads at the
end of end node-i are replanned as an LC; if all bhz values are 0, it
means that the load connected to this node is not replanned. The
detailed usage of these two auxiliary variables will be elaborated in
the second stage.

In LVDN, it is generally preferable to connect customers to the
nearest point in the distribution network. If the connection point is
too far from the customer’s geographical location, it can lead to
cross-power-supply issues, which are detrimental to the operation
and management of the power grid. Therefore, when redistributing
the load, it is essential to follow the principle of proximity planning,
as shown in Equation 13:

∑
n

i�1
ρji ·Dji ≤Rmax, ∀j ∈ ΩLD (13)

where Dji represents the Euclidean distance from the j-th load to the
i-th node, according to the weighted directed topological graph
obtained in Chapter 2. Rmax denotes the maximum allowable
distance between the load location and the access node.

3.2 Operational stage modeling

During the operation stage, the primary objective is to utilize
V2G technology to manage the charging load of EVs efficiently. This
helps reduce the peak-to-valley difference in load and alleviate load
imbalance. The decision variable in this stage is the EV charging load
xs·k·t, which operates on a smaller time scale. The subscripts

FIGURE 3
Example diagram of Load Combinations(LCs).
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represent the charging load index, scenario, and time, respectively.
Each scenario contains sn sampling points, as illustrated in Figure 4.

In low-voltage distribution networks, significant load differences
between feeders exacerbate load imbalance within the regional grid.
Therefore, during project operation and maintenance, it is essential
to maintain uniform load rates across feeders. The article defines the
degree of load imbalance as the difference between the maximum
and minimum instantaneous load rates of all feeder outlets in the
distribution network at any given time. A substantial degree of load
imbalance typically signals that certain feeders are overloaded.
When this imbalance surpasses a specified threshold, it can lead
to increased transformer heating, elevated power losses, a higher
failure rate, even voltage fluctuations, and reduced equipment
lifespan. The calculation method for the degree of load imbalance
is defined as Equation 14:

η � σs·t·max − σs·t·min (14)
where σs·t·max and σs·t·min are the maximum and minimum values of
all feeder load rates in scenario-s, at time t.

At this stage, the optimization goal is to minimize the
mathematical expectation of the degree of load imbalance across
all scenarios, as shown in Equation 15, where βs is the probability of
the scenario-s occurring, and sn is the number of typical scenarios.

f2 � ∑
sn

s�1
βs ·

1
tn
∑
tn

t�1
σs·t·max − σs·t·min( ) (15)

To facilitate the calculation of the load power at the end node
(assuming node-i), auxiliary decision variables Pi·out·s·t, Pi·rest·s·t, and
Y┬
i·s·t (shown as Equation 16) are introduced here:

Y⊤
i·s·t � ys·t

i1 , y
s·t
i2 , · · ·, ys·t

ik[ ] (16)
where Pi·rest·s·t is the remaining load value of end node-i in scenario-s
at time t, and the role of Y┬

i·s·t is to assist in calculating the load values
planned from end node-i to another node, specifically the value of
Pi·out·s·t. The element values ofY┬

i·s·t are obtained by accumulating the
load values in order from far to near, according to the distance of the
load’s access to the end node before replanning. For example, the
value of ys·t

i1 is the load value of the last load of end node-i (such as
LD1 in Figure 3A) in scenario-s at time t; and the meaning of ys·t

i2 is
the sum of the load values of the last two loads (such as LD1 and LD2
in Figure 3A) in scenario-s at time t, and so on. These three auxiliary
variables must satisfy the constraints in Equations 17, 18:

Pi·out·s·t � ∑
k

z�1
ys·t
iz · biz, ∀i ∈ ΩE.N. (17)

Pi·out·s·t + Pi·rest·s·t � ys·t
ik (18)

where, according to the previous description, ys·tik is the total load
value of the end node-i in scenario-s at time t, before planning.

Based on the above analysis, the calculation method for node
power in the distribution network is shown as Equation 19:

Pload
s·i·t �

Pi·rest·s·t + ∑
nE.N.

z�1
Pz·out·s·t · azi, i ∈ ΩE.N.

∑
m

j�1
ρji · PLD

s·j·t + ∑
nE.N.

z�1
Pz·out·s·t · azi, otherwise

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(19)

where nE.N. is the total number of end nodes.
To ensure the distribution network’s safe and stable operation,

the lines’ maximum instantaneous power should remain below the
safety threshold, and the network should not operate under heavy
overload conditions for extended periods. The constraints are shown
in Equation 20:

Ps·ij·t ≤ μ · Pij
N

∑
t0+Tmax

t�t0
Ps·ij·t ≤ 0.8 · Pij

N · Tmax

⎧⎪⎪⎨
⎪⎪⎩ ,∀ij ∈ ΩL,∀s ∈ Ωs (20)

where Ps·ij·t represents the instantaneous power of the line at time t in
the s-th scenario; PN ij is the rated power of line-ij, μ is the safety
threshold parameter, Tmax is the maximum allowable continuous
overload time, ΩL is the set of all lines, and Ωs is the set of
all scenarios.

At the same time, the distribution network should meet the
power balance constraints during operation, as shown in
Equation 21:

Ps·i·t·in � Pload
s·i·t + Ps·i·t·out

Ps·i·t·in � ∑
z

Ps·zi·t,∀z ∈ Ωin

Ps·i·t·out � ∑
k

Ps·ik·t,∀k ∈ Ωout

∀i ∈ ΩN,∀s ∈ Ωs

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(21)

when ignoring line losses, at any time t, the power flowing into
any node (e.g., node-i) Ps·i·t·in should be equal to Pload

s·i·t (the sum of
the total load of the users connected to this node) plus Ps·i·t·out
(the power flowing out of the node). Ωi·in is the set of starting
nodes of the lines flowing into node-i, Ωi·out is the set of ending
nodes of the lines flowing out of node-i, ΩN is the set of
all nodes.

When using V2G technology for load scheduling, to ensure the
safe operation of the EV charging pile, its maximum charging and
discharging power should meet the requirements specified in
Equation 22:

−Pd·max ≤ xs·k·t ≤Pc·max (22)

FIGURE 4
Schematic diagram of scenario sampling.
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where Pc·max and Pd·max are the maximum charging and discharging
power of the charging pile, respectively.

Since users’ willingness to participate in the V2G plan varies
across different periods, the proportion of users participating in the
V2G plan at different times is not completely consistent. Here, we
define the auxiliary decision variable PV2G, which represents the
charging load of the user group participating in the V2G plan. This
variable satisfies Equation 23:

xs·k·t � 1 − αs·t( )Xs·k·t + PV2G
s·k·t (23)

Where Xs·k·t is the load value when EVs are charged in an
unordered manner, and αs·t is the proportion of users participating
in the V2G plan at scenario-s at time t. Additionally, for users in the
V2G plan, the maximum charging and discharging power
constraints must also be met, as shown in Equation 24:

δ1 · αs·t ·Xs·k·t ≤PV2G
s·k·t ≤ δ2 · αs·t ·Xs·k·t (24)

where δ1 and δ2 are the maximum charging and discharging power
safety thresholds of V2G users respectively.

To ensure the safety of EV charging and battery life, and to
prevent excessive current changes from impacting the power grid
and batteries, the power change rate should also be controlled when
scheduling EV loads, as shown in Equation 25:

PV2G
s·k·t − PV2G

s·k· t−1( )
∣∣∣∣∣

∣∣∣∣∣≤ ε · Pc·max (25)

where ε is the maximum allowed charging rate.
For EV users, it is necessary to charge their vehicles to the

specified capacity before their desired time. Therefore, in the
scheduling plan, the total charging amount constraint must be
met, as shown in Equation 26:

∑
tend

t�t0
xs·k·t � ∑

tend

t�t0
Xs·k·t (26)

where t0 and tend are respectively the start and end times of the
scheduling plan.

3.3 Modeling summary

Based on the theory of two-stage stochastic programming
method, the model established in this chapter includes
constraints (4)–(5), (13)and (20)–(26). The objective function of
the model is shown in Equation 27:

minf � λ1f1 + λ2f2 (27)
where λ1 and λ2 are respectively the weight coefficients of the two-
stage objectives.

When the model is solved, the values of the decision variables x⊤j
and EV charging load xs·k·t are transformed into the
planning method.

4 Case study

Themodel established in this paper is a large-scale mixed integer
programming model, containing both integer and continuous

variables. The commercial solver Gurobi is used to solve the
problem. The computer specifications are: Intel Core™ i5-
13500H, 2.60 GHz, 16 GB of memory.

4.1 Case overview

This paper uses a low-voltage distribution transformer in an
urban village in Guangzhou City as an example. Figures 5, 6 are the
electrical topology of the distribution network transformer and the
road network coupling diagram respectively. The blue nodes in
Figure 6 represent customers, and the red squares indicate
distribution transformers.

The load exhibits characteristics typical of a residential area,
including four categories: residential load, small commercial
load, distributed photovoltaic (PV), and EV charging loads.
Due to factors such as charging prices and limited charging
pile capacity, most EVs charged during working hours follow
a “charge-and-go” pattern. This means the owner starts charging
immediately after connecting the car to the charging pile and
leaves once the EV is charged to meet mileage requirements or
the owner’s departure time limit. Fewer users participate in the
V2G plan during these hours. However, for users who charge
during late night to next morning, the end time of charging is
more flexible, and the proportion of users participating in the
V2G plan is relatively high.

To more clearly demonstrate the continuous dispatch effect
of V2G from late night to the next morning, this article takes 8:
00 a.m. as the starting point, the scenario time scale is 24 h a day,
and the sampling frequency is 15 min. For residential, small
commercial, and EV charging loads, the load curve is closely
related to whether the day is a weekday or not. Their clustering
results on weekdays and non-working days show obviously
different characteristics, as shown in Figures 7A–C. PV is
closely related to weather conditions. Therefore, the
clustering results of different scenarios according to weather
conditions are shown in Figure 7D. From the results, we can see
that PV output is larger on sunny days, smaller on cloudy or
rainy days, and relatively smaller on cloudy days, with random
fluctuations.

According to the pseudo load profile acquisition approach
proposed in Chapter 2, the load profiles of all loads in the
distribution network are obtained as shown in Figure 8. In this
paper, PV output is regarded as loads with negative values, and all
PV output is considered to be absorbed.

4.2 Case analysis

According to the scenarios generated above, the degree of load
imbalance in the area before replanning reached 26.38%. In both
working day and non-working day scenarios, the degree of load
imbalance at 10:00 p.m. is significantly higher. In the working day
scenario, the instantaneous degree of load imbalance can reach
43.71%, which is very unfavorable for the safe and stable operation
of the regional distribution network.

Applying the method proposed in this paper (referred to as
method 1), the load planning scheme for the region is obtained as
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follows: load-63, 64, and 65 at the end of feeder-3 are adjusted to
feeder-2, and load-77 and 78 at the end of feeder-2 are adjusted to
feeder-1. The schematic diagrams of the load adjustment positions
and paths are shown in Figures 9, 10.

Take EV load No. 39 as an example, the optimization results of EV
charging load considering V2G technology are shown in Figure 11.
During certain high-load periods, EVs connected to the distribution

network act as energy storage, transmitting energy back to the
distribution network. As night falls, most residential and commercial
loads decrease significantly. During this period, EV charging demand
rises to fulfill charging requirements. By early morning, residential and
commercial loads begin to increase again. By this time, most EVs have
completed charging, leading to a gradual decrease in EV load. This
sequence achieves a staggered operation of various loads.

FIGURE 5
Electrical topology diagram of LVDN.

FIGURE 6
Diagram of road-grid coupling network(RGCN).
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FIGURE 7
Clustering results of loads.

FIGURE 8
Pseudo load profiles of all loads.
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FIGURE 9
Planning scheme diagram 1.

FIGURE 10
Planning scheme diagram 2.
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After optimizing the distribution network in the region
according to the plan mentioned above, the comparison of the
degree of load imbalance is shown in Figure 12. It can be seen that
the degree of load imbalance has significantly decreased across
different scenarios, especially around the 22:00 period in the
non-working day scenario. The load imbalance phenomenon has
been greatly alleviated, and the overall degree of load imbalance has
dropped to 4.66%, demonstrating a significant effect.

If we only consider adjusting the distribution of loads in the
distribution network without applying V2G technology (referred to as
method 2), the resulting planning scheme would need to adjust load
48 alongwith loads 63, 64, and 65 to feeder 2. In this case, the degree of
load imbalance can only be reduced to 6.87%. The planning cost and
the degree of load imbalance would be higher than method 1.

If we ignore street information and only optimize network flow
(referred to as method 3), the planning scheme involves adjusting
load-1, 2, 3, and 4 to feeder-2, and adjusting load-64 and 65 to feeder-
1. This optimizes the degree of load imbalance to 4.11%. However, the

replanning routes in this scheme are longer and the planning cost is
higher. Compared to the case where street information is considered,
the decrease in the degree of load imbalance is insignificant. The
overall economic benefits of this scheme are lower, and it can easily
cause cross-power-supply issues, increasing management difficulty.
The comparison of the three methods is shown in Table 2.

The method proposed in this paper comprehensively considers
street information and the application of V2G technology. It achieves
a relatively good adjustment in the degree of load imbalance at the
lowest cost, offering high efficiency and economic benefits.

5 Conclusion

Aiming at the current problem of load imbalance in Low Voltage
Distribution Networks (LVDN), this paper proposes a load-balanced
distribution method that considers street information and the
application of V2G technology. Its outstanding features include the

FIGURE 11
EV charging load optimization diagram.

FIGURE 12
Comparison of the degree of load imbalance.
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incorporation of LVDN street information and the adoption of a two-
stage stochastic programming approach. Themethod proposed in this
paper effectively integrates long-term planning with short-term
dispatching strategies in the distribution network. By optimizing
user access nodes and incorporating V2G technology, this
approach significantly mitigates the degree of load imbalance in
the LVDN with minimal and more judicious adjustments.
However, the load profiles used in this method are pseudo load
profiles. If more accurate load profiles of all users can be obtained, the
effectiveness of this method can be further enhanced.
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